//===-- VPlanConstruction.cpp - Transforms for initial VPlan construction -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements transforms for initial VPlan construction. /// //===----------------------------------------------------------------------===// #include "LoopVectorizationPlanner.h" #include "VPlan.h" #include "VPlanCFG.h" #include "VPlanDominatorTree.h" #include "VPlanPatternMatch.h" #include "VPlanTransforms.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/IR/MDBuilder.h" #define DEBUG_TYPE "vplan" using namespace llvm; using namespace VPlanPatternMatch; namespace { // Class that is used to build the plain CFG for the incoming IR. class PlainCFGBuilder { // The outermost loop of the input loop nest considered for vectorization. Loop *TheLoop; // Loop Info analysis. LoopInfo *LI; // Vectorization plan that we are working on. std::unique_ptr Plan; // Builder of the VPlan instruction-level representation. VPBuilder VPIRBuilder; // NOTE: The following maps are intentionally destroyed after the plain CFG // construction because subsequent VPlan-to-VPlan transformation may // invalidate them. // Map incoming BasicBlocks to their newly-created VPBasicBlocks. DenseMap BB2VPBB; // Map incoming Value definitions to their newly-created VPValues. DenseMap IRDef2VPValue; // Hold phi node's that need to be fixed once the plain CFG has been built. SmallVector PhisToFix; // Utility functions. void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); void fixHeaderPhis(); VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); #ifndef NDEBUG bool isExternalDef(Value *Val); #endif VPValue *getOrCreateVPOperand(Value *IRVal); void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); public: PlainCFGBuilder(Loop *Lp, LoopInfo *LI) : TheLoop(Lp), LI(LI), Plan(std::make_unique(Lp)) {} /// Build plain CFG for TheLoop and connect it to Plan's entry. std::unique_ptr buildPlainCFG(); }; } // anonymous namespace // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB // must have no predecessors. void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { // Collect VPBB predecessors. SmallVector VPBBPreds; for (BasicBlock *Pred : predecessors(BB)) VPBBPreds.push_back(getOrCreateVPBB(Pred)); VPBB->setPredecessors(VPBBPreds); } static bool isHeaderBB(BasicBlock *BB, Loop *L) { return L && BB == L->getHeader(); } // Add operands to VPInstructions representing phi nodes from the input IR. void PlainCFGBuilder::fixHeaderPhis() { for (auto *Phi : PhisToFix) { assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); VPValue *VPVal = IRDef2VPValue[Phi]; assert(isa(VPVal) && "Expected WidenPHIRecipe for phi node."); auto *VPPhi = cast(VPVal); assert(VPPhi->getNumOperands() == 0 && "Expected VPInstruction with no operands."); assert(isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent())) && "Expected Phi in header block."); assert(Phi->getNumOperands() == 2 && "header phi must have exactly 2 operands"); for (BasicBlock *Pred : predecessors(Phi->getParent())) VPPhi->addOperand( getOrCreateVPOperand(Phi->getIncomingValueForBlock(Pred))); } } // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an // existing one if it was already created. VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { if (auto *VPBB = BB2VPBB.lookup(BB)) { // Retrieve existing VPBB. return VPBB; } // Create new VPBB. StringRef Name = BB->getName(); LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n"); VPBasicBlock *VPBB = Plan->createVPBasicBlock(Name); BB2VPBB[BB] = VPBB; return VPBB; } #ifndef NDEBUG // Return true if \p Val is considered an external definition. An external // definition is either: // 1. A Value that is not an Instruction. This will be refined in the future. // 2. An Instruction that is outside of the IR region represented in VPlan, // i.e., is not part of the loop nest. bool PlainCFGBuilder::isExternalDef(Value *Val) { // All the Values that are not Instructions are considered external // definitions