; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4 ; RUN: opt -disable-output "-passes=print" -scalar-evolution-classify-expressions=0 < %s 2>&1 | FileCheck %s target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-unknown-linux-gnu" define void @f_0() { ; ; CHECK-LABEL: 'f_0' ; CHECK-NEXT: Determining loop execution counts for: @f_0 ; CHECK-NEXT: Loop %for.body: backedge-taken count is i32 5 ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 5 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i32 5 ; CHECK-NEXT: Loop %for.body: Trip multiple is 6 ; entry: br label %for.body for.body: %i.05 = phi i32 [ 32, %entry ], [ %div4, %for.body ] tail call void @dummy() %div4 = lshr i32 %i.05, 1 %cmp = icmp eq i32 %div4, 0 br i1 %cmp, label %for.cond.cleanup, label %for.body for.cond.cleanup: ret void } ; Do not compute exhaustive trip count based on FP libcalls, as their exact ; return value may not be specified. define i64 @test_fp_libcall() { ; CHECK-LABEL: 'test_fp_libcall' ; CHECK-NEXT: Determining loop execution counts for: @test_fp_libcall ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %fv = phi double [ 1.000000e+00, %entry ], [ %fv.next, %loop ] call void @use(double %fv) %fv.next = call double @llvm.sin.f64(double %fv) %iv.next = add i64 %iv, 1 %fcmp = fcmp une double %fv, 0x3FC6BA15EE8460B0 br i1 %fcmp, label %loop, label %exit exit: ret i64 %iv } ; Do not compute exhaustive trip count based on FP constant folding resulting ; in NaN values, as we don't specify which NaN exactly is returned. define i64 @test_nan_sign() { ; CHECK-LABEL: 'test_nan_sign' ; CHECK-NEXT: Determining loop execution counts for: @test_nan_sign ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %fv = phi double [ -1.000000e+00, %entry ], [ %fv.next, %loop ] call void @use(double %fv) %a = fsub double %fv, 0x7F86C16C16C16C16 %b = fadd double %a, %a %fv.next = fsub double %b, %a %iv.next = add i64 %iv, 1 %fv.bc = bitcast double %fv to i64 %icmp = icmp slt i64 %fv.bc, 0 br i1 %icmp, label %loop, label %exit exit: ret i64 %iv } ; Do not compute exhaustive trip count based on FP constant folding if the ; involved operation has nsz or one of the algebraic FMF flags (reassoc, arcp, ; contract) set. The examples in the following are dummies and don't illustrate ; real cases where FMF transforms could cause issues. define i64 @test_fp_nsz() { ; CHECK-LABEL: 'test_fp_nsz' ; CHECK-NEXT: Determining loop execution counts for: @test_fp_nsz ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %fv = phi double [ 1.000000e+00, %entry ], [ %fv.next, %loop ] call void @use(double %fv) %fv.next = fadd nsz double %fv, 1.0 %iv.next = add i64 %iv, 1 %fcmp = fcmp une double %fv, 100.0 br i1 %fcmp, label %loop, label %exit exit: ret i64 %iv } define i64 @test_fp_reassoc() { ; CHECK-LABEL: 'test_fp_reassoc' ; CHECK-NEXT: Determining loop execution counts for: @test_fp_reassoc ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %fv = phi double [ 1.000000e+00, %entry ], [ %fv.next, %loop ] call void @use(double %fv) %fv.next = fadd reassoc double %fv, 1.0 %iv.next = add i64 %iv, 1 %fcmp = fcmp une double %fv, 100.0 br i1 %fcmp, label %loop, label %exit exit: ret i64 %iv } define i64 @test_fp_arcp() { ; CHECK-LABEL: 'test_fp_arcp' ; CHECK-NEXT: Determining loop execution counts for: @test_fp_arcp ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %fv = phi double [ 1.000000e+00, %entry ], [ %fv.next, %loop ] call void @use(double %fv) %fv.next = fadd arcp double %fv, 1.0 %iv.next = add i64 %iv, 1 %fcmp = fcmp une double %fv, 100.0 br i1 %fcmp, label %loop, label %exit exit: ret i64 %iv } define i64 @test_fp_contract() { ; CHECK-LABEL: 'test_fp_contract' ; CHECK-NEXT: Determining loop execution counts for: @test_fp_contract ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: br label %loop loop: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %fv = phi double [ 1.000000e+00, %entry ], [ %fv.next, %loop ] call void @use(double %fv) %fv.next = fadd contract double %fv, 1.0 %iv.next = add i64 %iv, 1 %fcmp = fcmp une double %fv, 100.0 br i1 %fcmp, label %loop, label %exit exit: ret i64 %iv } declare void @dummy() declare void @use(double %i) declare double @llvm.sin.f64(double)