//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetRegisterInfo // class. // //===----------------------------------------------------------------------===// #include "PPCRegisterInfo.h" #include "PPCFrameLowering.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include using namespace llvm; #define DEBUG_TYPE "reginfo" #define GET_REGINFO_TARGET_DESC #include "PPCGenRegisterInfo.inc" STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass"); STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass"); static cl::opt EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true), cl::desc("Enable use of a base pointer for complex stack frames")); static cl::opt AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false), cl::desc("Force the use of a base pointer in every function")); static cl::opt EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false), cl::desc("Enable spills from gpr to vsr rather than stack")); static cl::opt StackPtrConst("ppc-stack-ptr-caller-preserved", cl::desc("Consider R1 caller preserved so stack saves of " "caller preserved registers can be LICM candidates"), cl::init(true), cl::Hidden); static cl::opt MaxCRBitSpillDist("ppc-max-crbit-spill-dist", cl::desc("Maximum search distance for definition of CR bit " "spill on ppc"), cl::Hidden, cl::init(100)); // Copies/moves of physical accumulators are expensive operations // that should be avoided whenever possible. MMA instructions are // meant to be used in performance-sensitive computational kernels. // This option is provided, at least for the time being, to give the // user a tool to detect this expensive operation and either rework // their code or report a compiler bug if that turns out to be the // cause. #ifndef NDEBUG static cl::opt ReportAccMoves("ppc-report-acc-moves", cl::desc("Emit information about accumulator register spills " "and copies"), cl::Hidden, cl::init(false)); #endif extern cl::opt DisableAutoPairedVecSt; static unsigned offsetMinAlignForOpcode(unsigned OpC); PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM) : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR, TM.isPPC64() ? 0 : 1, TM.isPPC64() ? 0 : 1), TM(TM) { ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; ImmToIdxMap[PPC::ADDI] = PPC::ADD4; ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32; // 64-bit ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO; ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO; // VSX ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX; ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX; ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX; ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX; ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX; ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX; ImmToIdxMap[PPC::LXV] = PPC::LXVX; ImmToIdxMap[PPC::LXSD] = PPC::LXSDX; ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::STXV] = PPC::STXVX; ImmToIdxMap[PPC::STXSD] = PPC::STXSDX; ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX; // SPE ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX; ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX; ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX; ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX; // Power10 ImmToIdxMap[PPC::PLBZ] = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8] = PPC::LBZX8; ImmToIdxMap[PPC::PLHZ] = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::PLHA] = PPC::LHAX; ImmToIdxMap[PPC::PLHA8] = PPC::LHAX8; ImmToIdxMap[PPC::PLWZ] = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8] = PPC::LWZX8; ImmToIdxMap[PPC::PLWA] = PPC::LWAX; ImmToIdxMap[PPC::PLWA8] = PPC::LWAX; ImmToIdxMap[PPC::PLD] = PPC::LDX; ImmToIdxMap[PPC::PSTD] = PPC::STDX; ImmToIdxMap[PPC::PSTB] = PPC::STBX; ImmToIdxMap[PPC::PSTB8] = PPC::STBX8; ImmToIdxMap[PPC::PSTH] = PPC::STHX; ImmToIdxMap[PPC::PSTH8] = PPC::STHX8; ImmToIdxMap[PPC::PSTW] = PPC::STWX; ImmToIdxMap[PPC::PSTW8] = PPC::STWX8; ImmToIdxMap[PPC::PLFS] = PPC::LFSX; ImmToIdxMap[PPC::PSTFS] = PPC::STFSX; ImmToIdxMap[PPC::PLFD] = PPC::LFDX; ImmToIdxMap[PPC::PSTFD] = PPC::STFDX; ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX; ImmToIdxMap[PPC::PLXSD] = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD] = PPC::STXSDX; ImmToIdxMap[PPC::PLXV] = PPC::LXVX; ImmToIdxMap[PPC::PSTXV] = PPC::STXVX; ImmToIdxMap[PPC::LXVP] = PPC::LXVPX; ImmToIdxMap[PPC::STXVP] = PPC::STXVPX; ImmToIdxMap[PPC::PLXVP] = PPC::LXVPX; ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX; } /// getPointerRegClass - Return the register class to use to hold pointers. /// This is used for addressing modes. const TargetRegisterClass * PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) const { // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value // when it checks for ZERO folding. if (Kind == 1) { if (TM.isPPC64()) return &PPC::G8RC_NOX0RegClass; return &PPC::GPRC_NOR0RegClass; } if (TM.isPPC64()) return &PPC::G8RCRegClass; return &PPC::GPRCRegClass; } const MCPhysReg* PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { const PPCSubtarget &Subtarget = MF->getSubtarget(); if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) { if (!TM.isPPC64() && Subtarget.isAIXABI()) report_fatal_error("AnyReg unimplemented on 32-bit AIX."); if (Subtarget.hasVSX()) { if (Subtarget.pairedVectorMemops()) return CSR_64_AllRegs_VSRP_SaveList; if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList; return CSR_64_AllRegs_VSX_SaveList; } if (Subtarget.hasAltivec()) { if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList; return CSR_64_AllRegs_Altivec_SaveList; } return CSR_64_AllRegs_SaveList; } // On PPC64, we might need to save r2 (but only if it is not reserved). // We do not need to treat R2 as callee-saved when using PC-Relative calls // because any direct uses of R2 will cause it to be reserved. If the function // is a leaf or the only uses of R2 are implicit uses for calls, the calls // will use the @notoc relocation which will cause this function to set the // st_other bit to 1, thereby communicating to its caller that it arbitrarily // clobbers the TOC. bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) && !Subtarget.isUsingPCRelativeCalls(); // Cold calling convention CSRs. if (MF->getFunction().getCallingConv() == CallingConv::Cold) { if (Subtarget.isAIXABI()) report_fatal_error("Cold calling unimplemented on AIX."); if (TM.isPPC64()) { if (Subtarget.pairedVectorMemops()) return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList : CSR_SVR64_ColdCC_VSRP_SaveList; if (Subtarget.hasAltivec()) return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList : CSR_SVR64_ColdCC_Altivec_SaveList; return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList : CSR_SVR64_ColdCC_SaveList; } // 32-bit targets. if (Subtarget.pairedVectorMemops()) return CSR_SVR32_ColdCC_VSRP_SaveList; else if (Subtarget.hasAltivec()) return CSR_SVR32_ColdCC_Altivec_SaveList; else if (Subtarget.hasSPE()) return CSR_SVR32_ColdCC_SPE_SaveList; return CSR_SVR32_ColdCC_SaveList; } // Standard calling convention CSRs. if (TM.isPPC64()) { if (Subtarget.pairedVectorMemops()) { if (Subtarget.isAIXABI()) { if (!TM.getAIXExtendedAltivecABI()) return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList; } return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList; } if (Subtarget.hasAltivec() && (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) { return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList : CSR_PPC64_Altivec_SaveList; } return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList; } // 