//===-- PPCInstr64Bit.td - The PowerPC 64-bit Support ------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the PowerPC 64-bit instructions. These patterns are used // both when in ppc64 mode and when in "use 64-bit extensions in 32-bit" mode. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // 64-bit operands. // def s16imm64 : Operand { let PrintMethod = "printS16ImmOperand"; let EncoderMethod = "getImm16Encoding"; let ParserMatchClass = PPCS16ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<16>"; let OperandType = "OPERAND_IMMEDIATE"; } def u16imm64 : Operand { let PrintMethod = "printU16ImmOperand"; let EncoderMethod = "getImm16Encoding"; let ParserMatchClass = PPCU16ImmAsmOperand; let DecoderMethod = "decodeUImmOperand<16>"; let OperandType = "OPERAND_IMMEDIATE"; } def s17imm64 : Operand { // This operand type is used for addis/lis to allow the assembler parser // to accept immediates in the range -65536..65535 for compatibility with // the GNU assembler. The operand is treated as 16-bit otherwise. let PrintMethod = "printS16ImmOperand"; let EncoderMethod = "getImm16Encoding"; let ParserMatchClass = PPCS17ImmAsmOperand; let DecoderMethod = "decodeSImmOperand<16>"; let OperandType = "OPERAND_IMMEDIATE"; } def tocentry : Operand { let MIOperandInfo = (ops i64imm:$imm); } def tlsreg : Operand { let EncoderMethod = "getTLSRegEncoding"; let ParserMatchClass = PPCTLSRegOperand; } def tlsgd : Operand {} def tlscall : Operand { let PrintMethod = "printTLSCall"; let MIOperandInfo = (ops calltarget:$func, tlsgd:$sym); let EncoderMethod = "getTLSCallEncoding"; } //===----------------------------------------------------------------------===// // 64-bit transformation functions. // def SHL64 : SDNodeXFormgetZExtValue(), SDLoc(N)); }]>; def SRL64 : SDNodeXFormgetZExtValue() ? getI32Imm(64 - N->getZExtValue(), SDLoc(N)) : getI32Imm(0, SDLoc(N)); }]>; //===----------------------------------------------------------------------===// // Calls. // let Interpretation64Bit = 1, isCodeGenOnly = 1 in { let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, hasSideEffects = 0 in { let isReturn = 1, isPredicable = 1, Uses = [LR8, RM] in def BLR8 : XLForm_2_ext<19, 16, 20, 0, 0, (outs), (ins), "blr", IIC_BrB, [(PPCretglue)]>, Requires<[In64BitMode]>; let isBranch = 1, isIndirectBranch = 1, Uses = [CTR8] in { let isPredicable = 1 in def BCTR8 : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB, []>, Requires<[In64BitMode]>; def BCCCTR8 : XLForm_2_br<19, 528, 0, (outs), (ins (pred $BIBO, $CR):$cond), "b${cond:cc}ctr${cond:pm} ${cond:reg}", IIC_BrB, []>, Requires<[In64BitMode]>; def BCCTR8 : XLForm_2_br2<19, 528, 12, 0, (outs), (ins crbitrc:$BI), "bcctr 12, $BI, 0", IIC_BrB, []>, Requires<[In64BitMode]>; def BCCTR8n : XLForm_2_br2<19, 528, 4, 0, (outs), (ins crbitrc:$BI), "bcctr 4, $BI, 0", IIC_BrB, []>, Requires<[In64BitMode]>; } } let Defs = [LR8] in def MovePCtoLR8 : PPCEmitTimePseudo<(outs), (ins), "#MovePCtoLR8", []>, PPC970_Unit_BRU; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, hasSideEffects = 0 in { let Defs = [CTR8], Uses = [CTR8] in { def BDZ8 : BForm_1<16, 18, 0, 0, (outs), (ins condbrtarget:$BD), "bdz $BD">; def BDNZ8 : BForm_1<16, 16, 0, 0, (outs), (ins condbrtarget:$BD), "bdnz $BD">; } let isReturn = 1, Defs = [CTR8], Uses = [CTR8, LR8, RM] in { def BDZLR8 : XLForm_2_ext<19, 16, 18, 0, 0, (outs), (ins), "bdzlr", IIC_BrB, []>; def BDNZLR8 : XLForm_2_ext<19, 16, 16, 0, 0, (outs), (ins), "bdnzlr", IIC_BrB, []>; } } let isCall = 1, PPC970_Unit = 7, Defs = [LR8], hasSideEffects = 0 in { // Convenient aliases for call instructions let Uses = [RM] in { def BL8 : IForm<18, 0, 1, (outs), (ins calltarget:$LI), "bl $LI", IIC_BrB, []>; // See Pat patterns below. def BL8_TLS : IForm<18, 0, 1, (outs), (ins tlscall:$LI), "bl $LI", IIC_BrB, []>; def BLA8 : IForm<18, 1, 1, (outs), (ins abscalltarget:$LI), "bla $LI", IIC_BrB, [(PPCcall (i64 imm:$LI))]>; } let Uses = [RM], isCodeGenOnly = 1 in { def BL8_NOP : IForm_and_DForm_4_zero<18, 0, 1, 24, (outs), (ins calltarget:$LI), "bl $LI\n\tnop", IIC_BrB, []>; def BL8_NOP_TLS : IForm_and_DForm_4_zero<18, 0, 1, 24, (outs), (ins tlscall:$LI), "bl $LI\n\tnop", IIC_BrB, []>; def BLA8_NOP : IForm_and_DForm_4_zero<18, 1, 1, 24, (outs), (ins abscalltarget:$LI), "bla $LI\n\tnop", IIC_BrB, [(PPCcall_nop (i64 imm:$LI))]>; let Predicates = [PCRelativeMemops] in { // BL8_NOTOC means that the caller does not use the TOC pointer and if // it does use R2 then it is just a caller saved register. Therefore it is // safe to emit only the bl and not the nop for this instruction. The // linker will not try to restore R2 after the call. def BL8_NOTOC : IForm<18, 0, 1, (outs), (ins calltarget:$LI), "bl $LI", IIC_BrB, []>; def BL8_NOTOC_TLS : IForm<18, 0, 1, (outs), (ins tlscall:$LI), "bl $LI", IIC_BrB, []>; } } let Uses = [CTR8, RM] in { let isPredicable = 1 in def BCTRL8 : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins), "bctrl", IIC_BrB, [(PPCbctrl)]>, Requires<[In64BitMode]>; let isCodeGenOnly = 1 in { def BCCCTRL8 : XLForm_2_br<19, 528, 1, (outs), (ins (pred $BIBO, $CR):$cond), "b${cond:cc}ctrl${cond:pm} ${cond:reg}", IIC_BrB, []>, Requires<[In64BitMode]>; def BCCTRL8 : XLForm_2_br2<19, 528, 12, 1, (outs), (ins crbitrc:$BI), "bcctrl 12, $BI, 0", IIC_BrB, []>, Requires<[In64BitMode]>; def BCCTRL8n : XLForm_2_br2<19, 528, 4, 1, (outs), (ins crbitrc:$BI), "bcctrl 4, $BI, 0", IIC_BrB, []>, Requires<[In64BitMode]>; } } } let isCall = 1, PPC970_Unit = 7, Defs = [LR8, RM], hasSideEffects = 0, isCodeGenOnly = 1, Uses = [RM] in { // Convenient aliases for call instructions def BL8_RM : IForm<18, 0, 1, (outs), (ins calltarget:$LI), "bl $LI", IIC_BrB, []>; // See Pat patterns below. def BLA8_RM : IForm<18, 1, 1, (outs), (ins abscalltarget:$LI), "bla $LI", IIC_BrB, [(PPCcall_rm (i64 imm:$LI))]>; def BL8_NOP_RM : IForm_and_DForm_4_zero<18, 0, 1, 24, (outs), (ins calltarget:$LI), "bl $LI\n\tnop", IIC_BrB, []>; def BLA8_NOP_RM : IForm_and_DForm_4_zero<18, 1, 1, 24, (outs), (ins abscalltarget:$LI), "bla $LI\n\tnop", IIC_BrB, [(PPCcall_nop_rm (i64 imm:$LI))]>; let Predicates = [PCRelativeMemops] in { // BL8_NOTOC means that the caller does not use the TOC pointer and if // it does use R2 then it is just a caller saved register. Therefore it is // safe to emit only the bl and not the nop for this instruction. The // linker will not try to restore R2 after the call. def BL8_NOTOC_RM : IForm<18, 0, 1, (outs), (ins calltarget:$LI), "bl $LI", IIC_BrB, []>; } let Uses = [CTR8, RM] in { let isPredicable = 1 in def BCTRL8_RM : XLForm_2_ext<19, 528, 20, 0, 1, (outs), (ins), "bctrl", IIC_BrB, [(PPCbctrl_rm)]>, Requires<[In64BitMode]>; } } let isCall = 1, PPC970_Unit = 7, isCodeGenOnly = 1, Defs = [LR8, X2], Uses = [CTR8, RM], RST = 2 in { def BCTRL8_LDinto_toc : XLForm_2_ext_and_DSForm_1<19, 528, 20, 0, 1, 58, 0, (outs), (ins (memrix $D, $RA):$src), "bctrl\n\tld 2, $src", IIC_BrB, [(PPCbctrl_load_toc iaddrX4:$src)]>, Requires<[In64BitMode]>; } let isCall = 1, PPC970_Unit = 7, isCodeGenOnly = 1, Defs = [LR8, X2, RM], Uses = [CTR8, RM], RST = 2 in { def BCTRL8_LDinto_toc_RM : XLForm_2_ext_and_DSForm_1<19, 528, 20, 0, 1, 58, 0, (outs), (ins (memrix $D, $RA):$src), "bctrl\n\tld 2, $src", IIC_BrB, [(PPCbctrl_load_toc_rm iaddrX4:$src)]>, Requires<[In64BitMode]>; } } // Interpretation64Bit // FIXME: Duplicating this for the asm parser should be unnecessary, but the // previous definition must be marked as CodeGen only to prevent decoding // conflicts. let Interpretation64Bit = 1, isAsmParserOnly = 1, hasSideEffects = 0 in let isCall = 1, PPC970_Unit = 7, Defs = [LR8], Uses = [RM] in def BL8_TLS_ : IForm<18, 0, 1, (outs), (ins tlscall:$LI), "bl $LI", IIC_BrB, []>; // Calls def : Pat<(PPCcall (i64 tglobaladdr:$dst)), (BL8 tglobaladdr:$dst)>; def : Pat<(PPCcall_nop (i64 tglobaladdr:$dst)), (BL8_NOP tglobaladdr:$dst)>; def : Pat<(PPCcall (i64 texternalsym:$dst)), (BL8 texternalsym:$dst)>; def : Pat<(PPCcall_nop (i64 texternalsym:$dst)), (BL8_NOP texternalsym:$dst)>; def : Pat<(PPCcall_notoc (i64 tglobaladdr:$dst)), (BL8_NOTOC tglobaladdr:$dst)>; def : Pat<(PPCcall_notoc (i64 texternalsym:$dst)), (BL8_NOTOC texternalsym:$dst)>; def : Pat<(PPCcall_rm (i64 tglobaladdr:$dst)), (BL8_RM tglobaladdr:$dst)>; def : Pat<(PPCcall_nop_rm (i64 tglobaladdr:$dst)), (BL8_NOP_RM tglobaladdr:$dst)>; def : Pat<(PPCcall_rm (i64 texternalsym:$dst)), (BL8_RM texternalsym:$dst)>; def : Pat<(PPCcall_nop_rm (i64 texternalsym:$dst)), (BL8_NOP_RM texternalsym:$dst)>; def : Pat<(PPCcall_notoc_rm (i64 tglobaladdr:$dst)), (BL8_NOTOC_RM tglobaladdr:$dst)>; def : Pat<(PPCcall_notoc_rm (i64 texternalsym:$dst)), (BL8_NOTOC_RM texternalsym:$dst)>; // Calls for AIX def : Pat<(PPCcall (i64 mcsym:$dst)), (BL8 mcsym:$dst)>; def : Pat<(PPCcall_nop (i64 mcsym:$dst)), (BL8_NOP mcsym:$dst)>; def : Pat<(PPCcall_rm (i64 mcsym:$dst)), (BL8_RM mcsym:$dst)>; def : Pat<(PPCcall_nop_rm (i64 mcsym:$dst)), (BL8_NOP_RM mcsym:$dst)>; // Atomic operations // FIXME: some of these might be used with constant operands. This will result // in constant materialization instructions that may be redundant. We currently // clean this up in PPCMIPeephole with calls to // PPCInstrInfo::convertToImmediateForm() but we should probably not emit them // in the first place. let Defs = [CR0] in { def ATOMIC_LOAD_ADD_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_ADD_I64", [(set i64:$dst, (atomic_load_add_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_SUB_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_SUB_I64", [(set i64:$dst, (atomic_load_sub_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_OR_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_OR_I64", [(set i64:$dst, (atomic_load_or_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_XOR_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_XOR_I64", [(set i64:$dst, (atomic_load_xor_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_AND_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_AND_i64", [(set i64:$dst, (atomic_load_and_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_NAND_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_NAND_I64", [(set i64:$dst, (atomic_load_nand_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_MIN_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_MIN_I64", [(set i64:$dst, (atomic_load_min_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_MAX_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_MAX_I64", [(set i64:$dst, (atomic_load_max_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_UMIN_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_UMIN_I64", [(set