//===-- RISCVMCTargetDesc.cpp - RISC-V Target Descriptions ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This file provides RISC-V specific target descriptions. /// //===----------------------------------------------------------------------===// #include "RISCVMCTargetDesc.h" #include "RISCVELFStreamer.h" #include "RISCVInstPrinter.h" #include "RISCVMCAsmInfo.h" #include "RISCVMCObjectFileInfo.h" #include "RISCVTargetStreamer.h" #include "TargetInfo/RISCVTargetInfo.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCInstrAnalysis.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include #define GET_INSTRINFO_MC_DESC #define ENABLE_INSTR_PREDICATE_VERIFIER #include "RISCVGenInstrInfo.inc" #define GET_REGINFO_MC_DESC #include "RISCVGenRegisterInfo.inc" #define GET_SUBTARGETINFO_MC_DESC #include "RISCVGenSubtargetInfo.inc" using namespace llvm; static MCInstrInfo *createRISCVMCInstrInfo() { MCInstrInfo *X = new MCInstrInfo(); InitRISCVMCInstrInfo(X); return X; } static MCRegisterInfo *createRISCVMCRegisterInfo(const Triple &TT) { MCRegisterInfo *X = new MCRegisterInfo(); InitRISCVMCRegisterInfo(X, RISCV::X1); return X; } static MCAsmInfo *createRISCVMCAsmInfo(const MCRegisterInfo &MRI, const Triple &TT, const MCTargetOptions &Options) { MCAsmInfo *MAI = new RISCVMCAsmInfo(TT); unsigned SP = MRI.getDwarfRegNum(RISCV::X2, true); MCCFIInstruction Inst = MCCFIInstruction::cfiDefCfa(nullptr, SP, 0); MAI->addInitialFrameState(Inst); return MAI; } static MCObjectFileInfo * createRISCVMCObjectFileInfo(MCContext &Ctx, bool PIC, bool LargeCodeModel = false) { MCObjectFileInfo *MOFI = new RISCVMCObjectFileInfo(); MOFI->initMCObjectFileInfo(Ctx, PIC, LargeCodeModel); return MOFI; } static MCSubtargetInfo *createRISCVMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) { if (CPU.empty() || CPU == "generic") CPU = TT.isArch64Bit() ? "generic-rv64" : "generic-rv32"; MCSubtargetInfo *X = createRISCVMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, FS); // If the CPU is "help" fill in 64 or 32 bit feature so we can pass // RISCVFeatures::validate. // FIXME: Why does llvm-mc still expect a source file with -mcpu=help? if (CPU == "help") { llvm::FeatureBitset Features = X->getFeatureBits(); if (TT.isArch64Bit()) Features.set(RISCV::Feature64Bit); else Features.set(RISCV::Feature32Bit); X->setFeatureBits(Features); } return X; } static MCInstPrinter *createRISCVMCInstPrinter(const Triple &T, unsigned SyntaxVariant, const MCAsmInfo &MAI, const MCInstrInfo &MII, const MCRegisterInfo &MRI) { return new RISCVInstPrinter(MAI, MII, MRI); } static MCTargetStreamer * createRISCVObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) { const Triple &TT = STI.getTargetTriple(); if (TT.isOSBinFormatELF()) return new RISCVTargetELFStreamer(S, STI); return nullptr; } static MCTargetStreamer * createRISCVAsmTargetStreamer(MCStreamer &S, formatted_raw_ostream &OS, MCInstPrinter *InstPrint) { return new RISCVTargetAsmStreamer(S, OS); } static MCTargetStreamer *createRISCVNullTargetStreamer(MCStreamer &S) { return new RISCVTargetStreamer(S); } namespace { class RISCVMCInstrAnalysis : public MCInstrAnalysis { int64_t GPRState[31] = {}; std::bitset<31> GPRValidMask; static bool isGPR(MCRegister Reg) { return Reg >= RISCV::X0 && Reg <= RISCV::X31; } static unsigned getRegIndex(MCRegister Reg) { assert(isGPR(Reg) && Reg != RISCV::X0 && "Invalid