//===-- RISCVMCCodeEmitter.cpp - Convert RISC-V code to machine code ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the RISCVMCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/RISCVBaseInfo.h" #include "MCTargetDesc/RISCVFixupKinds.h" #include "MCTargetDesc/RISCVMCAsmInfo.h" #include "MCTargetDesc/RISCVMCTargetDesc.h" #include "llvm/ADT/Statistic.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstBuilder.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/Casting.h" #include "llvm/Support/EndianStream.h" using namespace llvm; #define DEBUG_TYPE "mccodeemitter" STATISTIC(MCNumEmitted, "Number of MC instructions emitted"); STATISTIC(MCNumFixups, "Number of MC fixups created"); namespace { class RISCVMCCodeEmitter : public MCCodeEmitter { RISCVMCCodeEmitter(const RISCVMCCodeEmitter &) = delete; void operator=(const RISCVMCCodeEmitter &) = delete; MCContext &Ctx; MCInstrInfo const &MCII; public: RISCVMCCodeEmitter(MCContext &ctx, MCInstrInfo const &MCII) : Ctx(ctx), MCII(MCII) {} ~RISCVMCCodeEmitter() override = default; void encodeInstruction(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; void expandFunctionCall(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; void expandTLSDESCCall(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; void expandAddTPRel(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; void expandLongCondBr(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; void expandQCLongCondBrImm(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, unsigned Size) const; /// TableGen'erated function for getting the binary encoding for an /// instruction. uint64_t getBinaryCodeForInstr(const MCInst &MI, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// Return binary encoding of operand. If the machine operand requires /// relocation, record the relocation and return zero. uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint64_t getImmOpValueMinus1(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint64_t getImmOpValueSlist(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; template unsigned getImmOpValueAsrN(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint64_t getImmOpValueZibi(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint64_t getImmOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getVMaskReg(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getRlistOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getRlistS0OpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; }; } // end anonymous namespace MCCodeEmitter *llvm::createRISCVMCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx) { return new RISCVMCCodeEmitter(Ctx, MCII); } static void addFixup(SmallVectorImpl &Fixups, uint32_t Offset, const MCExpr *Value, uint16_t Kind) { bool PCRel = false; switch (Kind) { case ELF::R_RISCV_CALL_PLT: case RISCV::fixup_riscv_pcrel_hi20: case RISCV::fixup_riscv_pcrel_lo12_i: case RISCV::fixup_riscv_pcrel_lo12_s: case RISCV::fixup_riscv_jal: case RISCV::fixup_riscv_branch: case RISCV::fixup_riscv_rvc_jump: case RISCV::fixup_riscv_rvc_branch: case RISCV::fixup_riscv_call: case RISCV::fixup_riscv_call_plt: case RISCV::fixup_riscv_qc_e_branch: case RISCV::fixup_riscv_qc_e_call_plt: case RISCV::fixup_riscv_nds_branch_10: PCRel = true; } Fixups.push_back(MCFixup::create(Offset, Value, Kind, PCRel)); } // Expand PseudoCALL(Reg), PseudoTAIL and PseudoJump to AUIPC and JALR with // relocation types. We expand those pseudo-instructions while encoding