for now. Instruction *Inst = dyn_cast(Val); if (!Inst) return true; // Check whether Instruction definition is in loop body. return !TheLoop->contains(Inst); } #endif // Create a new VPValue or retrieve an existing one for the Instruction's // operand \p IRVal. This function must only be used to create/retrieve VPValues // for *Instruction's operands* and not to create regular VPInstruction's. For // the latter, please, look at 'createVPInstructionsForVPBB'. VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { auto VPValIt = IRDef2VPValue.find(IRVal); if (VPValIt != IRDef2VPValue.end()) // Operand has an associated VPInstruction or VPValue that was previously // created. return VPValIt->second; // Operand doesn't have a previously created VPInstruction/VPValue. This // means that operand is: // A) a definition external to VPlan, // B) any other Value without specific representation in VPlan. // For now, we use VPValue to represent A and B and classify both as external // definitions. We may introduce specific VPValue subclasses for them in the // future. assert(isExternalDef(IRVal) && "Expected external definition as operand."); // A and B: Create VPValue and add it to the pool of external definitions and // to the Value->VPValue map. VPValue *NewVPVal = Plan->getOrAddLiveIn(IRVal); IRDef2VPValue[IRVal] = NewVPVal; return NewVPVal; } // Create new VPInstructions in a VPBasicBlock, given its BasicBlock // counterpart. This function must be invoked in RPO so that the operands of a // VPInstruction in \p BB have been visited before (except for Phi nodes). void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB) { VPIRBuilder.setInsertPoint(VPBB); // TODO: Model and preserve debug intrinsics in VPlan. for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) { Instruction *Inst = &InstRef; // There shouldn't be any VPValue for Inst at this point. Otherwise, we // visited Inst when we shouldn't, breaking the RPO traversal order. assert(!IRDef2VPValue.count(Inst) && "Instruction shouldn't have been visited."); if (auto *Br = dyn_cast(Inst)) { // Conditional branch instruction are represented using BranchOnCond // recipes. if (Br->isConditional()) { VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst); } // Skip the rest of the Instruction processing for Branch instructions. continue; } if (auto *SI = dyn_cast(Inst)) { SmallVector Ops = {getOrCreateVPOperand(SI->getCondition())}; for (auto Case : SI->cases()) Ops.push_back(getOrCreateVPOperand(Case.getCaseValue())); VPIRBuilder.createNaryOp(Instruction::Switch, Ops, Inst); continue; } VPSingleDefRecipe *NewR; if (auto *Phi = dyn_cast(Inst)) { // Phi node's operands may have not been visited at this point. We create // an empty VPInstruction that we will fix once the whole plain CFG has // been built. NewR = new VPWidenPHIRecipe(Phi, nullptr, Phi->getDebugLoc(), "vec.phi"); VPBB->appendRecipe(NewR); if (isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent()))) { // Header phis need to be fixed after the VPBB for the latch has been // created. PhisToFix.push_back(Phi); } else { // Add operands for VPPhi in the order matching its predecessors in // VPlan. DenseMap VPPredToIncomingValue; for (unsigned I = 0; I != Phi->getNumOperands(); ++I) { VPPredToIncomingValue[BB2VPBB[Phi->getIncomingBlock(I)]] = getOrCreateVPOperand(Phi->getIncomingValue(I)); } for (VPBlockBase *Pred : VPBB->getPredecessors()) NewR->addOperand( VPPredToIncomingValue.lookup(Pred->getExitingBasicBlock())); } } else { // Translate LLVM-IR operands into VPValue operands and set them in the // new VPInstruction. SmallVector VPOperands; for (Value *Op : Inst->operands()) VPOperands.push_back(getOrCreateVPOperand(Op)); // Build VPInstruction for any arbitrary Instruction without specific // representation in VPlan. NewR = cast( VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); } IRDef2VPValue[Inst] = NewR; } } // Main interface to build the plain CFG. std::unique_ptr