32-bit targets. if (Subtarget.isAIXABI()) { if (Subtarget.pairedVectorMemops()) return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList : CSR_AIX32_SaveList; if (Subtarget.hasAltivec()) return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList : CSR_AIX32_SaveList; return CSR_AIX32_SaveList; } if (Subtarget.pairedVectorMemops()) return CSR_SVR432_VSRP_SaveList; if (Subtarget.hasAltivec()) return CSR_SVR432_Altivec_SaveList; else if (Subtarget.hasSPE()) { if (TM.isPositionIndependent() && !TM.isPPC64()) return CSR_SVR432_SPE_NO_S30_31_SaveList; return CSR_SVR432_SPE_SaveList; } return CSR_SVR432_SaveList; } const uint32_t * PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF, CallingConv::ID CC) const { const PPCSubtarget &Subtarget = MF.getSubtarget(); if (CC == CallingConv::AnyReg) { if (Subtarget.hasVSX()) { if (Subtarget.pairedVectorMemops()) return CSR_64_AllRegs_VSRP_RegMask; if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask; return CSR_64_AllRegs_VSX_RegMask; } if (Subtarget.hasAltivec()) { if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask; return CSR_64_AllRegs_Altivec_RegMask; } return CSR_64_AllRegs_RegMask; } if (Subtarget.isAIXABI()) { if (Subtarget.pairedVectorMemops()) { if (!TM.getAIXExtendedAltivecABI()) return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask; return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask; } return TM.isPPC64() ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) ? CSR_PPC64_Altivec_RegMask : CSR_PPC64_RegMask) : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI()) ? CSR_AIX32_Altivec_RegMask : CSR_AIX32_RegMask); } if (CC == CallingConv::Cold) { if (TM.isPPC64()) return Subtarget.pairedVectorMemops() ? CSR_SVR64_ColdCC_VSRP_RegMask : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask : CSR_SVR64_ColdCC_RegMask); else return Subtarget.pairedVectorMemops() ? CSR_SVR32_ColdCC_VSRP_RegMask : (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask : CSR_SVR32_ColdCC_RegMask)); } if (TM.isPPC64()) return Subtarget.pairedVectorMemops() ? CSR_SVR464_VSRP_RegMask : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask : CSR_PPC64_RegMask); else return Subtarget.pairedVectorMemops() ? CSR_SVR432_VSRP_RegMask : (Subtarget.hasAltivec() ? CSR_SVR432_Altivec_RegMask : (Subtarget.hasSPE() ? (TM.isPositionIndependent() ? CSR_SVR432_SPE_NO_S30_31_RegMask : CSR_SVR432_SPE_RegMask) : CSR_SVR432_RegMask)); } const uint32_t* PPCRegisterInfo::getNoPreservedMask() const { return CSR_NoRegs_RegMask; } void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const { for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM}) Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32)); } BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); const PPCSubtarget &Subtarget = MF.getSubtarget(); const PPCFrameLowering *TFI = getFrameLowering(MF); // The ZERO register is not really a register, but the representation of r0 // when used in instructions that treat r0 as the constant 0. markSuperRegs(Reserved, PPC::ZERO); // The FP register is also not really a register, but is the representation // of the frame pointer register used by ISD::FRAMEADDR. markSuperRegs(Reserved, PPC::FP); // The BP register is also not really a register, but is the representation // of the base pointer register used by setjmp. markSuperRegs(Reserved, PPC::BP); // The counter registers must be reserved so that counter-based loops can // be correctly formed (and the mtctr instructions are not DCE'd). markSuperRegs(Reserved, PPC::CTR); markSuperRegs(Reserved, PPC::CTR8); markSuperRegs(Reserved, PPC::R1); markSuperRegs(Reserved, PPC::LR); markSuperRegs(Reserved, PPC::LR8); markSuperRegs(Reserved, PPC::RM); markSuperRegs(Reserved, PPC::VRSAVE); // The SVR4 ABI reserves r2 and r13 if (Subtarget.isSVR4ABI()) { // We only reserve r2 if we need to use the TOC pointer. If we have no // explicit uses of the TOC pointer (meaning we're a leaf function with // no constant-pool loads, etc.) and we have no potential uses inside an // inline asm block, then we can treat r2 has an ordinary callee-saved // register. const PPCFunctionInfo *FuncInfo = MF.getInfo(); if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm()) markSuperRegs(Reserved, PPC::R2); // System-reserved register markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register } // Always reserve r2 on AIX for now. // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions. if (Subtarget.isAIXABI()) markSuperRegs(Reserved, PPC::R2); // System-reserved register // On PPC64, r13 is the thread pointer. Never allocate this register. if (TM.isPPC64()) markSuperRegs(Reserved, PPC::R13); if (TFI->needsFP(MF)) markSuperRegs(Reserved, PPC::R31); bool IsPositionIndependent = TM.isPositionIndependent(); if (hasBasePointer(MF)) { if (Subtarget.is32BitELFABI() && IsPositionIndependent) markSuperRegs(Reserved, PPC::R29); else markSuperRegs(Reserved, PPC::R30); } if (Subtarget.is32BitELFABI() && IsPositionIndependent) markSuperRegs(Reserved, PPC::R30); // Reserve Altivec registers when Altivec is unavailable. if (!Subtarget.hasAltivec()) for (MCRegister Reg : PPC::VRRCRegClass) markSuperRegs(Reserved, Reg); if (Subtarget.isAIXABI() && Subtarget.hasAltivec() && !TM.getAIXExtendedAltivecABI()) { // In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved // and cannot be used. for (auto Reg : CSR_Altivec_SaveList) { if (Reg == 0) break; markSuperRegs(Reserved, Reg); for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) { Reserved.set(*AS); } } } assert(checkAllSuperRegsMarked(Reserved)); return Reserved; } bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const { // We cannot use getReservedRegs() to find the registers that are not asm // clobberable because there are some reserved registers which can be // clobbered by inline asm. For example, when LR is clobbered, the register is // saved and restored. We will hardcode the registers that are not asm // cloberable in this function. // The stack pointer (R1/X1) is not clobberable by inline asm return PhysReg != PPC::R1 && PhysReg != PPC::X1; } bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const { const PPCSubtarget &Subtarget = MF.getSubtarget(); const PPCInstrInfo *InstrInfo = Subtarget.getInstrInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const std::vector &Info = MFI.getCalleeSavedInfo(); LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName() << ".\n"); // If the callee saved info is invalid we have to default to true for safety. if (!MFI.isCalleeSavedInfoValid()) { LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n"); return true; } // We will require the use of X-Forms because the frame is larger than what // can be represented in signed 16 bits that fit in the immediate of a D-Form. // If we need an X-Form then we need a register to store the address offset. unsigned FrameSize = MFI.getStackSize(); // Signed 16 bits means that the FrameSize cannot be more than 15 bits. if (FrameSize & ~0x7FFF) { LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n"); return true; } // The callee saved info is valid so it can be traversed. // Checking for registers that need saving that do not have load or store // forms where the address offset is an immediate. for (const CalleeSavedInfo &CSI : Info) { // If the spill is to a register no scavenging is required. if (CSI.isSpilledToReg()) continue; int FrIdx = CSI.getFrameIdx(); Register Reg = CSI.getReg(); const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg); unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC); if (!MFI.isFixedObjectIndex(FrIdx)) { // This is not a fixed object. If it requires alignment then we may still // need to use the XForm. if (offsetMinAlignForOpcode(Opcode) > 1) { LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) << " for register " << printReg(Reg, this) << ".