//===-- RISCVTargetParser.cpp - Parser for target features ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a target parser to recognise hardware features // for RISC-V CPUs. // //===----------------------------------------------------------------------===// #include "llvm/TargetParser/RISCVTargetParser.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/RISCVISAInfo.h" #include "llvm/TargetParser/Triple.h" namespace llvm { namespace RISCV { enum CPUKind : unsigned { #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_UNALIGN) CK_##ENUM, #define TUNE_PROC(ENUM, NAME) CK_##ENUM, #include "llvm/TargetParser/RISCVTargetParserDef.inc" }; struct CPUInfo { StringLiteral Name; StringLiteral DefaultMarch; bool FastUnalignedAccess; bool is64Bit() const { return DefaultMarch.starts_with("rv64"); } }; constexpr CPUInfo RISCVCPUInfo[] = { #define PROC(ENUM, NAME, DEFAULT_MARCH, FAST_UNALIGN) \ {NAME, DEFAULT_MARCH, FAST_UNALIGN}, #include "llvm/TargetParser/RISCVTargetParserDef.inc" }; static const CPUInfo *getCPUInfoByName(StringRef CPU) { for (auto &C : RISCVCPUInfo) if (C.Name == CPU) return &C; return nullptr; } bool hasFastUnalignedAccess(StringRef CPU) { const CPUInfo *Info = getCPUInfoByName(CPU); return Info && Info->FastUnalignedAccess; } bool parseCPU(StringRef CPU, bool IsRV64) { const CPUInfo *Info = getCPUInfoByName(CPU); if (!Info) return false; return Info->is64Bit() == IsRV64; } bool parseTuneCPU(StringRef TuneCPU, bool IsRV64) { std::optional Kind = llvm::StringSwitch>(TuneCPU) #define TUNE_PROC(ENUM, NAME) .Case(NAME, CK_##ENUM) #include "llvm/TargetParser/RISCVTargetParserDef.inc" .Default(std::nullopt); if (Kind.has_value()) return true; // Fallback to parsing as a CPU. return parseCPU(TuneCPU, IsRV64); } StringRef getMArchFromMcpu(StringRef CPU) { const CPUInfo *Info = getCPUInfoByName(CPU); if (!Info) return ""; return Info->DefaultMarch; } void fillValidCPUArchList(SmallVectorImpl &Values, bool IsRV64) { for (const auto &C : RISCVCPUInfo) { if (IsRV64 == C.is64Bit()) Values.emplace_back(C.Name); } } void fillValidTuneCPUArchList(SmallVectorImpl &Values, bool IsRV64) { for (const auto &C : RISCVCPUInfo) { if (IsRV64 == C.is64Bit()) Values.emplace_back(C.Name); } #define TUNE_PROC(ENUM, NAME) Values.emplace_back(StringRef(NAME)); #include "llvm/TargetParser/RISCVTargetParserDef.inc" } // This function is currently used by IREE, so it's not dead code. void getFeaturesForCPU(StringRef CPU, SmallVectorImpl &EnabledFeatures, bool NeedPlus) { StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(CPU); if (MarchFromCPU == "") return; EnabledFeatures.clear(); auto RII = RISCVISAInfo::parseArchString( MarchFromCPU, /* EnableExperimentalExtension */ true); if (llvm::errorToBool(RII.takeError())) return; std::vector FeatStrings = (*RII)->toFeatures(/* AddAllExtensions */ false); for (const auto &F : FeatStrings) if (NeedPlus) EnabledFeatures.push_back(F); else EnabledFeatures.push_back(F.substr(1)); } } // namespace RISCV namespace RISCVVType { // Encode VTYPE into the binary format used by the the VSETVLI instruction which // is used by our MC layer representation. // // Bits | Name | Description // -----+------------+------------------------------------------------ // 7 | vma | Vector mask agnostic // 6 | vta | Vector tail agnostic // 5:3 | vsew[2:0] | Standard element width (SEW) setting // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic, bool MaskAgnostic) { assert(isValidSEW(SEW) && "Invalid SEW"); unsigned VLMULBits = static_cast(VLMUL); unsigned VSEWBits = encodeSEW(SEW); unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7); if (TailAgnostic) VTypeI |= 0x40; if (MaskAgnostic) VTypeI |= 0x80; return VTypeI; } std::pair decodeVLMUL(RISCVII::VLMUL VLMUL) { switch (VLMUL) { default: llvm_unreachable("Unexpected LMUL value!"); case RISCVII::VLMUL::LMUL_1: case RISCVII::VLMUL::LMUL_2: case RISCVII::VLMUL::LMUL_4: case RISCVII::VLMUL::LMUL_8: return std::make_pair(1 << static_cast(VLMUL), false); case RISCVII::VLMUL::LMUL_F2: case RISCVII::VLMUL::LMUL_F4: case RISCVII::VLMUL::LMUL_F8: return std::make_pair(1 << (8 - static_cast(VLMUL)), true); } } void printVType(unsigned VType, raw_ostream &OS) { unsigned Sew = getSEW(VType); OS << "e" << Sew; unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType)); if (Fractional) OS << ", mf"; else OS << ", m"; OS << LMul; if (isTailAgnostic(VType)) OS << ", ta"; else OS << ", tu"; if (isMaskAgnostic(VType)) OS << ", ma"; else OS << ", mu"; } unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) { unsigned LMul; bool Fractional; std::tie(LMul, Fractional) = decodeVLMUL(VLMul); // Convert LMul to a fixed point value with 3 fractional bits. LMul = Fractional ? (8 / LMul) : (LMul * 8); assert(SEW >= 8 && "Unexpected SEW value"); return (SEW * 8) / LMul; } std::optional getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) { unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL); unsigned EMULFixedPoint = (EEW * 8) / Ratio; bool Fractional = EMULFixedPoint < 8; unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8; if (!isValidLMUL(EMUL, Fractional)) return std::nullopt; return RISCVVType::encodeLMUL(EMUL, Fractional); } } // namespace RISCVVType } // namespace llvm