PlainCFGBuilder::buildPlainCFG() { VPIRBasicBlock *Entry = cast(Plan->getEntry()); BB2VPBB[Entry->getIRBasicBlock()] = Entry; for (VPIRBasicBlock *ExitVPBB : Plan->getExitBlocks()) BB2VPBB[ExitVPBB->getIRBasicBlock()] = ExitVPBB; // 1. Scan the body of the loop in a topological order to visit each basic // block after having visited its predecessor basic blocks. Create a VPBB for // each BB and link it to its successor and predecessor VPBBs. Note that // predecessors must be set in the same order as they are in the incomming IR. // Otherwise, there might be problems with existing phi nodes and algorithm // based on predecessors traversal. // Loop PH needs to be explicitly visited since it's not taken into account by // LoopBlocksDFS. BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && "Unexpected loop preheader"); for (auto &I : *ThePreheaderBB) { if (I.getType()->isVoidTy()) continue; IRDef2VPValue[&I] = Plan->getOrAddLiveIn(&I); } LoopBlocksRPO RPO(TheLoop); RPO.perform(LI); for (BasicBlock *BB : RPO) { // Create or retrieve the VPBasicBlock for this BB. VPBasicBlock *VPBB = getOrCreateVPBB(BB); // Set VPBB predecessors in the same order as they are in the incoming BB. setVPBBPredsFromBB(VPBB, BB); // Create VPInstructions for BB. createVPInstructionsForVPBB(VPBB, BB); // Set VPBB successors. We create empty VPBBs for successors if they don't // exist already. Recipes will be created when the successor is visited // during the RPO traversal. if (auto *SI = dyn_cast(BB->getTerminator())) { SmallVector Succs = { getOrCreateVPBB(SI->getDefaultDest())}; for (auto Case : SI->cases()) Succs.push_back(getOrCreateVPBB(Case.getCaseSuccessor())); VPBB->setSuccessors(Succs); continue; } auto *BI = cast(BB->getTerminator()); unsigned NumSuccs = succ_size(BB); if (NumSuccs == 1) { VPBB->setOneSuccessor(getOrCreateVPBB(BB->getSingleSuccessor())); continue; } assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && "block must have conditional branch with 2 successors"); BasicBlock *IRSucc0 = BI->getSuccessor(0); BasicBlock *IRSucc1 = BI->getSuccessor(1); VPBasicBlock *Successor0 = getOrCreateVPBB(IRSucc0); VPBasicBlock *Successor1 = getOrCreateVPBB(IRSucc1); VPBB->setTwoSuccessors(Successor0, Successor1); } for (auto *EB : Plan->getExitBlocks()) setVPBBPredsFromBB(EB, EB->getIRBasicBlock()); // 2. The whole CFG has been built at this point so all the input Values must // have a VPlan counterpart. Fix VPlan header phi by adding their // corresponding VPlan operands. fixHeaderPhis(); Plan->getEntry()->setOneSuccessor(getOrCreateVPBB(TheLoop->getHeader())); Plan->getEntry()->setPlan(&*Plan); // Fix VPlan loop-closed-ssa exit phi's by adding incoming operands to the // VPIRInstructions wrapping them. // // Note that the operand order corresponds to IR predecessor order, and may // need adjusting when VPlan predecessors are added, if an exit block has // multiple predecessor. for (auto *EB : Plan->getExitBlocks()) { for (VPRecipeBase &R : EB->phis()) { auto *PhiR = cast(&R); PHINode &Phi = PhiR->getIRPhi(); assert(PhiR->getNumOperands() == 0 && "no phi operands should be added yet"); for (BasicBlock *Pred : predecessors(EB->getIRBasicBlock())) PhiR->addOperand( getOrCreateVPOperand(Phi.getIncomingValueForBlock(Pred))); } } LLVM_DEBUG(Plan->setName("Plain CFG\n"); dbgs() << *Plan); return std::move(Plan); } std::unique_ptr VPlanTransforms::buildPlainCFG(Loop *TheLoop, LoopInfo &LI) { PlainCFGBuilder Builder(TheLoop, &LI); return Builder.buildPlainCFG(); } /// Checks if \p HeaderVPB is a loop header block in the plain CFG; that is, it /// has exactly 2 predecessors (preheader and latch), where the block /// dominates the latch and the preheader dominates the block. If it is a /// header block return true and canonicalize the predecessors of the header /// (making sure the preheader appears first and the latch second) and the /// successors of the latch (making sure the loop exit comes first). Otherwise /// return false. static