\n"); LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires " << "alignment.\n"); return true; } } // This is eiher: // 1) A fixed frame index object which we know are aligned so // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't // need to consider the alignment here. // 2) A not fixed object but in that case we now know that the min required // alignment is no more than 1 based on the previous check. if (InstrInfo->isXFormMemOp(Opcode)) { LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) << " for register " << printReg(Reg, this) << ".\n"); LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n"); return true; } // This is a spill/restore of a quadword. if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) { LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode) << " for register " << printReg(Reg, this) << ".\n"); LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n"); return true; } } LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n"); return false; } bool PPCRegisterInfo::requiresVirtualBaseRegisters( const MachineFunction &MF) const { const PPCSubtarget &Subtarget = MF.getSubtarget(); // Do not use virtual base registers when ROP protection is turned on. // Virtual base registers break the layout of the local variable space and may // push the ROP Hash location past the 512 byte range of the ROP store // instruction. return !Subtarget.hasROPProtect(); } bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg, const MachineFunction &MF) const { assert(Register::isPhysicalRegister(PhysReg)); const PPCSubtarget &Subtarget = MF.getSubtarget(); const MachineFrameInfo &MFI = MF.getFrameInfo(); if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI()) return false; if (PhysReg == Subtarget.getTOCPointerRegister()) // X2/R2 is guaranteed to be preserved within a function if it is reserved. // The reason it's reserved is that it's the TOC pointer (and the function // uses the TOC). In functions where it isn't reserved (i.e. leaf functions // with no TOC access), we can't claim that it is preserved. return (getReservedRegs(MF).test(PhysReg)); if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() && !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment()) // The value of the stack pointer does not change within a function after // the prologue and before the epilogue if there are no dynamic allocations // and no inline asm which clobbers X1/R1. return true; return false; } bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg, ArrayRef Order, SmallVectorImpl &Hints, const MachineFunction &MF, const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const { const MachineRegisterInfo *MRI = &MF.getRegInfo(); // Call the base implementation first to set any hints based on the usual // heuristics and decide what the return value should be. We want to return // the same value returned by the base implementation. If the base // implementation decides to return true and force the allocation then we // will leave it as such. On the other hand if the base implementation // decides to return false the following code will not force the allocation // as we are just looking to provide a hint. bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints( VirtReg, Order, Hints, MF, VRM, Matrix); // Don't use the allocation hints for ISAFuture. // The WACC registers used in ISAFuture are unlike the ACC registers on // Power 10 and so this logic to register allocation hints does not apply. if (MF.getSubtarget().isISAFuture()) return BaseImplRetVal; // We are interested in instructions that copy values to ACC/UACC. // The copy into UACC will be simply a COPY to a subreg so we // want to allocate the corresponding physical subreg for the source. // The copy into ACC will be a BUILD_UACC so we want to allocate // the same number UACC for the source. const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg); for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) { const MachineOperand *ResultOp = nullptr; Register ResultReg; switch (Use.getOpcode()) { case TargetOpcode::COPY: { ResultOp = &Use.getOperand(0); ResultReg = ResultOp->getReg(); if (ResultReg.isVirtual() && MRI->getRegClass(ResultReg)->contains(PPC::UACC0) && VRM->hasPhys(ResultReg)) { Register UACCPhys = VRM->getPhys(ResultReg); Register HintReg; if (RegClass->contains(PPC::VSRp0)) { HintReg = getSubReg(UACCPhys, ResultOp->getSubReg()); // Ensure that the hint is a VSRp register. if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31) Hints.push_back(HintReg); } else if (RegClass->contains(PPC::ACC0)) { HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0); if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7) Hints.push_back(HintReg); } } break; } case PPC::BUILD_UACC: { ResultOp = &Use.getOperand(0); ResultReg = ResultOp->getReg(); if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) && VRM->hasPhys(ResultReg)) { Register ACCPhys = VRM->getPhys(ResultReg); assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) && "Expecting an ACC register for BUILD_UACC."); Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0); Hints.push_back(HintReg); } break; } } } return BaseImplRetVal; } unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const { const PPCFrameLowering *TFI = getFrameLowering(MF); const unsigned DefaultSafety = 1; switch (RC->getID()) { default: return 0; case PPC::G8RC_NOX0RegClassID: case PPC::GPRC_NOR0RegClassID: case PPC::SPERCRegClassID: case PPC::G8RCRegClassID: case PPC::GPRCRegClassID: { unsigned FP = TFI->hasFP(MF) ? 1 : 0; return 32 - FP - DefaultSafety; } case PPC::F4RCRegClassID: case PPC::F8RCRegClassID: case PPC::VSLRCRegClassID: return 32 - DefaultSafety; case PPC::VFRCRegClassID: case PPC::VRRCRegClassID: { const PPCSubtarget &Subtarget = MF.getSubtarget(); // Vector registers VR20-VR31 are reserved and cannot be used in the default // Altivec ABI on AIX. if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) return 20 - DefaultSafety; } return 32 - DefaultSafety; case PPC::VSFRCRegClassID: case PPC::VSSRCRegClassID: case PPC::VSRCRegClassID: { const PPCSubtarget &Subtarget = MF.getSubtarget(); if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI()) // Vector registers VR20-VR31 are reserved and cannot be used in the // default Altivec ABI on AIX. return 52 - DefaultSafety; } return 64 - DefaultSafety; case PPC::CRRCRegClassID: return 8 - DefaultSafety; } } const TargetRegisterClass * PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &MF) const { const PPCSubtarget &Subtarget = MF.getSubtarget(); const auto *DefaultSuperclass = TargetRegisterInfo::getLargestLegalSuperClass(RC, MF); if (Subtarget.hasVSX()) { // With VSX, we can inflate various sub-register classes to the full VSX // register set. // For Power9 we allow the user to enable GPR to vector spills. // FIXME: Currently limited to spilling GP8RC. A follow on patch will add // support to spill GPRC. if (TM.isELFv2ABI() || Subtarget.isAIXABI()) { if (Subtarget.hasP9Vector() && EnableGPRToVecSpills && RC == &PPC::G8RCRegClass) { InflateGP8RC++; return &PPC::SPILLTOVSRRCRegClass; } if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills) InflateGPRC++; } for (const auto *I = RC->getSuperClasses(); *I; ++I) { if (getRegSizeInBits(**I) != getRegSizeInBits(*RC)) continue; switch ((*I)->getID()) { case PPC::VSSRCRegClassID: return Subtarget.hasP8Vector() ? *I : DefaultSuperclass; case PPC::VSFRCRegClassID: case PPC::VSRCRegClassID: return *I; case PPC::VSRpRCRegClassID: return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass; case PPC::ACCRCRegClassID: case PPC::UACCRCRegClassID: return Subtarget.hasMMA() ? *I : DefaultSuperclass; } } } return DefaultSuperclass; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// /// lowerDynamicAlloc - Generate the code for allocating an object in the /// current frame. The sequence of code will be in the general form /// /// addi R0, SP, \#frameSize ; get the address of the previous frame /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size /// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation /// void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const { // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo &MFI = MF.getFrameInfo(); const PPCSubtarget &Subtarget = MF.getSubtarget(); // Get the instruction info. const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); // Determine whether 64-bit pointers are used. bool LP64 = TM.isPPC64(); DebugLoc dl = MI.getDebugLoc(); // Get the maximum call stack size. unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); Align MaxAlign = MFI.getMaxAlign(); assert(isAligned(MaxAlign, maxCallFrameSize) && "Maximum call-frame size not sufficiently aligned"); (void)MaxAlign; const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); bool KillNegSizeReg = MI.getOperand(1).isKill(); Register NegSizeReg = MI.getOperand(1).getReg(); prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg); // Grow the stack and update the stack pointer link, then determine the // address of new allocated space. if (LP64) { BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1) .addReg(Reg, RegState::Kill) .addReg(PPC::X1) .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) .addReg(PPC::X1) .addImm(maxCallFrameSize); } else { BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1) .addReg(Reg, RegState::Kill) .addReg(PPC::R1) .addReg(NegSizeReg, getKillRegState(KillNegSizeReg)); BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) .addReg(PPC::R1) .addImm(maxCallFrameSize); } // Discard the DYNALLOC instruction. MBB.erase(II); } /// To accomplish dynamic stack allocation, we have to calculate exact size /// subtracted from the stack pointer according alignment information and get /// previous frame pointer. void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II, Register &NegSizeReg, bool &KillNegSizeReg, Register &FramePointer) const { // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo &MFI = MF.getFrameInfo(); const PPCSubtarget &Subtarget = MF.getSubtarget(); // Get the instruction info. const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); // Determine whether 64-bit pointers are used. bool LP64 = TM.isPPC64(); DebugLoc dl = MI.getDebugLoc(); // Get the total frame size. unsigned FrameSize = MFI.getStackSize(); // Get stack alignments. const PPCFrameLowering *TFI = getFrameLowering(MF); Align TargetAlign = TFI->getStackAlign(); Align MaxAlign = MFI.getMaxAlign(); // Determine the previous frame's address. If FrameSize can't be // represented as 16 bits or we need special alignment, then we load the // previous frame's address from 0(SP). Why not do an addis of the hi? // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. // Constructing the constant and adding would take 3 instructions. // Fortunately, a frame greater than 32K is rare. const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) { if (LP64) BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer) .addReg(PPC::X31) .addImm(FrameSize); else BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer) .addReg(PPC::R31) .addImm(FrameSize); } else if (LP64) { BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer) .addImm(0) .addReg(PPC::X1); } else { BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer) .addImm(0) .addReg(PPC::R1); } // Determine the actual NegSizeReg according to alignment info. if (LP64) { if (MaxAlign > TargetAlign) { unsigned UnalNegSizeReg = NegSizeReg; NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); // Unfortunately, there is no andi, only andi., and we can't insert that // here because we might clobber cr0 while it is live. BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg) .addImm(~(MaxAlign.value() - 1)); unsigned NegSizeReg1 = NegSizeReg; NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC); BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg) .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) .addReg(NegSizeReg1, RegState::Kill); KillNegSizeReg = true; } } else { if (MaxAlign > TargetAlign) { unsigned UnalNegSizeReg = NegSizeReg; NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); // Unfortunately, there is no andi, only andi., and we can't insert that // here because we might clobber cr0 while it is live. BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg) .addImm(~(MaxAlign.value() - 1)); unsigned NegSizeReg1 = NegSizeReg; NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC); BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg) .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg)) .addReg(NegSizeReg1, RegState::Kill); KillNegSizeReg = true; } } } void PPCRegisterInfo::lowerPrepareProbedAlloca( MachineBasicBlock::iterator II) const { MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); // Get the instruction info. const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); // Determine whether 64-bit pointers are used. bool LP64 = TM.isPPC64(); DebugLoc dl = MI.getDebugLoc(); Register FramePointer = MI.getOperand(0).getReg(); const Register ActualNegSizeReg = MI.getOperand(1).getReg(); bool KillNegSizeReg = MI.getOperand(2).isKill(); Register NegSizeReg = MI.getOperand(2).getReg(); const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR); // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg. if (FramePointer == NegSizeReg) { assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, " "NegSizeReg should be killed"); // FramePointer is clobbered earlier than the use of NegSizeReg in // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid // misuse. BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) .addReg(NegSizeReg) .addReg(NegSizeReg); NegSizeReg = ActualNegSizeReg; KillNegSizeReg = false; } prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer); // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign > // TargetAlign. if (NegSizeReg != ActualNegSizeReg) BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg) .addReg(NegSizeReg) .addReg(NegSizeReg); MBB.erase(II); } void PPCRegisterInfo::lowerDynamicAreaOffset( MachineBasicBlock::iterator II) const { // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo &MFI = MF.getFrameInfo(); const PPCSubtarget &Subtarget = MF.getSubtarget(); // Get the instruction info. const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); unsigned maxCallFrameSize = MFI.getMaxCallFrameSize(); bool is64Bit = TM.isPPC64(); DebugLoc dl = MI.getDebugLoc(); BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), MI.getOperand(0).getReg()) .addImm(maxCallFrameSize); MBB.erase(II); } /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of /// reserving a whole register (R0), we scrounge for one here. This generates /// code like this: /// /// mfcr rA ; Move the conditional register into GPR rA. /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. /// stw rA, FI ; Store rA to the