GPR reg"); return Reg - RISCV::X1; } void setGPRState(MCRegister Reg, std::optional Value) { if (Reg == RISCV::X0) return; auto Index = getRegIndex(Reg); if (Value) { GPRState[Index] = *Value; GPRValidMask.set(Index); } else { GPRValidMask.reset(Index); } } std::optional getGPRState(MCRegister Reg) const { if (Reg == RISCV::X0) return 0; auto Index = getRegIndex(Reg); if (GPRValidMask.test(Index)) return GPRState[Index]; return std::nullopt; } public: explicit RISCVMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {} void resetState() override { GPRValidMask.reset(); } void updateState(const MCInst &Inst, uint64_t Addr) override { // Terminators mark the end of a basic block which means the sequentially // next instruction will be the first of another basic block and the current // state will typically not be valid anymore. For calls, we assume all // registers may be clobbered by the callee (TODO: should we take the // calling convention into account?). if (isTerminator(Inst) || isCall(Inst)) { resetState(); return; } switch (Inst.getOpcode()) { default: { // Clear the state of all defined registers for instructions that we don't // explicitly support. auto NumDefs = Info->get(Inst.getOpcode()).getNumDefs(); for (unsigned I = 0; I < NumDefs; ++I) { auto DefReg = Inst.getOperand(I).getReg(); if (isGPR(DefReg)) setGPRState(DefReg, std::nullopt); } break; } case RISCV::AUIPC: setGPRState(Inst.getOperand(0).getReg(), Addr + SignExtend64<32>(Inst.getOperand(1).getImm() << 12)); break; } } bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, uint64_t &Target) const override { if (isConditionalBranch(Inst)) { int64_t Imm; if (Size == 2) Imm = Inst.getOperand(1).getImm(); else Imm = Inst.getOperand(2).getImm(); Target = Addr + Imm; return true; } switch (Inst.getOpcode()) { case RISCV::C_J: case RISCV::C_JAL: case RISCV::QC_E_J: case RISCV::QC_E_JAL: Target = Addr + Inst.getOperand(0).getImm(); return true; case RISCV::JAL: Target = Addr + Inst.getOperand(1).getImm(); return true; case RISCV::JALR: { if (auto TargetRegState = getGPRState(Inst.getOperand(1).getReg())) { Target = *TargetRegState + Inst.getOperand(2).getImm(); return true; } return false; } } return false; } bool isTerminator(const MCInst &Inst) const override { if (MCInstrAnalysis::isTerminator(Inst)) return true; switch (Inst.getOpcode()) { default: return false; case RISCV::JAL: case RISCV::JALR: return Inst.getOperand(0).getReg() == RISCV::X0; } } bool isCall(const MCInst &Inst) const override { if (MCInstrAnalysis::isCall(Inst)) return true; switch (Inst.getOpcode()) { default: return false; case RISCV::JAL: case RISCV::JALR: return Inst.getOperand(0).getReg() != RISCV::X0; } } bool isReturn(const MCInst &Inst) const override { if (MCInstrAnalysis::isReturn(Inst)) return true; switch (Inst.getOpcode()) { default: return false; case RISCV::JALR: return Inst.getOperand(0).getReg() == RISCV::X0 && maybeReturnAddress(Inst.getOperand(1).getReg()); case RISCV::C_JR: return maybeReturnAddress(Inst.getOperand(0).getReg()); } } bool isBranch(const MCInst &Inst) const override { if (MCInstrAnalysis::isBranch(Inst)) return true; return isBranchImpl(Inst); } bool isUnconditionalBranch(const MCInst &Inst) const override { if (MCInstrAnalysis::isUnconditionalBranch(Inst)) return true; return isBranchImpl(Inst); } bool isIndirectBranch(const MCInst &Inst) const override { if (MCInstrAnalysis::isIndirectBranch(Inst)) return true; switch (Inst.getOpcode()) { default: return false; case RISCV::JALR: return Inst.getOperand(0).getReg() == RISCV::X0 && !maybeReturnAddress(Inst.getOperand(1).getReg()); case RISCV::C_JR: return !maybeReturnAddress(Inst.getOperand(0).getReg()); } } /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries. std::vector> findPltEntries(uint64_t PltSectionVA, ArrayRef PltContents, const MCSubtargetInfo &STI) const override { uint32_t LoadInsnOpCode; if (const Triple &T = STI.getTargetTriple(); T.isRISCV64()) LoadInsnOpCode = 0x3003; // ld else if (T.isRISCV32()) LoadInsnOpCode = 0x2003; // lw else return {}; constexpr uint64_t FirstEntryAt = 32, EntrySize = 16; if (PltContents.size() < FirstEntryAt + EntrySize) return {}; std::vector> Results; for (uint64_t EntryStart = FirstEntryAt, EntryStartEnd = PltContents.size() - EntrySize; EntryStart <= EntryStartEnd; EntryStart += EntrySize) { const uint32_t AuipcInsn = support::endian::read32le(PltContents.data() + EntryStart); const bool IsAuipc = (AuipcInsn & 0x7F) == 0x17; if (!IsAuipc) continue; const uint32_t LoadInsn = support::endian::read32le(PltContents.data() + EntryStart + 4); const bool IsLoad = (LoadInsn & 0x707F) == LoadInsnOpCode; if (!IsLoad) continue; const uint64_t GotPltSlotVA = PltSectionVA + EntryStart + (AuipcInsn & 0xFFFFF000) + SignExtend64<12>(LoadInsn >> 20); Results.emplace_back(PltSectionVA + EntryStart, GotPltSlotVA); } return Results; } private: static bool maybeReturnAddress(MCRegister Reg) { // X1 is used for normal returns, X5 for returns from outlined functions. return Reg == RISCV::X1 || Reg == RISCV::X5; } static bool isBranchImpl(const MCInst &Inst) { switch (Inst.getOpcode()) { default: return false; case RISCV::JAL: return Inst.getOperand(0).getReg() == RISCV::X0; case RISCV::JALR: return Inst.getOperand(0).getReg() == RISCV::X0 && !maybeReturnAddress(Inst.getOperand(1).getReg()); case RISCV::C_JR: return !maybeReturnAddress(Inst.getOperand(0).getReg()); } } }; } // end anonymous namespace static MCInstrAnalysis *createRISCVInstrAnalysis(const MCInstrInfo *Info) { return new RISCVMCInstrAnalysis(Info); } extern "C" LLVM_ABI LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVTargetMC() { for (Target *T : {&getTheRISCV32Target(), &getTheRISCV64Target(), &getTheRISCV32beTarget(), &getTheRISCV64beTarget()}) { TargetRegistry::RegisterMCAsmInfo(*T, createRISCVMCAsmInfo); TargetRegistry::RegisterMCObjectFileInfo(*T, createRISCVMCObjectFileInfo); TargetRegistry::RegisterMCInstrInfo(*T, createRISCVMCInstrInfo); TargetRegistry::RegisterMCRegInfo(*T, createRISCVMCRegisterInfo); TargetRegistry::RegisterMCAsmBackend(*T, createRISCVAsmBackend); TargetRegistry::RegisterMCCodeEmitter(*T, createRISCVMCCodeEmitter); TargetRegistry::RegisterMCInstPrinter(*T, createRISCVMCInstPrinter); TargetRegistry::RegisterMCSubtargetInfo(*T, createRISCVMCSubtargetInfo); TargetRegistry::RegisterELFStreamer(*T, createRISCVELFStreamer); TargetRegistry::RegisterObjectTargetStreamer( *T, createRISCVObjectTargetStreamer); TargetRegistry::RegisterMCInstrAnalysis(*T, createRISCVInstrAnalysis); // Register the asm target streamer. TargetRegistry::RegisterAsmTargetStreamer(*T, createRISCVAsmTargetStreamer); // Register the null target streamer. TargetRegistry::RegisterNullTargetStreamer(*T, createRISCVNullTargetStreamer); } }