bool canonicalHeaderAndLatch(VPBlockBase *HeaderVPB, const VPDominatorTree &VPDT) { ArrayRef Preds = HeaderVPB->getPredecessors(); if (Preds.size() != 2) return false; auto *PreheaderVPBB = Preds[0]; auto *LatchVPBB = Preds[1]; if (!VPDT.dominates(PreheaderVPBB, HeaderVPB) || !VPDT.dominates(HeaderVPB, LatchVPBB)) { std::swap(PreheaderVPBB, LatchVPBB); if (!VPDT.dominates(PreheaderVPBB, HeaderVPB) || !VPDT.dominates(HeaderVPB, LatchVPBB)) return false; // Canonicalize predecessors of header so that preheader is first and // latch second. HeaderVPB->swapPredecessors(); for (VPRecipeBase &R : cast(HeaderVPB)->phis()) R.swapOperands(); } // The two successors of conditional branch match the condition, with the // first successor corresponding to true and the second to false. We // canonicalize the successors of the latch when introducing the region, such // that the latch exits the region when its condition is true; invert the // original condition if the original CFG branches to the header on true. // Note that the exit edge is not yet connected for top-level loops. if (LatchVPBB->getSingleSuccessor() || LatchVPBB->getSuccessors()[0] != HeaderVPB) return true; assert(LatchVPBB->getNumSuccessors() == 2 && "Must have 2 successors"); auto *Term = cast(LatchVPBB)->getTerminator(); assert(cast(Term)->getOpcode() == VPInstruction::BranchOnCond && "terminator must be a BranchOnCond"); auto *Not = new VPInstruction(VPInstruction::Not, {Term->getOperand(0)}); Not->insertBefore(Term); Term->setOperand(0, Not); LatchVPBB->swapSuccessors(); return true; } /// Create a new VPRegionBlock for the loop starting at \p HeaderVPB. static void createLoopRegion(VPlan &Plan, VPBlockBase *HeaderVPB) { auto *PreheaderVPBB = HeaderVPB->getPredecessors()[0]; auto *LatchVPBB = HeaderVPB->getPredecessors()[1]; VPBlockUtils::disconnectBlocks(PreheaderVPBB, HeaderVPB); VPBlockUtils::disconnectBlocks(LatchVPBB, HeaderVPB); VPBlockBase *LatchExitVPB = LatchVPBB->getSingleSuccessor(); assert(LatchExitVPB && "Latch expected to be left with a single successor"); // Create an empty region first and insert it between PreheaderVPBB and // LatchExitVPB, taking care to preserve the original predecessor & successor // order of blocks. Set region entry and exiting after both HeaderVPB and // LatchVPBB have been disconnected from their predecessors/successors. auto *R = Plan.createVPRegionBlock("", false /*isReplicator*/); VPBlockUtils::insertOnEdge(LatchVPBB, LatchExitVPB, R); VPBlockUtils::disconnectBlocks(LatchVPBB, R); VPBlockUtils::connectBlocks(PreheaderVPBB, R); R->setEntry(HeaderVPB); R->setExiting(LatchVPBB); // All VPBB's reachable shallowly from HeaderVPB belong to the current region. for (VPBlockBase *VPBB : vp_depth_first_shallow(HeaderVPB)) VPBB->setParent(R); } // Add the necessary canonical IV and branch recipes required to control the // loop. static void addCanonicalIVRecipes(VPlan &Plan, VPBasicBlock *HeaderVPBB, VPBasicBlock *LatchVPBB, Type *IdxTy, DebugLoc DL) { Value *StartIdx = ConstantInt::get(IdxTy, 0); auto *StartV = Plan.getOrAddLiveIn(StartIdx); // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); HeaderVPBB->insert(CanonicalIVPHI, HeaderVPBB->begin()); // We are about to replace the branch to exit the region. Remove the original // BranchOnCond, if there is any. if (!LatchVPBB->empty() && match(&LatchVPBB->back(), m_BranchOnCond(m_VPValue()))) LatchVPBB->getTerminator()->eraseFromParent(); VPBuilder Builder(LatchVPBB); // Add a VPInstruction to increment the scalar canonical IV by VF * UF. // Initially the induction increment is guaranteed to not wrap, but that may // change later, e.g. when tail-folding, when the flags need to be dropped. auto *CanonicalIVIncrement = Builder.createOverflowingOp( Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {true, false}, DL, "index.next"); CanonicalIVPHI->addOperand(CanonicalIVIncrement); // Add the BranchOnCount VPInstruction to the