frame. /// void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex) const { // Get the instruction. MachineInstr &MI = *II; // ; SPILL_CR , // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); bool LP64 = TM.isPPC64(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); Register SrcReg = MI.getOperand(0).getReg(); // We need to store the CR in the low 4-bits of the saved value. First, issue // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg. BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill())); // If the saved register wasn't CR0, shift the bits left so that they are in // CR0's slot. if (SrcReg != PPC::CR0) { Register Reg1 = Reg; Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); // rlwinm rA, rA, ShiftBits, 0, 31. BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) .addReg(Reg1, RegState::Kill) .addImm(getEncodingValue(SrcReg) * 4) .addImm(0) .addImm(31); } addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) .addReg(Reg, RegState::Kill), FrameIndex); // Discard the pseudo instruction. MBB.erase(II); } void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II, unsigned FrameIndex) const { // Get the instruction. MachineInstr &MI = *II; // ; = RESTORE_CR // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); bool LP64 = TM.isPPC64(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); Register DestReg = MI.getOperand(0).getReg(); assert(MI.definesRegister(DestReg) && "RESTORE_CR does not define its destination"); addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), Reg), FrameIndex); // If the reloaded register isn't CR0, shift the bits right so that they are // in the right CR's slot. if (DestReg != PPC::CR0) { Register Reg1 = Reg; Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); unsigned ShiftBits = getEncodingValue(DestReg)*4; // rlwinm r11, r11, 32-ShiftBits, 0, 31. BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0) .addImm(31); } BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg) .addReg(Reg, RegState::Kill); // Discard the pseudo instruction. MBB.erase(II); } void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex) const { // Get the instruction. MachineInstr &MI = *II; // ; SPILL_CRBIT , // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo(); DebugLoc dl = MI.getDebugLoc(); bool LP64 = TM.isPPC64(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); Register SrcReg = MI.getOperand(0).getReg(); // Search up the BB to find the definition of the CR bit. MachineBasicBlock::reverse_iterator Ins = MI; MachineBasicBlock::reverse_iterator Rend = MBB.rend(); ++Ins; unsigned CRBitSpillDistance = 0; bool SeenUse = false; for (; Ins != Rend; ++Ins) { // Definition found. if (Ins->modifiesRegister(SrcReg, TRI)) break; // Use found. if (Ins->readsRegister(SrcReg, TRI)) SeenUse = true; // Unable to find CR bit definition within maximum search distance. if (CRBitSpillDistance == MaxCRBitSpillDist) { Ins = MI; break; } // Skip debug instructions when counting CR bit spill distance. if (!Ins->isDebugInstr()) CRBitSpillDistance++; } // Unable to find the definition of the CR bit in the MBB. if (Ins == MBB.rend()) Ins = MI; bool SpillsKnownBit = false; // There is no need to extract the CR bit if its value is already known. switch (Ins->getOpcode()) { case PPC::CRUNSET: BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg) .addImm(0); SpillsKnownBit = true; break; case PPC::CRSET: BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg) .addImm(-32768); SpillsKnownBit = true; break; default: // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all // bits (specifically, it produces a -1 if the CR bit is set). Ultimately, // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit // register), and SETNBC will set this. if (Subtarget.isISA3_1()) { BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg) .addReg(SrcReg, RegState::Undef); break; } // On Power9, we can use SETB to extract the LT bit. This only works for // the LT bit since SETB produces -1/1/0 for LT/GT/. So the value // of the bit we care about (32-bit sign bit) will be set to the value of // the LT bit (regardless of the other bits in the CR field). if (Subtarget.isISA3_0()) { if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT || SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT || SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT || SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) { BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg) .addReg(getCRFromCRBit(SrcReg), RegState::Undef); break; } } // We need to move the CR field that contains the CR bit we are spilling. // The super register may not be explicitly defined (i.e. it can be defined // by a CR-logical that only defines the subreg) so we state that the CR // field is undef. Also, in order to preserve the kill flag on the CR bit, // we add it as an implicit use. BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg) .addReg(getCRFromCRBit(SrcReg), RegState::Undef) .addReg(SrcReg, RegState::Implicit | getKillRegState(MI.getOperand(0).isKill())); // If the saved register wasn't CR0LT, shift the bits left so that the bit // to store is the first one. Mask all but that bit. Register Reg1 = Reg; Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); // rlwinm rA, rA, ShiftBits, 0, 0. BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg) .addReg(Reg1, RegState::Kill) .addImm(getEncodingValue(SrcReg)) .addImm(0).addImm(0); } addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW)) .addReg(Reg, RegState::Kill), FrameIndex); bool KillsCRBit = MI.killsRegister(SrcReg, TRI); // Discard the pseudo instruction. MBB.erase(II); if (SpillsKnownBit && KillsCRBit && !SeenUse) { Ins->setDesc(TII.get(PPC::UNENCODED_NOP)); Ins->removeOperand(0); } } void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II, unsigned FrameIndex) const { // Get the instruction. MachineInstr &MI = *II; // ; = RESTORE_CRBIT // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc dl = MI.getDebugLoc(); bool LP64 = TM.isPPC64(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); Register DestReg = MI.getOperand(0).getReg(); assert(MI.definesRegister(DestReg) && "RESTORE_CRBIT does not define its destination"); addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ), Reg), FrameIndex); BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg); Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC); BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO) .addReg(getCRFromCRBit(DestReg)); unsigned ShiftBits = getEncodingValue(DestReg); // rlwimi r11, r10, 32-ShiftBits, ..., ... BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO) .addReg(RegO, RegState::Kill) .addReg(Reg, RegState::Kill) .addImm(ShiftBits ? 32 - ShiftBits : 0) .addImm(ShiftBits) .addImm(ShiftBits); BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), getCRFromCRBit(DestReg)) .addReg(RegO, RegState::Kill) // Make sure we have a use dependency all the way through this // sequence of instructions. We can't have the other bits in the CR // modified in between the mfocrf and the mtocrf. .addReg(getCRFromCRBit(DestReg), RegState::Implicit); // Discard the pseudo instruction. MBB.erase(II); } void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB, MCRegister DestReg, MCRegister SrcReg) { #ifdef NDEBUG return; #else if (ReportAccMoves) { std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc"; std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc"; dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n"; MBB.dump(); } #endif } static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed, bool IsRestore) { #ifdef NDEBUG return; #else if (ReportAccMoves) { dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register " << (IsRestore ? "restore" : "spill") << ":\n"; MBB.dump(); } #endif } static void spillRegPairs(MachineBasicBlock &MBB, MachineBasicBlock::iterator II, DebugLoc DL, const TargetInstrInfo &TII, Register SrcReg, unsigned FrameIndex, bool IsLittleEndian, bool IsKilled, bool TwoPairs) { unsigned Offset = 0; // The register arithmetic in this function does not support virtual // registers. assert(!SrcReg.isVirtual() && "Spilling register pairs does not support virtual registers."); if (TwoPairs) Offset = IsLittleEndian ? 