them, // meaning AUIPC and JALR won't go through RISC-V MC to MC compressed // instruction transformation. This is acceptable because AUIPC has no 16-bit // form and C_JALR has no immediate operand field. We let linker relaxation // deal with it. When linker relaxation is enabled, AUIPC and JALR have a // chance to relax to JAL. // If the C extension is enabled, JAL has a chance relax to C_JAL. void RISCVMCCodeEmitter::expandFunctionCall(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { MCInst TmpInst; MCOperand Func; MCRegister Ra; if (MI.getOpcode() == RISCV::PseudoTAIL) { Func = MI.getOperand(0); Ra = RISCVII::getTailExpandUseRegNo(STI.getFeatureBits()); } else if (MI.getOpcode() == RISCV::PseudoCALLReg) { Func = MI.getOperand(1); Ra = MI.getOperand(0).getReg(); } else if (MI.getOpcode() == RISCV::PseudoCALL) { Func = MI.getOperand(0); Ra = RISCV::X1; } else if (MI.getOpcode() == RISCV::PseudoJump) { Func = MI.getOperand(1); Ra = MI.getOperand(0).getReg(); } uint32_t Binary; assert(Func.isExpr() && "Expected expression"); const MCExpr *CallExpr = Func.getExpr(); // Emit AUIPC Ra, Func with R_RISCV_CALL relocation type. TmpInst = MCInstBuilder(RISCV::AUIPC).addReg(Ra).addExpr(CallExpr); Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); if (MI.getOpcode() == RISCV::PseudoTAIL || MI.getOpcode() == RISCV::PseudoJump) // Emit JALR X0, Ra, 0 TmpInst = MCInstBuilder(RISCV::JALR).addReg(RISCV::X0).addReg(Ra).addImm(0); else // Emit JALR Ra, Ra, 0 TmpInst = MCInstBuilder(RISCV::JALR).addReg(Ra).addReg(Ra).addImm(0); Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); } void RISCVMCCodeEmitter::expandTLSDESCCall(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { MCOperand SrcSymbol = MI.getOperand(3); assert(SrcSymbol.isExpr() && "Expected expression as first input to TLSDESCCALL"); const auto *Expr = dyn_cast(SrcSymbol.getExpr()); MCRegister Link = MI.getOperand(0).getReg(); MCRegister Dest = MI.getOperand(1).getReg(); int64_t Imm = MI.getOperand(2).getImm(); addFixup(Fixups, 0, Expr, ELF::R_RISCV_TLSDESC_CALL); MCInst Call = MCInstBuilder(RISCV::JALR).addReg(Link).addReg(Dest).addImm(Imm); uint32_t Binary = getBinaryCodeForInstr(Call, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); } // Expand PseudoAddTPRel to a simple ADD with the correct relocation. void RISCVMCCodeEmitter::expandAddTPRel(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { MCOperand DestReg = MI.getOperand(0); MCOperand SrcReg = MI.getOperand(1); MCOperand TPReg = MI.getOperand(2); assert(TPReg.isReg() && TPReg.getReg() == RISCV::X4 && "Expected thread pointer as second input to TP-relative add"); MCOperand SrcSymbol = MI.getOperand(3); assert(SrcSymbol.isExpr() && "Expected expression as third input to TP-relative add"); const auto *Expr = dyn_cast(SrcSymbol.getExpr()); assert(Expr && Expr->getSpecifier() == ELF::R_RISCV_TPREL_ADD && "Expected tprel_add relocation on TP-relative symbol"); addFixup(Fixups, 0, Expr, ELF::R_RISCV_TPREL_ADD); if (STI.hasFeature(RISCV::FeatureRelax)) Fixups.back().setLinkerRelaxable(); // Emit a normal ADD instruction with the given operands. MCInst TmpInst = MCInstBuilder(RISCV::ADD) .addOperand(DestReg) .addOperand(SrcReg) .addOperand(TPReg); uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); } static unsigned getInvertedBranchOp(unsigned BrOp) { switch (BrOp) { default: llvm_unreachable("Unexpected branch opcode!"); case RISCV::PseudoLongBEQ: return RISCV::BNE; case RISCV::PseudoLongBNE: return RISCV::BEQ; case RISCV::PseudoLongBLT: return RISCV::BGE; case RISCV::PseudoLongBGE: return RISCV::BLT; case RISCV::PseudoLongBLTU: return RISCV::BGEU; case RISCV::PseudoLongBGEU: return RISCV::BLTU; case RISCV::PseudoLongQC_BEQI: return RISCV::QC_BNEI; case RISCV::PseudoLongQC_BNEI: return RISCV::QC_BEQI; case RISCV::PseudoLongQC_BLTI: return RISCV::QC_BGEI; case RISCV::PseudoLongQC_BGEI: return RISCV::QC_BLTI; case RISCV::PseudoLongQC_BLTUI: return RISCV::QC_BGEUI; case RISCV::PseudoLongQC_BGEUI: return RISCV::QC_BLTUI; case RISCV::PseudoLongQC_E_BEQI: return RISCV::QC_E_BNEI; case RISCV::PseudoLongQC_E_BNEI: return RISCV::QC_E_BEQI; case RISCV::PseudoLongQC_E_BLTI: return RISCV::QC_E_BGEI; case RISCV::PseudoLongQC_E_BGEI: return RISCV::QC_E_BLTI; case RISCV::PseudoLongQC_E_BLTUI: return RISCV::QC_E_BGEUI; case RISCV::PseudoLongQC_E_BGEUI: return RISCV::QC_E_BLTUI; } } // Expand PseudoLongBxx to an inverted conditional branch and an unconditional // jump. void RISCVMCCodeEmitter::expandLongCondBr(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { MCRegister SrcReg1 = MI.getOperand(0).getReg(); MCRegister SrcReg2 = MI.getOperand(1).getReg(); MCOperand SrcSymbol = MI.getOperand(2); unsigned Opcode = MI.getOpcode(); bool IsEqTest = Opcode == RISCV::PseudoLongBNE || Opcode == RISCV::PseudoLongBEQ; bool UseCompressedBr = false; if (IsEqTest && STI.hasFeature(RISCV::FeatureStdExtZca)) { if (RISCV::X8 <= SrcReg1.id() && SrcReg1.id() <= RISCV::X15 && SrcReg2.id() == RISCV::X0) { UseCompressedBr = true; } else if (RISCV::X8 <= SrcReg2.id() && SrcReg2.id() <= RISCV::X15 && SrcReg1.id() == RISCV::X0) { std::swap(SrcReg1, SrcReg2); UseCompressedBr = true; } } uint32_t Offset; if (UseCompressedBr) { unsigned InvOpc = Opcode == RISCV::PseudoLongBNE ? RISCV::C_BEQZ : RISCV::C_BNEZ; MCInst TmpInst = MCInstBuilder(InvOpc).addReg(SrcReg1).addImm(6); uint16_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); Offset = 2; } else { unsigned InvOpc = getInvertedBranchOp(Opcode); MCInst TmpInst = MCInstBuilder(InvOpc).addReg(SrcReg1).addReg(SrcReg2).addImm(8); uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); Offset = 4; } // Save the number fixups. size_t FixupStartIndex = Fixups.size(); // Emit an unconditional jump to the destination. MCInst TmpInst = MCInstBuilder(RISCV::JAL).addReg(RISCV::X0).addOperand(SrcSymbol); uint32_t Binary = getBinaryCodeForInstr(TmpInst, Fixups, STI); support::endian::write(CB, Binary, llvm::endianness::little); // Drop any fixup added so we can add the correct one. Fixups.resize(FixupStartIndex); if (SrcSymbol.isExpr()) addFixup(Fixups, Offset, SrcSymbol.getExpr(), RISCV::fixup_riscv_jal); } // Expand PseudoLongQC_(E_)Bxxx to an inverted conditional branch and an // unconditional jump. void RISCVMCCodeEmitter::expandQCLongCondBrImm(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI, unsigned Size) const { MCRegister SrcReg1 = MI.getOperand(0).getReg(); auto BrImm = MI.getOperand(1).getImm(); MCOperand SrcSymbol = MI.getOperand(2); unsigned Opcode = MI.getOpcode(); uint32_t Offset; unsigned InvOpc = getInvertedBranchOp(Opcode); // Emit inverted conditional branch with offset: // 8 (QC.BXXX(4) + JAL(4)) // or // 10 (QC.E.BXXX(6) + JAL(4)). if (Size == 4) { MCInst TmpBr = MCInstBuilder(InvOpc).addReg(SrcReg1).addImm(BrImm).addImm(8); uint32_t BrBinary = getBinaryCodeForInstr(TmpBr, Fixups, STI); support::endian::write(CB, BrBinary, llvm::endianness::little); } else { MCInst TmpBr = MCInstBuilder(InvOpc).addReg(SrcReg1).addImm(BrImm).addImm(10); uint64_t BrBinary = getBinaryCodeForInstr(TmpBr, Fixups, STI) & 0xffff'ffff'ffffu; SmallVector Encoding; support::endian::write(Encoding, BrBinary, llvm::endianness::little); assert(Encoding[6] == 0 && Encoding[7] == 0 && "Unexpected encoding for 48-bit instruction"); Encoding.truncate(6); CB.append(Encoding); } Offset = Size; // Save the number fixups. size_t FixupStartIndex = Fixups.size(); // Emit an unconditional jump to the destination. MCInst TmpJ = MCInstBuilder(RISCV::JAL).addReg(RISCV::X0).addOperand(SrcSymbol); uint32_t JBinary = getBinaryCodeForInstr(TmpJ, Fixups, STI); support::endian::write(CB, JBinary, llvm::endianness::little); // Drop any fixup added so we can add the correct one. Fixups.resize(FixupStartIndex); if (SrcSymbol.isExpr()) addFixup(Fixups, Offset, SrcSymbol.getExpr(), RISCV::fixup_riscv_jal); } void RISCVMCCodeEmitter::encodeInstruction(const MCInst &MI, SmallVectorImpl &CB, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); // Get byte count of instruction. unsigned Size = Desc.getSize(); // RISCVInstrInfo::getInstSizeInBytes expects that the total size of the // expanded instructions for each pseudo is correct in the Size field of the // tablegen definition for the pseudo. switch (MI.getOpcode()) { default: break; case RISCV::PseudoCALLReg: case RISCV::PseudoCALL: case RISCV::PseudoTAIL: case RISCV::PseudoJump: expandFunctionCall(MI, CB, Fixups, STI); MCNumEmitted += 2; return; case RISCV::PseudoAddTPRel: expandAddTPRel(MI, CB, Fixups, STI); MCNumEmitted += 1; return; case RISCV::PseudoLongBEQ: case RISCV::PseudoLongBNE: case RISCV::PseudoLongBLT: case RISCV::PseudoLongBGE: case RISCV::PseudoLongBLTU: case RISCV::PseudoLongBGEU: expandLongCondBr(MI, CB, Fixups, STI); MCNumEmitted += 2; return; case RISCV::PseudoLongQC_BEQI: case RISCV::PseudoLongQC_BNEI: case RISCV::PseudoLongQC_BLTI: case RISCV::PseudoLongQC_BGEI: case RISCV::PseudoLongQC_BLTUI: case RISCV::PseudoLongQC_BGEUI: expandQCLongCondBrImm(MI, CB, Fixups, STI, 4); MCNumEmitted += 2; return; case RISCV::PseudoLongQC_E_BEQI: case RISCV::PseudoLongQC_E_BNEI: case RISCV::PseudoLongQC_E_BLTI: case RISCV::PseudoLongQC_E_BGEI: case RISCV::PseudoLongQC_E_BLTUI: case RISCV::PseudoLongQC_E_BGEUI: expandQCLongCondBrImm(MI, CB, Fixups, STI, 6); MCNumEmitted += 2; return; case RISCV::PseudoTLSDESCCall: expandTLSDESCCall(MI, CB, Fixups, STI); MCNumEmitted += 1; return; } switch (Size) { default: llvm_unreachable("Unhandled encodeInstruction length!"); case 2: { uint16_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); support::endian::write(CB, Bits, llvm::endianness::little); break; } case 4: { uint32_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); support::endian::write(CB, Bits, llvm::endianness::little); break; } case 6: { uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI) & 0xffff'ffff'ffffu; SmallVector Encoding; support::endian::write(Encoding, Bits, llvm::endianness::little); assert(Encoding[6] == 0 && Encoding[7] == 0 && "Unexpected encoding for 48-bit instruction"); Encoding.truncate(6); CB.append(Encoding); break; } case 8: { uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); support::endian::write(CB, Bits, llvm::endianness::little); break; } } ++MCNumEmitted; // Keep track of the # of mi's emitted. } uint64_t RISCVMCCodeEmitter::getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()); if (MO.isImm()) return MO.getImm(); llvm_unreachable("Unhandled