i64:$dst, (atomic_load_umin_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_LOAD_UMAX_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$incr), "#ATOMIC_LOAD_UMAX_I64", [(set i64:$dst, (atomic_load_umax_i64 ForceXForm:$ptr, i64:$incr))]>; def ATOMIC_CMP_SWAP_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$old, g8rc:$new), "#ATOMIC_CMP_SWAP_I64", [(set i64:$dst, (atomic_cmp_swap_i64 ForceXForm:$ptr, i64:$old, i64:$new))]>; def ATOMIC_SWAP_I64 : PPCCustomInserterPseudo< (outs g8rc:$dst), (ins memrr:$ptr, g8rc:$new), "#ATOMIC_SWAP_I64", [(set i64:$dst, (atomic_swap_i64 ForceXForm:$ptr, i64:$new))]>; } // Instructions to support atomic operations let mayLoad = 1, hasSideEffects = 0 in { def LDARX : XForm_1_memOp<31, 84, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "ldarx $RST, $addr", IIC_LdStLDARX, []>; // TODO: Add scheduling info. let hasNoSchedulingInfo = 1 in def LQARX : XForm_1_memOp<31, 276, (outs g8prc:$RST), (ins (memrr $RA, $RB):$addr), "lqarx $RST, $addr", IIC_LdStLQARX, []>, isPPC64; // Instruction to support lock versions of atomics // (EH=1 - see Power ISA 2.07 Book II 4.4.2) def LDARXL : XForm_1<31, 84, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "ldarx $RST, $addr, 1", IIC_LdStLDARX, []>, isRecordForm; // TODO: Add scheduling info. let hasNoSchedulingInfo = 1 in // FIXME: We have to seek a way to remove isRecordForm since // LQARXL is not really altering CR0. def LQARXL : XForm_1<31, 276, (outs g8prc:$RST), (ins (memrr $RA, $RB):$addr), "lqarx $RST, $addr, 1", IIC_LdStLQARX, []>, isPPC64, isRecordForm; let hasExtraDefRegAllocReq = 1 in def LDAT : X_RD5_RS5_IM5<31, 614, (outs g8rc:$RST), (ins g8rc:$RA, u5imm:$RB), "ldat $RST, $RA, $RB", IIC_LdStLoad>, isPPC64, Requires<[IsISA3_0]>; } let Defs = [CR0], mayStore = 1, mayLoad = 0, hasSideEffects = 0 in { def STDCX : XForm_1_memOp<31, 214, (outs), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stdcx. $RST, $addr", IIC_LdStSTDCX, []>, isRecordForm; // TODO: Add scheduling info. let hasNoSchedulingInfo = 1 in def STQCX : XForm_1_memOp<31, 182, (outs), (ins g8prc:$RST, (memrr $RA, $RB):$addr), "stqcx. $RST, $addr", IIC_LdStSTQCX, []>, isPPC64, isRecordForm; } def SPLIT_QUADWORD : PPCCustomInserterPseudo<(outs g8rc:$lo, g8rc:$hi), (ins g8prc:$src), "#SPLIT_QUADWORD", []>; class AtomicRMW128 : PPCPostRAExpPseudo<(outs g8prc:$RTp, g8prc:$scratch), (ins memrr:$ptr, g8rc:$incr_lo, g8rc:$incr_hi), asmstr, []>; // We have to keep values in MI's uses during LL/SC looping as they are, // so set both $RTp and $scratch earlyclobber. let mayStore = 1, mayLoad = 1, Defs = [CR0], Constraints = "@earlyclobber $scratch,@earlyclobber $RTp" in { // Atomic pseudo instructions expanded post-ra. def ATOMIC_SWAP_I128 : AtomicRMW128<"#ATOMIC_SWAP_I128">; def ATOMIC_LOAD_ADD_I128 : AtomicRMW128<"#ATOMIC_LOAD_ADD_I128">; def ATOMIC_LOAD_SUB_I128 : AtomicRMW128<"#ATOMIC_LOAD_SUB_I128">; def ATOMIC_LOAD_AND_I128 : AtomicRMW128<"#ATOMIC_LOAD_AND_I128">; def ATOMIC_LOAD_XOR_I128 : AtomicRMW128<"#ATOMIC_LOAD_XOR_I128">; def ATOMIC_LOAD_OR_I128 : AtomicRMW128<"#ATOMIC_LOAD_OR_I128">; def ATOMIC_LOAD_NAND_I128 : AtomicRMW128<"#ATOMIC_LOAD_NAND_I128">; def ATOMIC_CMP_SWAP_I128 : PPCPostRAExpPseudo< (outs g8prc:$RTp, g8prc:$scratch), (ins memrr:$ptr, g8rc:$cmp_lo, g8rc:$cmp_hi, g8rc:$new_lo, g8rc:$new_hi), "#ATOMIC_CMP_SWAP_I128", []>; } class PatAtomicRMWI128 : Pat<(OpNode ForceXForm:$ptr, i64:$incr_lo, i64:$incr_hi), (SPLIT_QUADWORD (Inst memrr:$ptr, g8rc:$incr_lo, g8rc:$incr_hi))>; def : PatAtomicRMWI128; def : PatAtomicRMWI128; def : PatAtomicRMWI128; def : PatAtomicRMWI128; def : PatAtomicRMWI128; def : PatAtomicRMWI128; def : PatAtomicRMWI128; def : Pat<(int_ppc_cmpxchg_i128 ForceXForm:$ptr, i64:$cmp_lo, i64:$cmp_hi, i64:$new_lo, i64:$new_hi), (SPLIT_QUADWORD (ATOMIC_CMP_SWAP_I128 memrr:$ptr, g8rc:$cmp_lo, g8rc:$cmp_hi, g8rc:$new_lo, g8rc:$new_hi))>; let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in def STDAT : X_RD5_RS5_IM5<31, 742, (outs), (ins g8rc:$RST, g8rc:$RA, u5imm:$RB), "stdat $RST, $RA, $RB", IIC_LdStStore>, isPPC64, Requires<[IsISA3_0]>; let Interpretation64Bit = 1, isCodeGenOnly = 1 in { let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNdi8 :PPCEmitTimePseudo< (outs), (ins calltarget:$dst, i32imm:$offset), "#TC_RETURNd8 $dst $offset", []>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNai8 :PPCEmitTimePseudo<(outs), (ins abscalltarget:$func, i32imm:$offset), "#TC_RETURNa8 $func $offset", [(PPCtc_return (i64 imm:$func), imm:$offset)]>; let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [RM] in def TCRETURNri8 : PPCEmitTimePseudo<(outs), (ins CTRRC8:$dst, i32imm:$offset), "#TC_RETURNr8 $dst $offset", []>; let hasSideEffects = 0 in { let isTerminator = 1, isBarrier = 1, PPC970_Unit = 7, isBranch = 1, isIndirectBranch = 1, isCall = 1, isReturn = 1, Uses = [CTR8, RM] in def TAILBCTR8 : XLForm_2_ext<19, 528, 20, 0, 0, (outs), (ins), "bctr", IIC_BrB, []>, Requires<[In64BitMode]>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILB8 : IForm<18, 0, 0, (outs), (ins calltarget:$LI), "b $LI", IIC_BrB, []>; let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, PPC970_Unit = 7, isBarrier = 1, isCall = 1, isReturn = 1, Uses = [RM] in def TAILBA8 : IForm<18, 0, 0, (outs), (ins abscalltarget:$LI), "ba $LI", IIC_BrB, []>; } } // Interpretation64Bit def : Pat<(PPCtc_return (i64 tglobaladdr:$dst), imm:$imm), (TCRETURNdi8 