48 : 0; else Offset = IsLittleEndian ? 16 : 0; Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2 : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) .addReg(Reg, getKillRegState(IsKilled)), FrameIndex, Offset); Offset += IsLittleEndian ? -16 : 16; addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) .addReg(Reg + 1, getKillRegState(IsKilled)), FrameIndex, Offset); if (TwoPairs) { Offset += IsLittleEndian ? -16 : 16; addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) .addReg(Reg + 2, getKillRegState(IsKilled)), FrameIndex, Offset); Offset += IsLittleEndian ? -16 : 16; addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV)) .addReg(Reg + 3, getKillRegState(IsKilled)), FrameIndex, Offset); } } /// Remove any STXVP[X] instructions and split them out into a pair of /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on /// the command line. void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex) const { assert(DisableAutoPairedVecSt && "Expecting to do this only if paired vector stores are disabled."); MachineInstr &MI = *II; // STXVP , MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register SrcReg = MI.getOperand(0).getReg(); bool IsLittleEndian = Subtarget.isLittleEndian(); bool IsKilled = MI.getOperand(0).isKill(); spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled, /* TwoPairs */ false); // Discard the original instruction. MBB.erase(II); } static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) { #ifdef NDEBUG return; #else if (ReportAccMoves) { dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill") << ":\n"; MBB.dump(); } #endif } /// lowerACCSpilling - Generate the code for spilling the accumulator register. /// Similarly to other spills/reloads that use pseudo-ops, we do not actually /// eliminate the FrameIndex here nor compute the stack offset. We simply /// create a real instruction with an FI and rely on eliminateFrameIndex to /// handle the FI elimination. void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex) const { MachineInstr &MI = *II; // SPILL_ACC , MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register SrcReg = MI.getOperand(0).getReg(); bool IsKilled = MI.getOperand(0).isKill(); bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg); Register Reg = PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; bool IsLittleEndian = Subtarget.isLittleEndian(); emitAccSpillRestoreInfo(MBB, IsPrimed, false); // De-prime the register being spilled, create two stores for the pair // subregisters accounting for endianness and then re-prime the register if // it isn't killed. This uses the Offset parameter to addFrameReference() to // adjust the offset of the store that is within the 64-byte stack slot. if (IsPrimed) BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg); if (DisableAutoPairedVecSt) spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled, /* TwoPairs */ true); else { addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) .addReg(Reg, getKillRegState(IsKilled)), FrameIndex, IsLittleEndian ? 32 : 0); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) .addReg(Reg + 1, getKillRegState(IsKilled)), FrameIndex, IsLittleEndian ? 0 : 32); } if (IsPrimed && !IsKilled) BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg); // Discard the pseudo instruction. MBB.erase(II); } /// lowerACCRestore - Generate the code to restore the accumulator register. void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II, unsigned FrameIndex) const { MachineInstr &MI = *II; // = RESTORE_ACC MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register DestReg = MI.getOperand(0).getReg(); assert(MI.definesRegister(DestReg) && "RESTORE_ACC does not define its destination"); bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg); Register Reg = PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2; bool IsLittleEndian = Subtarget.isLittleEndian(); emitAccSpillRestoreInfo(MBB, IsPrimed, true); // Create two loads for the pair subregisters accounting for endianness and // then prime the accumulator register being restored. addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg), FrameIndex, IsLittleEndian ? 32 : 0); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1), FrameIndex, IsLittleEndian ? 0 : 32); if (IsPrimed) BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg); // Discard the pseudo instruction. MBB.erase(II); } /// lowerWACCSpilling - Generate the code for spilling the wide accumulator /// register. void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex) const { MachineInstr &MI = *II; // SPILL_WACC , MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); bool IsLittleEndian = Subtarget.isLittleEndian(); emitWAccSpillRestoreInfo(MBB, false); const TargetRegisterClass *RC = &PPC::VSRpRCRegClass; Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC); Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC); Register SrcReg = MI.getOperand(0).getReg(); BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0) .addDef(VSRpReg1) .addReg(SrcReg); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) .addReg(VSRpReg0, RegState::Kill), FrameIndex, IsLittleEndian ? 32 : 0); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP)) .addReg(VSRpReg1, RegState::Kill), FrameIndex, IsLittleEndian ? 0 : 32); // Discard the pseudo instruction. MBB.erase(II); } /// lowerWACCRestore - Generate the code to restore the wide accumulator /// register. void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II, unsigned FrameIndex) const { MachineInstr &MI = *II; // = RESTORE_WACC MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); bool IsLittleEndian = Subtarget.isLittleEndian(); emitWAccSpillRestoreInfo(MBB, true); const TargetRegisterClass *RC = &PPC::VSRpRCRegClass; Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC); Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC); Register DestReg = MI.getOperand(0).getReg(); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0), FrameIndex, IsLittleEndian ? 32 : 0); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1), FrameIndex, IsLittleEndian ? 0 : 32); // Kill VSRpReg0, VSRpReg1 (killedRegState::Killed) BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg) .addReg(VSRpReg0, RegState::Kill) .addReg(VSRpReg1, RegState::Kill); // Discard the pseudo instruction. MBB.erase(II); } /// lowerQuadwordSpilling - Generate code to spill paired general register. void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex) const { MachineInstr &MI = *II; MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register SrcReg = MI.getOperand(0).getReg(); bool IsKilled = MI.getOperand(0).isKill(); Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2; bool IsLittleEndian = Subtarget.isLittleEndian(); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) .addReg(Reg, getKillRegState(IsKilled)), FrameIndex, IsLittleEndian ? 