latch. Builder.createNaryOp(VPInstruction::BranchOnCount, {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); } void VPlanTransforms::prepareForVectorization( VPlan &Plan, Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop, DebugLoc IVDL, bool HasUncountableEarlyExit, VFRange &Range) { VPDominatorTree VPDT; VPDT.recalculate(Plan); VPBlockBase *HeaderVPB = Plan.getEntry()->getSingleSuccessor(); canonicalHeaderAndLatch(HeaderVPB, VPDT); VPBlockBase *LatchVPB = HeaderVPB->getPredecessors()[1]; VPBasicBlock *VecPreheader = Plan.createVPBasicBlock("vector.ph"); VPBlockUtils::insertBlockAfter(VecPreheader, Plan.getEntry()); VPBasicBlock *MiddleVPBB = Plan.createVPBasicBlock("middle.block"); // The canonical LatchVPB has the header block as last successor. If it has // another successor, this successor is an exit block - insert middle block on // its edge. Otherwise, add middle block as another successor retaining header // as last. if (LatchVPB->getNumSuccessors() == 2) { VPBlockBase *LatchExitVPB = LatchVPB->getSuccessors()[0]; VPBlockUtils::insertOnEdge(LatchVPB, LatchExitVPB, MiddleVPBB); } else { VPBlockUtils::connectBlocks(LatchVPB, MiddleVPBB); LatchVPB->swapSuccessors(); } addCanonicalIVRecipes(Plan, cast(HeaderVPB), cast(LatchVPB), InductionTy, IVDL); [[maybe_unused]] bool HandledUncountableEarlyExit = false; // Disconnect all early exits from the loop leaving it with a single exit from // the latch. Early exits that are countable are left for a scalar epilog. The // condition of uncountable early exits (currently at most one is supported) // is fused into the latch exit, and used to branch from middle block to the // early exit destination. for (VPIRBasicBlock *EB : Plan.getExitBlocks()) { for (VPBlockBase *Pred : to_vector(EB->getPredecessors())) { if (Pred == MiddleVPBB) continue; if (HasUncountableEarlyExit) { assert(!HandledUncountableEarlyExit && "can handle exactly one uncountable early exit"); handleUncountableEarlyExit(cast(Pred), EB, Plan, cast(HeaderVPB), cast(LatchVPB), Range); HandledUncountableEarlyExit = true; } else { for (VPRecipeBase &R : EB->phis()) cast(&R)->removeIncomingValueFor(Pred); } cast(Pred)->getTerminator()->eraseFromParent(); VPBlockUtils::disconnectBlocks(Pred, EB); } } assert((!HasUncountableEarlyExit || HandledUncountableEarlyExit) && "missed an uncountable exit that must be handled"); // Create SCEV and VPValue for the trip count. // We use the symbolic max backedge-taken-count, which works also when // vectorizing loops with uncountable early exits. const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount(); assert(!isa(BackedgeTakenCountSCEV) && "Invalid loop count"); ScalarEvolution &SE = *PSE.getSE(); const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV, InductionTy, TheLoop); Plan.setTripCount( vputils::getOrCreateVPValueForSCEVExpr(Plan, TripCount, SE)); VPBasicBlock *ScalarPH = Plan.createVPBasicBlock("scalar.ph"); VPBlockUtils::connectBlocks(ScalarPH, Plan.getScalarHeader()); // The connection order corresponds to the operands of the conditional branch, // with the middle block already connected to the exit block. VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); // Also connect the entry block to the scalar preheader. // TODO: Also introduce a branch recipe together with the minimum trip count // check. VPBlockUtils::connectBlocks(Plan.getEntry(), ScalarPH); Plan.getEntry()->swapSuccessors(); // If MiddleVPBB has a single successor then the original loop does not exit // via the latch and the single successor must be the scalar preheader. // There's no need to add a runtime check to MiddleVPBB. if (MiddleVPBB->getNumSuccessors() == 1) { assert(MiddleVPBB->getSingleSuccessor() == ScalarPH && "must have ScalarPH as single successor"); return; } assert(MiddleVPBB->getNumSuccessors() == 2 && "must have 2 successors"); // Add a check in the middle block to see if we have completed all of the // iterations in the first vector loop. // // Three cases: // 1) If we require