tglobaladdr:$dst, imm:$imm)>; def : Pat<(PPCtc_return (i64 texternalsym:$dst), imm:$imm), (TCRETURNdi8 texternalsym:$dst, imm:$imm)>; def : Pat<(PPCtc_return CTRRC8:$dst, imm:$imm), (TCRETURNri8 CTRRC8:$dst, imm:$imm)>; // 64-bit CR instructions let Interpretation64Bit = 1, isCodeGenOnly = 1 in { let hasSideEffects = 0 in { // mtocrf's input needs to be prepared by shifting by an amount dependent // on the cr register selected. Thus, post-ra anti-dep breaking must not // later change that register assignment. let hasExtraDefRegAllocReq = 1 in { def MTOCRF8: XFXForm_5a<31, 144, (outs crbitm:$FXM), (ins g8rc:$RST), "mtocrf $FXM, $RST", IIC_BrMCRX>, PPC970_DGroup_First, PPC970_Unit_CRU; // Similarly to mtocrf, the mask for mtcrf must be prepared in a way that // is dependent on the cr fields being set. def MTCRF8 : XFXForm_5<31, 144, (outs), (ins i32imm:$FXM, g8rc:$RST), "mtcrf $FXM, $RST", IIC_BrMCRX>, PPC970_MicroCode, PPC970_Unit_CRU; } // hasExtraDefRegAllocReq = 1 // mfocrf's input needs to be prepared by shifting by an amount dependent // on the cr register selected. Thus, post-ra anti-dep breaking must not // later change that register assignment. let hasExtraSrcRegAllocReq = 1 in { def MFOCRF8: XFXForm_5a<31, 19, (outs g8rc:$RST), (ins crbitm:$FXM), "mfocrf $RST, $FXM", IIC_SprMFCRF>, PPC970_DGroup_First, PPC970_Unit_CRU; // Similarly to mfocrf, the mask for mfcrf must be prepared in a way that // is dependent on the cr fields being copied. def MFCR8 : XFXForm_3<31, 19, (outs g8rc:$RT), (ins), "mfcr $RT", IIC_SprMFCR>, PPC970_MicroCode, PPC970_Unit_CRU; } // hasExtraSrcRegAllocReq = 1 } // hasSideEffects = 0 // While longjmp is a control-flow barrier (fallthrough isn't allowed), setjmp // is not. let hasSideEffects = 1 in { let Defs = [CTR8] in def EH_SjLj_SetJmp64 : PPCCustomInserterPseudo<(outs gprc:$dst), (ins memr:$buf), "#EH_SJLJ_SETJMP64", [(set i32:$dst, (PPCeh_sjlj_setjmp addr:$buf))]>, Requires<[In64BitMode]>; } let hasSideEffects = 1, isBarrier = 1 in { let isTerminator = 1 in def EH_SjLj_LongJmp64 : PPCCustomInserterPseudo<(outs), (ins memr:$buf), "#EH_SJLJ_LONGJMP64", [(PPCeh_sjlj_longjmp addr:$buf)]>, Requires<[In64BitMode]>; } def MFSPR8 : XFXForm_1<31, 339, (outs g8rc:$RST), (ins i32imm:$SPR), "mfspr $RST, $SPR", IIC_SprMFSPR>; def MTSPR8 : XFXForm_1<31, 467, (outs), (ins i32imm:$SPR, g8rc:$RST), "mtspr $SPR, $RST", IIC_SprMTSPR>; //===----------------------------------------------------------------------===// // 64-bit SPR manipulation instrs. let Uses = [CTR8] in { def MFCTR8 : XFXForm_1_ext<31, 339, 9, (outs g8rc:$RST), (ins), "mfctr $RST", IIC_SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Pattern = [(PPCmtctr i64:$RST)], Defs = [CTR8] in { def MTCTR8 : XFXForm_1_ext<31, 467, 9, (outs), (ins g8rc:$RST), "mtctr $RST", IIC_SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } // MTCTR[8|]loop must be inside a loop-preheader, duplicating // the loop-preheader block will break this assumption. let hasSideEffects = 1, isNotDuplicable = 1, Defs = [CTR8] in { let Pattern = [(int_set_loop_iterations i64:$RST)] in def MTCTR8loop : XFXForm_1_ext<31, 467, 9, (outs), (ins g8rc:$RST), "mtctr $RST", IIC_SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let hasSideEffects = 1, hasNoSchedulingInfo = 1, isNotDuplicable = 1, Uses = [CTR8], Defs = [CTR8] in def DecreaseCTR8loop : PPCEmitTimePseudo<(outs crbitrc:$rT), (ins i64imm:$stride), "#DecreaseCTR8loop", [(set i1:$rT, (int_loop_decrement (i64 imm:$stride)))]>; let Pattern = [(set i64:$RST, readcyclecounter)] in def MFTB8 : XFXForm_1_ext<31, 339, 268, (outs g8rc:$RST), (ins), "mfspr $RST, 268", IIC_SprMFTB>, PPC970_DGroup_First, PPC970_Unit_FXU; // Note that encoding mftb using mfspr is now the preferred form, // and has been since at least ISA v2.03. The mftb instruction has // now been phased out. Using mfspr, however, is known not to work on // the POWER3. let Defs = [X1], Uses = [X1] in def DYNALLOC8 : PPCEmitTimePseudo<(outs g8rc:$result), (ins g8rc:$negsize, memri:$fpsi),"#DYNALLOC8", [(set i64:$result, (PPCdynalloc i64:$negsize, iaddr:$fpsi))]>; def DYNAREAOFFSET8 : PPCEmitTimePseudo<(outs i64imm:$result), (ins memri:$fpsi), "#DYNAREAOFFSET8", [(set i64:$result, (PPCdynareaoffset iaddr:$fpsi))]>; // Probed alloca to support stack clash protection. let Defs = [X1], Uses = [X1], hasNoSchedulingInfo = 1 in { def PROBED_ALLOCA_64 : PPCCustomInserterPseudo<(outs g8rc:$result), (ins g8rc:$negsize, memri:$fpsi), "#PROBED_ALLOCA_64", [(set i64:$result, (PPCprobedalloca i64:$negsize, iaddr:$fpsi))]>; def PREPARE_PROBED_ALLOCA_64 : PPCEmitTimePseudo<(outs g8rc:$fp, g8rc:$actual_negsize), (ins g8rc:$negsize, memri:$fpsi), "#PREPARE_PROBED_ALLOCA_64", []>; def PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 : PPCEmitTimePseudo<(outs g8rc:$fp, g8rc:$actual_negsize), (ins g8rc:$negsize, memri:$fpsi), "#PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64", []>, RegConstraint<"$actual_negsize = $negsize">; def PROBED_STACKALLOC_64 : PPCEmitTimePseudo<(outs g8rc:$scratch, g8rc:$temp), (ins i64imm:$stacksize), "#PROBED_STACKALLOC_64", []>; } let hasSideEffects = 0 in { let Defs = [LR8] in { def MTLR8 : XFXForm_1_ext<31, 467, 8, (outs), (ins g8rc:$RST), "mtlr $RST", IIC_SprMTSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } let Uses = [LR8] in { def MFLR8 : XFXForm_1_ext<31, 339, 8, (outs g8rc:$RST), (ins), "mflr $RST", IIC_SprMFSPR>, PPC970_DGroup_First, PPC970_Unit_FXU; } } // Interpretation64Bit } //===----------------------------------------------------------------------===// // Fixed point instructions. // let PPC970_Unit = 1 in { // FXU Operations. let Interpretation64Bit = 1 in { let hasSideEffects = 0 in { let isCodeGenOnly = 1 in { let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { def LI8 : DForm_2_r0<14, (outs g8rc:$RST), (ins s16imm64:$D), "li $RST, $D", IIC_IntSimple, [(set i64:$RST, imm64SExt16:$D)]>, SExt32To64; def LIS8 : DForm_2_r0<15, (outs g8rc:$RST), (ins s17imm64:$D), "lis $RST, $D", IIC_IntSimple, [(set i64:$RST, imm16ShiftedSExt:$D)]>, SExt32To64; } // Logical ops. let isCommutable = 1 in { defm NAND8: XForm_6r<31, 476, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "nand", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (not (and i64:$RST, i64:$RB)))]>; defm AND8 : XForm_6r<31, 28, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "and", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (and i64:$RST, i64:$RB))]>; } // isCommutable defm ANDC8: XForm_6r<31, 60, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "andc", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (and i64:$RST, (not i64:$RB)))]>; let isCommutable = 1 in { defm OR8 : XForm_6r<31, 444, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "or", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (or i64:$RST, i64:$RB))]>; defm NOR8 : XForm_6r<31, 124, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "nor", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (not (or i64:$RST, i64:$RB)))]>; } // isCommutable defm ORC8 : XForm_6r<31, 412, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "orc", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (or i64:$RST, (not i64:$RB)))]>; let isCommutable = 1 in { defm EQV8 : XForm_6r<31, 284, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "eqv", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (not (xor i64:$RST, i64:$RB)))]>; defm XOR8 : XForm_6r<31, 316, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "xor", "$RA, $RST, $RB", IIC_IntSimple, [(set i64:$RA, (xor i64:$RST, i64:$RB))]>; } // let isCommutable = 1 // Logical ops with immediate. let Defs = [CR0] in { def ANDI8_rec : DForm_4<28, (outs g8rc:$RA), (ins g8rc:$RST, u16imm64:$D), "andi. $RA, $RST, $D", IIC_IntGeneral, [(set i64:$RA, (and i64:$RST, immZExt16:$D))]>, isRecordForm, SExt32To64, ZExt32To64; def ANDIS8_rec : DForm_4<29, (outs g8rc:$RA), (ins g8rc:$RST, u16imm64:$D), "andis. $RA, $RST, $D", IIC_IntGeneral, [(set i64:$RA, (and i64:$RST, imm16ShiftedZExt:$D))]>, isRecordForm, ZExt32To64; } def ORI8 : DForm_4<24, (outs g8rc:$RA), (ins g8rc:$RST, u16imm64:$D), "ori $RA, $RST, $D", IIC_IntSimple, [(set i64:$RA, (or i64:$RST, immZExt16:$D))]>; def ORIS8 : DForm_4<25, (outs g8rc:$RA), (ins g8rc:$RST, u16imm64:$D), "oris $RA, $RST, $D", IIC_IntSimple, [(set i64:$RA, (or i64:$RST, imm16ShiftedZExt:$D))]>; def XORI8 : DForm_4<26, (outs g8rc:$RA), (ins g8rc:$RST, u16imm64:$D), "xori $RA, $RST, $D", IIC_IntSimple, [(set i64:$RA, (xor i64:$RST, immZExt16:$D))]>; def XORIS8 : DForm_4<27, (outs g8rc:$RA), (ins g8rc:$RST, u16imm64:$D), "xoris $RA, $RST, $D", IIC_IntSimple, [(set i64:$RA, (xor i64:$RST, imm16ShiftedZExt:$D))]>; let isCommutable = 1 in defm ADD8 : XOForm_1rx<31, 266, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "add", "$RT, $RA, $RB", IIC_IntSimple, [(set i64:$RT, (add i64:$RA, i64:$RB))]>; // ADD8 has a special form: reg = ADD8(reg, sym@tls) for use by the // initial-exec thread-local storage model. We need to forbid r0 here - // while it works for add just fine, the linker can relax this to local-exec // addi, which won't work for r0. def ADD8TLS : XOForm_1<31, 266, 0, (outs g8rc:$RT), (ins g8rc_nox0:$RA, tlsreg:$RB), "add $RT, $RA, $RB", IIC_IntSimple, [(set i64:$RT, (add i64:$RA, tglobaltlsaddr:$RB))]>; let mayLoad = 1 in { def LBZXTLS : XForm_1<31, 87, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lbzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LHZXTLS : XForm_1<31, 279, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lhzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LHAXTLS : XForm_1<31, 343, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lhax $RST, $RA, $RB", IIC_LdStLoad, []>; def LWZXTLS : XForm_1<31, 23, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lwzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LWAXTLS : XForm_1<31, 341, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lwax $RST, $RA, $RB", IIC_LdStLoad, []>; def LDXTLS : XForm_1<31, 21, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "ldx $RST, $RA, $RB", IIC_LdStLD, []>, isPPC64; def LBZXTLS_32 : XForm_1<31, 87, (outs gprc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lbzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LHZXTLS_32 : XForm_1<31, 279, (outs gprc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lhzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LHAXTLS_32 : XForm_1<31, 343, (outs gprc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lhax $RST, $RA, $RB", IIC_LdStLoad, []>; def LWZXTLS_32 : XForm_1<31, 23, (outs gprc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lwzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LWAXTLS_32 : XForm_1<31, 341, (outs gprc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lwax $RST, $RA, $RB", IIC_LdStLoad, []>; } let mayLoad = 1, Predicates = [HasFPU] in { def LFSXTLS : XForm_25<31, 535, (outs f4rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lfsx $RST, $RA, $RB", IIC_LdStLFD, []>; def LFDXTLS : XForm_25<31, 599, (outs f8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lfdx $RST, $RA, $RB", IIC_LdStLFD, []>; } let mayStore = 1 in { def STBXTLS : XForm_8<31, 215, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stbx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STHXTLS : XForm_8<31, 407, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "sthx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STWXTLS : XForm_8<31, 151, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stwx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STDXTLS : XForm_8<31, 149, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stdx $RST, $RA, $RB", IIC_LdStSTD, []>, isPPC64, PPC970_DGroup_Cracked; def STBXTLS_32 : XForm_8<31, 215, (outs), (ins gprc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stbx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STHXTLS_32 : XForm_8<31, 407, (outs), (ins gprc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "sthx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STWXTLS_32 : XForm_8<31, 151, (outs), (ins gprc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stwx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; } let mayStore = 1, Predicates = [HasFPU] in { def STFSXTLS : XForm_8<31, 663, (outs), (ins f4rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stfsx $RST, $RA, $RB", IIC_LdStSTFD, []>, PPC970_DGroup_Cracked; def STFDXTLS : XForm_8<31, 727, (outs), (ins f8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stfdx $RST, $RA, $RB", IIC_LdStSTFD, []>, PPC970_DGroup_Cracked; } let isCommutable = 1 in defm ADDC8 : XOForm_1rc<31, 10, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "addc", "$RT, $RA, $RB", IIC_IntGeneral, [(set i64:$RT, (addc i64:$RA, i64:$RB))]>, PPC970_DGroup_Cracked; let Defs = [CARRY] in def ADDIC8 : DForm_2<12, (outs g8rc:$RST), (ins g8rc:$RA, s16imm64:$D), "addic $RST, $RA, $D", IIC_IntGeneral, [(set i64:$RST, (addc i64:$RA, imm64SExt16:$D))]>; def ADDI8 : DForm_2<14, (outs g8rc:$RST), (ins g8rc_nox0:$RA, s16imm64:$D), "addi $RST, $RA, $D", IIC_IntSimple, [(set i64:$RST, (add i64:$RA, imm64SExt16:$D))]>; def ADDIS8 : DForm_2<15, (outs g8rc:$RST), (ins g8rc_nox0:$RA, s17imm64:$D), "addis $RST, $RA, $D", IIC_IntSimple, [(set i64:$RST, (add i64:$RA, imm16ShiftedSExt:$D))]>; def LA8 : DForm_2<14, (outs g8rc:$RST), (ins g8rc_nox0:$RA, s16imm64:$D), "la $RST, $D($RA)", IIC_IntGeneral, [(set i64:$RST, (add i64:$RA, (PPClo tglobaladdr:$D, 0)))]>; let Defs = [CARRY] in { def SUBFIC8: DForm_2< 8, (outs g8rc:$RST), (ins g8rc:$RA, s16imm64:$D), "subfic $RST, $RA, $D", IIC_IntGeneral, [(set i64:$RST, (subc imm64SExt16:$D, i64:$RA))]>; } defm SUBFC8 : XOForm_1rc<31, 8, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "subfc", "$RT, $RA, $RB", IIC_IntGeneral, [(set i64:$RT, (subc i64:$RB, i64:$RA))]>, PPC970_DGroup_Cracked; defm SUBF8 : XOForm_1rx<31, 40, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "subf", "$RT, $RA, $RB", IIC_IntGeneral, [(set i64:$RT, (sub i64:$RB, i64:$RA))]>; defm NEG8 : XOForm_3r<31, 104, 0, (outs g8rc:$RT), (ins g8rc:$RA), "neg", "$RT, $RA", IIC_IntSimple, [(set i64:$RT, (ineg i64:$RA))]>; let Uses = [CARRY] in { let isCommutable = 1 in defm ADDE8 : XOForm_1rc<31, 138, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "adde", "$RT, $RA, $RB", IIC_IntGeneral, [(set i64:$RT, (adde i64:$RA, i64:$RB))]>; defm ADDME8 : XOForm_3rc<31, 234, 0, (outs g8rc:$RT), (ins g8rc:$RA), "addme", "$RT, $RA", IIC_IntGeneral, [(set i64:$RT, (adde i64:$RA, -1))]>; defm ADDZE8 : XOForm_3rc<31, 202, 0, (outs g8rc:$RT), (ins g8rc:$RA), "addze", "$RT, $RA", IIC_IntGeneral, [(set i64:$RT, (adde i64:$RA, 0))]>; defm SUBFE8 : XOForm_1rc<31, 136, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "subfe", "$RT, $RA, $RB", IIC_IntGeneral, [(set i64:$RT, (sube i64:$RB, i64:$RA))]>; defm SUBFME8 : XOForm_3rc<31, 232, 0, (outs g8rc:$RT), (ins g8rc:$RA), "subfme", "$RT, $RA", IIC_IntGeneral, [(set i64:$RT, (sube -1, i64:$RA))]>; defm SUBFZE8 : XOForm_3rc<31, 200, 0, (outs g8rc:$RT), (ins g8rc:$RA), "subfze", "$RT, $RA", IIC_IntGeneral, [(set i64:$RT, (sube 0, i64:$RA))]>; } } // isCodeGenOnly // FIXME: Duplicating this for the asm parser should be unnecessary, but the // previous definition must be marked as CodeGen only to prevent decoding // conflicts. let isAsmParserOnly = 1 in { def ADD8TLS_ : XOForm_1<31, 266, 0, (outs g8rc:$RT), (ins g8rc:$RA, tlsreg:$RB), "add $RT, $RA, $RB", IIC_IntSimple, []>; let mayLoad = 1 in { def LBZXTLS_ : XForm_1<31, 87, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lbzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LHZXTLS_ : XForm_1<31, 279, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lhzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LHAXTLS_ : XForm_1<31, 343, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lhax $RST, $RA, $RB", IIC_LdStLoad, []>; def LWZXTLS_ : XForm_1<31, 23, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lwzx $RST, $RA, $RB", IIC_LdStLoad, []>; def