8 : 0); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD)) .addReg(Reg + 1, getKillRegState(IsKilled)), FrameIndex, IsLittleEndian ? 0 : 8); // Discard the pseudo instruction. MBB.erase(II); } /// lowerQuadwordRestore - Generate code to restore paired general register. void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II, unsigned FrameIndex) const { MachineInstr &MI = *II; MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register DestReg = MI.getOperand(0).getReg(); assert(MI.definesRegister(DestReg) && "RESTORE_QUADWORD does not define its destination"); Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2; bool IsLittleEndian = Subtarget.isLittleEndian(); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex, IsLittleEndian ? 8 : 0); addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex, IsLittleEndian ? 0 : 8); // Discard the pseudo instruction. MBB.erase(II); } bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, Register Reg, int &FrameIdx) const { // For the nonvolatile condition registers (CR2, CR3, CR4) return true to // prevent allocating an additional frame slot. // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8, // for 32-bit AIX the CR save area is in the linkage area at SP+4. // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos // valid. // For 32-bit ELF, we have previously created the stack slot if needed, so // return its FrameIdx. if (PPC::CR2 <= Reg && Reg <= PPC::CR4) { FrameIdx = MF.getInfo()->getCRSpillFrameIndex(); return true; } return false; } // If the offset must be a multiple of some value, return what that value is. static unsigned offsetMinAlignForOpcode(unsigned OpC) { switch (OpC) { default: return 1; case PPC::LWA: case PPC::LWA_32: case PPC::LD: case PPC::LDU: case PPC::STD: case PPC::STDU: case PPC::DFLOADf32: case PPC::DFLOADf64: case PPC::DFSTOREf32: case PPC::DFSTOREf64: case PPC::LXSD: case PPC::LXSSP: case PPC::STXSD: case PPC::STXSSP: case PPC::STQ: return 4; case PPC::EVLDD: case PPC::EVSTDD: return 8; case PPC::LXV: case PPC::STXV: case PPC::LQ: case PPC::LXVP: case PPC::STXVP: return 16; } } // If the offset must be a multiple of some value, return what that value is. static unsigned offsetMinAlign(const MachineInstr &MI) { unsigned OpC = MI.getOpcode(); return offsetMinAlignForOpcode(OpC); } // Return the OffsetOperandNo given the FIOperandNum (and the instruction). static unsigned getOffsetONFromFION(const MachineInstr &MI, unsigned FIOperandNum) { // Take into account whether it's an add or mem instruction unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2; if (MI.isInlineAsm()) OffsetOperandNo = FIOperandNum - 1; else if (MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT) OffsetOperandNo = FIOperandNum + 1; return OffsetOperandNo; } bool PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected"); // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); // Get the instruction info. const PPCInstrInfo &TII = *Subtarget.getInstrInfo(); // Get the frame info. MachineFrameInfo &MFI = MF.getFrameInfo(); DebugLoc dl = MI.getDebugLoc(); unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); // Get the frame index. int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); // Get the frame pointer save index. Users of this index are primarily // DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int FPSI = FI->getFramePointerSaveIndex(); // Get the instruction opcode. unsigned OpC = MI.getOpcode(); if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) { lowerDynamicAreaOffset(II); // lowerDynamicAreaOffset erases II return true; } // Special case for dynamic alloca. if (FPSI && FrameIndex == FPSI && (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { lowerDynamicAlloc(II); // lowerDynamicAlloc erases II return true; } if (FPSI && FrameIndex == FPSI && (OpC == PPC::PREPARE_PROBED_ALLOCA_64 || OpC == PPC::PREPARE_PROBED_ALLOCA_32 || OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 || OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) { lowerPrepareProbedAlloca(II); // lowerPrepareProbedAlloca erases II return true; } // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc. if (OpC == PPC::SPILL_CR) { lowerCRSpilling(II, FrameIndex); return true; } else if (OpC == PPC::RESTORE_CR) { lowerCRRestore(II, FrameIndex); return true; } else if (OpC == PPC::SPILL_CRBIT) { lowerCRBitSpilling(II, FrameIndex); return true; } else if (OpC == PPC::RESTORE_CRBIT) { lowerCRBitRestore(II, FrameIndex); return true; } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) { lowerACCSpilling(II, FrameIndex); return true; } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) { lowerACCRestore(II, FrameIndex); return true; } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) { lowerOctWordSpilling(II, FrameIndex); return true; } else if (OpC == PPC::SPILL_WACC) { lowerWACCSpilling(II, FrameIndex); return true; } else if (OpC == PPC::RESTORE_WACC) { lowerWACCRestore(II, FrameIndex); return true; } else if (OpC == PPC::SPILL_QUADWORD) { lowerQuadwordSpilling(II, FrameIndex); return true; } else if (OpC == PPC::RESTORE_QUADWORD) { lowerQuadwordRestore(II, FrameIndex); return true; } // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). MI.getOperand(FIOperandNum).ChangeToRegister( FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false); // If the instruction is not present in ImmToIdxMap, then it has no immediate // form (and must be r+r). bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP && OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC); // Now add the frame object offset to the offset from r1. int64_t Offset = MFI.getObjectOffset(FrameIndex); Offset += MI.getOperand(OffsetOperandNo).getImm(); // If we're not using a Frame Pointer that has been set to the value of the // SP before having the stack size subtracted from it, then add the stack size // to Offset to get the correct offset. // Naked functions have stack size 0, although getStackSize may not reflect // that because we didn't call all the pieces that compute it for naked // functions. if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) { if (!(hasBasePointer(MF) && FrameIndex < 0)) Offset += MFI.getStackSize(); } // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can // transform it to the prefixed version so we don't have to use the XForm. if ((OpC == PPC::LXVP || OpC == PPC::STXVP) && (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) && Subtarget.hasPrefixInstrs()) { unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP; MI.setDesc(TII.get(NewOpc)); OpC = NewOpc; } // If we can, encode the offset directly into the instruction. If this is a // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits // clear can be encoded. This is extremely uncommon, because normally you // only "std" to a stack slot that is at least 4-byte aligned, but it can // happen in invalid code. assert(OpC != PPC::DBG_VALUE && "This should be handled in a target-independent way"); // FIXME: This should be factored out to a separate function as prefixed // instructions add a number of opcodes for which we can use 34-bit imm. bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ? isUInt<8>(Offset) : isInt<16>(Offset); if (TII.isPrefixed(MI.getOpcode())) OffsetFitsMnemonic = isInt<34>(Offset); if (!noImmForm && ((OffsetFitsMnemonic && ((Offset % offsetMinAlign(MI)) == 0)) || OpC == TargetOpcode::STACKMAP || OpC == TargetOpcode::PATCHPOINT)) { MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); return false; } // The offset doesn't fit into a single register, scavenge one to build the // offset in. bool is64Bit = TM.isPPC64(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC; unsigned NewOpcode = 0u; bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() && RS->getRegsAvailable(&PPC::VSFRCRegClass).any(); Register SRegHi, SReg, VSReg; // The register scavenger is unable to get a GPR but can get a VSR. We // need to stash a GPR into a VSR so that we can free one up. if (ScavengingFailed && Subtarget.hasDirectMove()) { // Pick a volatile register and if we are spilling/restoring that // particular one, pick the next one. SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4; if (MI.getOperand(0).getReg() == SReg) SRegHi = SReg = SReg + 1; VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass); BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg) .addReg(SReg); } else { SRegHi = MF.getRegInfo().createVirtualRegister(RC); SReg = MF.getRegInfo().createVirtualRegister(RC); } // Insert a set of rA with the full offset value before the ld, st, or add if (isInt<16>(Offset)) BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg) .addImm(Offset); else if (isInt<32>(Offset)) { BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi) .addImm(Offset >> 16); BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg) .addReg(SRegHi, RegState::Kill) .addImm(Offset); } else { assert(is64Bit && "Huge stack is only supported on PPC64"); TII.materializeImmPostRA(MBB, II, dl, SReg, Offset); } // Convert into indexed form of the instruction: // // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 unsigned OperandBase; if (noImmForm) OperandBase = 1; else if (OpC != TargetOpcode::INLINEASM && OpC != TargetOpcode::INLINEASM_BR) { assert(ImmToIdxMap.count(OpC) && "No indexed form of load or store available!"); NewOpcode = ImmToIdxMap.find(OpC)->second; MI.setDesc(TII.get(NewOpcode)); OperandBase = 1; } else { OperandBase = OffsetOperandNo; } Register StackReg = MI.getOperand(FIOperandNum).getReg(); MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true); // If we stashed a value from a GPR into a VSR, we need to get it back after // spilling the register. if (ScavengingFailed && Subtarget.hasDirectMove()) BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg) .addReg(VSReg); // Since these are not real X-Form instructions, we must // add the registers and access 0(NewReg) rather than // emitting the X-Form pseudo. if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) { assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode"); Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg) .addReg(SReg, RegState::Kill) .addReg(StackReg); MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ)); MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false); MI.getOperand(OperandBase).ChangeToImmediate(0); } return false; } Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const { const PPCFrameLowering *TFI = getFrameLowering(MF); if (!TM.isPPC64()) return TFI->hasFP(MF) ? PPC::R31 : PPC::R1; else return TFI->hasFP(MF) ? PPC::X31 : PPC::X1; } Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const { const PPCSubtarget &Subtarget = MF.getSubtarget(); if (!hasBasePointer(MF)) return getFrameRegister(MF); if (TM.isPPC64()) return PPC::X30; if (Subtarget.isSVR4ABI() && TM.isPositionIndependent()) return PPC::R29; return PPC::R30; } bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const { if (!EnableBasePointer) return false; if (AlwaysBasePointer) return true; // If we need to realign the stack, then the stack pointer can no longer // serve as an offset into the caller's stack space. As a result, we need a // base pointer. return hasStackRealignment(MF); } /// Returns true if the instruction's frame index /// reference would be better served by a base register other than FP /// or SP. Used by LocalStackFrameAllocation to determine which frame index /// references it should create new base registers for. bool PPCRegisterInfo:: needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { assert(Offset < 0 && "Local offset must be negative"); // It's the load/store FI references that cause issues, as it can be difficult // to materialize the offset if it won't fit in the literal field. Estimate // based on the size of the local frame and some conservative assumptions // about the rest of the stack frame (note, this is pre-regalloc, so // we don't know everything for certain yet) whether this offset is likely // to be out of range of the immediate. Return true if so. // We only generate virtual base registers for loads and stores that have // an r+i form. Return false for everything else. unsigned OpC = MI->getOpcode(); if (!ImmToIdxMap.count(OpC)) return false; // Don't generate a new virtual base register just to add zero to it. if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) && MI->getOperand(2).getImm() == 0) return false; MachineBasicBlock &MBB = *MI->getParent(); MachineFunction &MF = *MBB.getParent(); const PPCFrameLowering *TFI = getFrameLowering(MF); unsigned StackEst = TFI->determineFrameLayout(MF, true); // If we likely don't need a stack frame, then we probably don't need a // virtual base register either. if (!StackEst) return false; // Estimate an offset from the stack pointer. // The incoming offset is relating to the SP at the start of the function, // but when we access the local it'll be relative to the SP after local // allocation, so adjust our SP-relative offset by that allocation size. Offset += StackEst; // The frame pointer will point to the end of the stack, so estimate the // offset as the difference between the object offset and the FP location. return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset); } /// Insert defining instruction(s) for BaseReg to /// be a pointer to FrameIdx at the beginning of the basic block. Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB, int FrameIdx, int64_t Offset) const { unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI; MachineBasicBlock::iterator Ins = MBB->begin(); DebugLoc DL; // Defaults to "unknown" if (Ins != MBB->end()) DL = Ins->getDebugLoc(); const MachineFunction &MF = *MBB->getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); const MCInstrDesc &MCID = TII.get(ADDriOpc); MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); const TargetRegisterClass *RC = getPointerRegClass(MF); Register BaseReg = MRI.createVirtualRegister(RC); MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); BuildMI(*MBB, Ins, DL, MCID, BaseReg) .addFrameIndex(FrameIdx).addImm(Offset); return BaseReg; } void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const { unsigned FIOperandNum = 0; while (!MI.getOperand(FIOperandNum).isFI()) { ++FIOperandNum; assert(FIOperandNum < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false); unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum); Offset += MI.getOperand(OffsetOperandNo).getImm(); MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); const MCInstrDesc &MCID = MI.getDesc(); MachineRegisterInfo &MRI = MF.getRegInfo(); MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, FIOperandNum, this, MF)); } bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const { unsigned FIOperandNum = 0; while (!MI->getOperand(FIOperandNum).isFI()) { ++FIOperandNum; assert(FIOperandNum < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!"); } unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum); Offset += MI->getOperand(OffsetOperandNo).getImm(); return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm MI->getOpcode() == TargetOpcode::STACKMAP || MI->getOpcode() == TargetOpcode::PATCHPOINT || (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0); }