expression!"); return 0; } uint64_t RISCVMCCodeEmitter::getImmOpValueMinus1(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { uint64_t Res = MO.getImm(); return (Res - 1); } llvm_unreachable("Unhandled expression!"); return 0; } uint64_t RISCVMCCodeEmitter::getImmOpValueSlist(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm() && "Slist operand must be immediate"); uint64_t Res = MO.getImm(); switch (Res) { case 0: return 0; case 1: return 1; case 2: return 2; case 4: return 3; case 8: return 4; case 16: return 5; case 15: return 6; case 31: return 7; default: llvm_unreachable("Unhandled Slist value!"); } } template unsigned RISCVMCCodeEmitter::getImmOpValueAsrN(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) { uint64_t Res = MO.getImm(); assert((Res & ((1 << N) - 1)) == 0 && "LSB is non-zero"); return Res >> N; } return getImmOpValue(MI, OpNo, Fixups, STI); } uint64_t RISCVMCCodeEmitter::getImmOpValueZibi(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm() && "Zibi operand must be an immediate"); int64_t Res = MO.getImm(); if (Res == -1) return 0; return Res; } uint64_t RISCVMCCodeEmitter::getImmOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { bool EnableRelax = STI.hasFeature(RISCV::FeatureRelax); const MCOperand &MO = MI.getOperand(OpNo); MCInstrDesc const &Desc = MCII.get(MI.getOpcode()); unsigned MIFrm = RISCVII::getFormat(Desc.TSFlags); // If the destination is an immediate, there is nothing to do. if (MO.isImm()) return MO.getImm(); assert(MO.isExpr() && "getImmOpValue expects only expressions or immediates"); const MCExpr *Expr = MO.getExpr(); MCExpr::ExprKind Kind = Expr->getKind(); // `RelaxCandidate` must be set to `true` in two cases: // - The fixup's relocation gets a R_RISCV_RELAX relocation // - The underlying instruction may be relaxed to an instruction that gets a // `R_RISCV_RELAX` relocation. // // The actual emission of `R_RISCV_RELAX` will be handled in // `RISCVAsmBackend::applyFixup`. bool RelaxCandidate = false; auto AsmRelaxToLinkerRelaxableWithFeature = [&](unsigned Feature) -> void { if (!STI.hasFeature(RISCV::FeatureExactAssembly) && STI.hasFeature(Feature)) RelaxCandidate = true; }; unsigned FixupKind = RISCV::fixup_riscv_invalid; if (Kind == MCExpr::Specifier) { const auto *RVExpr = cast(Expr); FixupKind = RVExpr->getSpecifier(); switch (RVExpr->getSpecifier()) { default: assert(FixupKind && FixupKind < FirstTargetFixupKind && "invalid specifier"); break; case ELF::R_RISCV_TPREL_ADD: // tprel_add is only used to indicate that a relocation should be emitted // for an add instruction used in TP-relative addressing. It should not be // expanded as if representing an actual instruction operand and so to // encounter it here is an error. llvm_unreachable( "ELF::R_RISCV_TPREL_ADD should not represent an instruction operand"); case RISCV::S_LO: if (MIFrm == RISCVII::InstFormatI) FixupKind = RISCV::fixup_riscv_lo12_i; else if (MIFrm == RISCVII::InstFormatS) FixupKind = RISCV::fixup_riscv_lo12_s; else llvm_unreachable("VK_LO used with unexpected instruction format"); RelaxCandidate = true; break; case ELF::R_RISCV_HI20: FixupKind = RISCV::fixup_riscv_hi20; RelaxCandidate = true; break; case RISCV::S_PCREL_LO: if (MIFrm == RISCVII::InstFormatI) FixupKind = RISCV::fixup_riscv_pcrel_lo12_i; else if (MIFrm == RISCVII::InstFormatS) FixupKind = RISCV::fixup_riscv_pcrel_lo12_s; else llvm_unreachable("VK_PCREL_LO used with unexpected instruction format"); RelaxCandidate = true; break; case ELF::R_RISCV_PCREL_HI20: FixupKind = RISCV::fixup_riscv_pcrel_hi20; RelaxCandidate = true; break; case RISCV::S_TPREL_LO: if (MIFrm == RISCVII::InstFormatI) FixupKind = ELF::R_RISCV_TPREL_LO12_I; else if (MIFrm == RISCVII::InstFormatS) FixupKind = ELF::R_RISCV_TPREL_LO12_S; else llvm_unreachable("VK_TPREL_LO used with unexpected instruction format"); RelaxCandidate = true; break; case ELF::R_RISCV_TPREL_HI20: RelaxCandidate = true; break; case ELF::R_RISCV_CALL_PLT: FixupKind = RISCV::fixup_riscv_call_plt; RelaxCandidate = true; break; case RISCV::S_QC_ABS20: FixupKind = RISCV::fixup_riscv_qc_abs20_u; RelaxCandidate = true; break; } } else if (Kind == MCExpr::SymbolRef || Kind == MCExpr::Binary) { // FIXME: Sub kind binary exprs have chance of underflow. if (MIFrm == RISCVII::InstFormatJ) { FixupKind = RISCV::fixup_riscv_jal; AsmRelaxToLinkerRelaxableWithFeature(RISCV::FeatureVendorXqcilb); } else if (MIFrm == RISCVII::InstFormatB) { FixupKind = RISCV::fixup_riscv_branch; // This might be assembler relaxed to `b; jal` but we cannot relax // the `jal` again in the assembler. } else if (MIFrm == RISCVII::InstFormatCJ) { FixupKind = RISCV::fixup_riscv_rvc_jump; AsmRelaxToLinkerRelaxableWithFeature(RISCV::FeatureVendorXqcilb); } else if (MIFrm == RISCVII::InstFormatCB) { FixupKind = RISCV::fixup_riscv_rvc_branch; // This might be assembler relaxed to `b; jal` but we cannot relax // the `jal` again in the assembler. } else if (MIFrm == RISCVII::InstFormatCI) { FixupKind = RISCV::fixup_riscv_rvc_imm; } else if (MIFrm == RISCVII::InstFormatI) { FixupKind = RISCV::fixup_riscv_12_i; } else if (MIFrm == RISCVII::InstFormatQC_EB) { FixupKind = RISCV::fixup_riscv_qc_e_branch; // This might be assembler relaxed to `qc.e.b; jal` but we cannot // relax the `jal` again in the assembler. } else if (MIFrm == RISCVII::InstFormatQC_EAI) { FixupKind = RISCV::fixup_riscv_qc_e_32; RelaxCandidate = true; } else if (MIFrm == RISCVII::InstFormatQC_EJ) { FixupKind = RISCV::fixup_riscv_qc_e_call_plt; RelaxCandidate = true; } else if (MIFrm == RISCVII::InstFormatNDS_BRANCH_10) { FixupKind = RISCV::fixup_riscv_nds_branch_10; } } assert(FixupKind != RISCV::fixup_riscv_invalid && "Unhandled expression!"); addFixup(Fixups, 0, Expr, FixupKind); // If linker relaxation is enabled and supported by this relocation, set a bit // so that the assembler knows the size of the instruction is not fixed/known, // and the relocation will need a R_RISCV_RELAX relocation. if (EnableRelax && RelaxCandidate) Fixups.back().setLinkerRelaxable(); ++MCNumFixups; return 0; } unsigned RISCVMCCodeEmitter::getVMaskReg(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { MCOperand MO = MI.getOperand(OpNo); assert(MO.isReg() && "Expected a register."); switch (MO.getReg()) { default: llvm_unreachable("Invalid mask register."); case RISCV::V0: return 0; case RISCV::NoRegister: return 1; } } unsigned RISCVMCCodeEmitter::getRlistOpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm() && "Rlist operand must be immediate"); auto Imm = MO.getImm(); assert(Imm >= 4 && "EABI is currently not implemented"); return Imm; } unsigned RISCVMCCodeEmitter::getRlistS0OpValue(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert(MO.isImm() && "Rlist operand must be immediate"); auto Imm = MO.getImm(); assert(Imm >= 4 && "EABI is currently not implemented"); assert(Imm != RISCVZC::RA && "Rlist operand must include s0"); return Imm; } #include "RISCVGenMCCodeEmitter.inc"