a scalar epilogue, the scalar ph must execute. Set the // condition to false. // 2) If (N - N%VF) == N, then we *don't* need to run the // remainder. Thus if tail is to be folded, we know we don't need to run // the remainder and we can set the condition to true. // 3) Otherwise, construct a runtime check. // We use the same DebugLoc as the scalar loop latch terminator instead of // the corresponding compare because they may have ended up with different // line numbers and we want to avoid awkward line stepping while debugging. // E.g., if the compare has got a line number inside the loop. DebugLoc LatchDL = TheLoop->getLoopLatch()->getTerminator()->getDebugLoc(); VPBuilder Builder(MiddleVPBB); VPValue *Cmp; if (!RequiresScalarEpilogueCheck) Cmp = Plan.getOrAddLiveIn(ConstantInt::getFalse( IntegerType::getInt1Ty(TripCount->getType()->getContext()))); else if (TailFolded) Cmp = Plan.getOrAddLiveIn(ConstantInt::getTrue( IntegerType::getInt1Ty(TripCount->getType()->getContext()))); else Cmp = Builder.createICmp(CmpInst::ICMP_EQ, Plan.getTripCount(), &Plan.getVectorTripCount(), LatchDL, "cmp.n"); Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, LatchDL); } void VPlanTransforms::createLoopRegions(VPlan &Plan) { VPDominatorTree VPDT; VPDT.recalculate(Plan); for (VPBlockBase *HeaderVPB : vp_post_order_shallow(Plan.getEntry())) if (canonicalHeaderAndLatch(HeaderVPB, VPDT)) createLoopRegion(Plan, HeaderVPB); VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); TopRegion->setName("vector loop"); TopRegion->getEntryBasicBlock()->setName("vector.body"); } void VPlanTransforms::createExtractsForLiveOuts(VPlan &Plan) { for (VPBasicBlock *EB : Plan.getExitBlocks()) { VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock(); VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi()); if (EB->getSinglePredecessor() != Plan.getMiddleBlock()) continue; for (VPRecipeBase &R : EB->phis()) { auto *ExitIRI = cast(&R); for (unsigned Idx = 0; Idx != ExitIRI->getNumIncoming(); ++Idx) { VPRecipeBase *Inc = ExitIRI->getIncomingValue(Idx)->getDefiningRecipe(); if (!Inc || !Inc->getParent()->getParent()) continue; assert(ExitIRI->getNumOperands() == 1 && ExitIRI->getParent()->getSinglePredecessor() == MiddleVPBB && "exit values from early exits must be fixed when branch to " "early-exit is added"); ExitIRI->extractLastLaneOfFirstOperand(B); } } } } // Likelyhood of bypassing the vectorized loop due to a runtime check block, // including memory overlap checks block and wrapping/unit-stride checks block. static constexpr uint32_t CheckBypassWeights[] = {1, 127}; void VPlanTransforms::attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights) { VPValue *CondVPV = Plan.getOrAddLiveIn(Cond); VPBasicBlock *CheckBlockVPBB = Plan.createVPIRBasicBlock(CheckBlock); VPBlockBase *VectorPH = Plan.getVectorPreheader(); VPBlockBase *ScalarPH = Plan.getScalarPreheader(); VPBlockBase *PreVectorPH = VectorPH->getSinglePredecessor(); VPBlockUtils::insertOnEdge(PreVectorPH, VectorPH, CheckBlockVPBB); VPBlockUtils::connectBlocks(CheckBlockVPBB, ScalarPH); CheckBlockVPBB->swapSuccessors(); // We just connected a new block to the scalar preheader. Update all // VPPhis by adding an incoming value for it, replicating the last value. unsigned NumPredecessors = ScalarPH->getNumPredecessors(); for (VPRecipeBase &R : cast(ScalarPH)->phis()) { assert(isa(&R) && "Phi expected to be VPPhi"); assert(cast(&R)->getNumIncoming() == NumPredecessors - 1 && "must have incoming values for all operands"); R.addOperand(R.getOperand(NumPredecessors - 2)); } VPIRMetadata VPBranchWeights; auto *Term = VPBuilder(CheckBlockVPBB) .createNaryOp(VPInstruction::BranchOnCond, {CondVPV}, Plan.getCanonicalIV()->getDebugLoc()); if (AddBranchWeights) { MDBuilder MDB(Plan.getScalarHeader()->getIRBasicBlock()->getContext()); MDNode *BranchWeights = MDB.createBranchWeights(CheckBypassWeights, /*IsExpected=*/false); Term->addMetadata(LLVMContext::MD_prof, BranchWeights); } }