LWAXTLS_ : XForm_1<31, 341, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lwax $RST, $RA, $RB", IIC_LdStLoad, []>; def LDXTLS_ : XForm_1<31, 21, (outs g8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "ldx $RST, $RA, $RB", IIC_LdStLD, []>, isPPC64; } let mayLoad = 1, Predicates = [HasFPU] in { def LFSXTLS_ : XForm_25<31, 535, (outs f4rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lfsx $RST, $RA, $RB", IIC_LdStLFD, []>; def LFDXTLS_ : XForm_25<31, 599, (outs f8rc:$RST), (ins ptr_rc_nor0:$RA, tlsreg:$RB), "lfdx $RST, $RA, $RB", IIC_LdStLFD, []>; } let mayStore = 1 in { def STBXTLS_ : XForm_8<31, 215, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stbx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STHXTLS_ : XForm_8<31, 407, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "sthx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STWXTLS_ : XForm_8<31, 151, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stwx $RST, $RA, $RB", IIC_LdStStore, []>, PPC970_DGroup_Cracked; def STDXTLS_ : XForm_8<31, 149, (outs), (ins g8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stdx $RST, $RA, $RB", IIC_LdStSTD, []>, isPPC64, PPC970_DGroup_Cracked; } let mayStore = 1, Predicates = [HasFPU] in { def STFSXTLS_ : XForm_8<31, 663, (outs), (ins f4rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stfsx $RST, $RA, $RB", IIC_LdStSTFD, []>, PPC970_DGroup_Cracked; def STFDXTLS_ : XForm_8<31, 727, (outs), (ins f8rc:$RST, ptr_rc_nor0:$RA, tlsreg:$RB), "stfdx $RST, $RA, $RB", IIC_LdStSTFD, []>, PPC970_DGroup_Cracked; } } let isCommutable = 1 in { defm MULHD : XOForm_1r<31, 73, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "mulhd", "$RT, $RA, $RB", IIC_IntMulHW, [(set i64:$RT, (mulhs i64:$RA, i64:$RB))]>; defm MULHDU : XOForm_1r<31, 9, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "mulhdu", "$RT, $RA, $RB", IIC_IntMulHWU, [(set i64:$RT, (mulhu i64:$RA, i64:$RB))]>; } // isCommutable } } // Interpretation64Bit let isCompare = 1, hasSideEffects = 0 in { def CMPD : XForm_16_ext<31, 0, (outs crrc:$BF), (ins g8rc:$RA, g8rc:$RB), "cmpd $BF, $RA, $RB", IIC_IntCompare>, isPPC64; def CMPLD : XForm_16_ext<31, 32, (outs crrc:$BF), (ins g8rc:$RA, g8rc:$RB), "cmpld $BF, $RA, $RB", IIC_IntCompare>, isPPC64; def CMPDI : DForm_5_ext<11, (outs crrc:$BF), (ins g8rc:$RA, s16imm64:$D), "cmpdi $BF, $RA, $D", IIC_IntCompare>, isPPC64; def CMPLDI : DForm_6_ext<10, (outs crrc:$BF), (ins g8rc:$RA, u16imm64:$D), "cmpldi $BF, $RA, $D", IIC_IntCompare>, isPPC64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in def CMPRB8 : X_BF3_L1_RS5_RS5<31, 192, (outs crrc:$BF), (ins u1imm:$L, g8rc:$RA, g8rc:$RB), "cmprb $BF, $L, $RA, $RB", IIC_IntCompare, []>, Requires<[IsISA3_0]>; def CMPEQB : X_BF3_RS5_RS5<31, 224, (outs crrc:$BF), (ins g8rc:$RA, g8rc:$RB), "cmpeqb $BF, $RA, $RB", IIC_IntCompare, []>, Requires<[IsISA3_0]>; } let hasSideEffects = 0 in { defm SLD : XForm_6r<31, 27, (outs g8rc:$RA), (ins g8rc:$RST, gprc:$RB), "sld", "$RA, $RST, $RB", IIC_IntRotateD, [(set i64:$RA, (PPCshl i64:$RST, i32:$RB))]>, isPPC64; defm SRD : XForm_6r<31, 539, (outs g8rc:$RA), (ins g8rc:$RST, gprc:$RB), "srd", "$RA, $RST, $RB", IIC_IntRotateD, [(set i64:$RA, (PPCsrl i64:$RST, i32:$RB))]>, isPPC64; defm SRAD : XForm_6rc<31, 794, (outs g8rc:$RA), (ins g8rc:$RST, gprc:$RB), "srad", "$RA, $RST, $RB", IIC_IntRotateD, [(set i64:$RA, (PPCsra i64:$RST, i32:$RB))]>, isPPC64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in { defm CNTLZW8 : XForm_11r<31, 26, (outs g8rc:$RA), (ins g8rc:$RST), "cntlzw", "$RA, $RST", IIC_IntGeneral, []>, ZExt32To64, SExt32To64; defm CNTTZW8 : XForm_11r<31, 538, (outs g8rc:$RA), (ins g8rc:$RST), "cnttzw", "$RA, $RST", IIC_IntGeneral, []>, Requires<[IsISA3_0]>, ZExt32To64, SExt32To64; defm EXTSB8 : XForm_11r<31, 954, (outs g8rc:$RA), (ins g8rc:$RST), "extsb", "$RA, $RST", IIC_IntSimple, [(set i64:$RA, (sext_inreg i64:$RST, i8))]>, SExt32To64; defm EXTSH8 : XForm_11r<31, 922, (outs g8rc:$RA), (ins g8rc:$RST), "extsh", "$RA, $RST", IIC_IntSimple, [(set i64:$RA, (sext_inreg i64:$RST, i16))]>, SExt32To64; defm SLW8 : XForm_6r<31, 24, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "slw", "$RA, $RST, $RB", IIC_IntGeneral, []>, ZExt32To64; defm SRW8 : XForm_6r<31, 536, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "srw", "$RA, $RST, $RB", IIC_IntGeneral, []>, ZExt32To64; } // Interpretation64Bit // For fast-isel: let isCodeGenOnly = 1 in { def EXTSB8_32_64 : XForm_11<31, 954, (outs g8rc:$RA), (ins gprc:$RST), "extsb $RA, $RST", IIC_IntSimple, []>, isPPC64, SExt32To64; def EXTSH8_32_64 : XForm_11<31, 922, (outs g8rc:$RA), (ins gprc:$RST), "extsh $RA, $RST", IIC_IntSimple, []>, isPPC64, SExt32To64; } // isCodeGenOnly for fast-isel defm EXTSW : XForm_11r<31, 986, (outs g8rc:$RA), (ins g8rc:$RST), "extsw", "$RA, $RST", IIC_IntSimple, [(set i64:$RA, (sext_inreg i64:$RST, i32))]>, isPPC64, SExt32To64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm EXTSW_32_64 : XForm_11r<31, 986, (outs g8rc:$RA), (ins gprc:$RST), "extsw", "$RA, $RST", IIC_IntSimple, [(set i64:$RA, (sext i32:$RST))]>, isPPC64, SExt32To64; let isCodeGenOnly = 1 in def EXTSW_32 : XForm_11<31, 986, (outs gprc:$RA), (ins gprc:$RST), "extsw $RA, $RST", IIC_IntSimple, []>, isPPC64; defm SRADI : XSForm_1rc<31, 413, (outs g8rc:$RA), (ins g8rc:$RS, u6imm:$SH), "sradi", "$RA, $RS, $SH", IIC_IntRotateDI, [(set i64:$RA, (sra i64:$RS, (i32 imm:$SH)))]>, isPPC64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm EXTSWSLI_32_64 : XSForm_1r<31, 445, (outs g8rc:$RA), (ins gprc:$RS, u6imm:$SH), "extswsli", "$RA, $RS, $SH", IIC_IntRotateDI, [(set i64:$RA, (PPCextswsli i32:$RS, (i32 imm:$SH)))]>, isPPC64, Requires<[IsISA3_0]>; defm EXTSWSLI : XSForm_1rc<31, 445, (outs g8rc:$RA), (ins g8rc:$RS, u6imm:$SH), "extswsli", "$RA, $RS, $SH", IIC_IntRotateDI, []>, isPPC64, Requires<[IsISA3_0]>; // For fast-isel: let isCodeGenOnly = 1, Defs = [CARRY] in def SRADI_32 : XSForm_1<31, 413, (outs gprc:$RA), (ins gprc:$RS, u6imm:$SH), "sradi $RA, $RS, $SH", IIC_IntRotateDI, []>, isPPC64; defm CNTLZD : XForm_11r<31, 58, (outs g8rc:$RA), (ins g8rc:$RST), "cntlzd", "$RA, $RST", IIC_IntGeneral, [(set i64:$RA, (ctlz i64:$RST))]>, ZExt32To64, SExt32To64; defm CNTTZD : XForm_11r<31, 570, (outs g8rc:$RA), (ins g8rc:$RST), "cnttzd", "$RA, $RST", IIC_IntGeneral, [(set i64:$RA, (cttz i64:$RST))]>, Requires<[IsISA3_0]>, ZExt32To64, SExt32To64; def POPCNTD : XForm_11<31, 506, (outs g8rc:$RA), (ins g8rc:$RST), "popcntd $RA, $RST", IIC_IntGeneral, [(set i64:$RA, (ctpop i64:$RST))]>, ZExt32To64, SExt32To64; def BPERMD : XForm_6<31, 252, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "bpermd $RA, $RST, $RB", IIC_IntGeneral, [(set i64:$RA, (int_ppc_bpermd g8rc:$RST, g8rc:$RB))]>, isPPC64, Requires<[HasBPERMD]>; let isCodeGenOnly = 1, isCommutable = 1 in def CMPB8 : XForm_6<31, 508, (outs g8rc:$RA), (ins g8rc:$RST, g8rc:$RB), "cmpb $RA, $RST, $RB", IIC_IntGeneral, [(set i64:$RA, (PPCcmpb i64:$RST, i64:$RB))]>; // popcntw also does a population count on the high 32 bits (storing the // results in the high 32-bits of the output). We'll ignore that here (which is // safe because we never separately use the high part of the 64-bit registers). def POPCNTW : XForm_11<31, 378, (outs gprc:$RA), (ins gprc:$RST), "popcntw $RA, $RST", IIC_IntGeneral, [(set i32:$RA, (ctpop i32:$RST))]>; let isCodeGenOnly = 1 in { def POPCNTB8 : XForm_11<31, 122, (outs g8rc:$RA), (ins g8rc:$RST), "popcntb $RA, $RST", IIC_IntGeneral, [(set i64:$RA, (int_ppc_popcntb i64:$RST))]>; def CDTBCD8 : XForm_11<31, 282, (outs g8rc:$RA), (ins g8rc:$RST), "cdtbcd $RA, $RST", IIC_IntGeneral, []>; def CBCDTD8 : XForm_11<31, 314, (outs g8rc:$RA), (ins g8rc:$RST), "cbcdtd $RA, $RST", IIC_IntGeneral, []>; def ADDG6S8 : XOForm_1<31, 74, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "addg6s $RT, $RA, $RB", IIC_IntGeneral, []>; } defm DIVD : XOForm_1rcr<31, 489, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "divd", "$RT, $RA, $RB", IIC_IntDivD, [(set i64:$RT, (sdiv i64:$RA, i64:$RB))]>, isPPC64; defm DIVDU : XOForm_1rcr<31, 457, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "divdu", "$RT, $RA, $RB", IIC_IntDivD, [(set i64:$RT, (udiv i64:$RA, i64:$RB))]>, isPPC64; defm DIVDE : XOForm_1rcr<31, 425, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "divde", "$RT, $RA, $RB", IIC_IntDivD, [(set i64:$RT, (int_ppc_divde g8rc:$RA, g8rc:$RB))]>, isPPC64, Requires<[HasExtDiv]>; let Predicates = [IsISA3_0] in { def MADDHD : VAForm_1a<48, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB, g8rc:$RC), "maddhd $RT, $RA, $RB, $RC", IIC_IntMulHD, []>, isPPC64; def MADDHDU : VAForm_1a<49, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB, g8rc:$RC), "maddhdu $RT, $RA, $RB, $RC", IIC_IntMulHD, []>, isPPC64; def MADDLD : VAForm_1a<51, (outs gprc:$RT), (ins gprc:$RA, gprc:$RB, gprc:$RC), "maddld $RT, $RA, $RB, $RC", IIC_IntMulHD, [(set i32:$RT, (add_without_simm16 (mul_without_simm16 i32:$RA, i32:$RB), i32:$RC))]>, isPPC64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in { def MADDLD8 : VAForm_1a<51, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB, g8rc:$RC), "maddld $RT, $RA, $RB, $RC", IIC_IntMulHD, [(set i64:$RT, (add_without_simm16 (mul_without_simm16 i64:$RA, i64:$RB), i64:$RC))]>, isPPC64; def SETB8 : XForm_44<31, 128, (outs g8rc:$RT), (ins crrc:$BFA), "setb $RT, $BFA", IIC_IntGeneral>, isPPC64, SExt32To64; } def ADDPCIS : DXForm<19, 2, (outs g8rc:$RT), (ins i32imm:$D), "addpcis $RT, $D", IIC_BrB, []>, isPPC64; def MODSD : XForm_8<31, 777, (outs g8rc:$RST), (ins g8rc:$RA, g8rc:$RB), "modsd $RST, $RA, $RB", IIC_IntDivW, [(set i64:$RST, (srem i64:$RA, i64:$RB))]>; def MODUD : XForm_8<31, 265, (outs g8rc:$RST), (ins g8rc:$RA, g8rc:$RB), "modud $RST, $RA, $RB", IIC_IntDivW, [(set i64:$RST, (urem i64:$RA, i64:$RB))]>; } defm DIVDEU : XOForm_1rcr<31, 393, 0, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "divdeu", "$RT, $RA, $RB", IIC_IntDivD, [(set i64:$RT, (int_ppc_divdeu g8rc:$RA, g8rc:$RB))]>, isPPC64, Requires<[HasExtDiv]>; let isCommutable = 1 in defm MULLD : XOForm_1rx<31, 233, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB), "mulld", "$RT, $RA, $RB", IIC_IntMulHD, [(set i64:$RT, (mul i64:$RA, i64:$RB))]>, isPPC64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in def MULLI8 : DForm_2<7, (outs g8rc:$RST), (ins g8rc:$RA, s16imm64:$D), "mulli $RST, $RA, $D", IIC_IntMulLI, [(set i64:$RST, (mul i64:$RA, imm64SExt16:$D))]>; } let hasSideEffects = 1 in { def DARN : XForm_45<31, 755, (outs g8rc:$RT), (ins u2imm:$L), "darn $RT, $L", IIC_LdStLD>, isPPC64; } let hasSideEffects = 0 in { defm RLDIMI : MDForm_1r<30, 3, (outs g8rc:$RA), (ins g8rc:$RAi, g8rc:$RS, u6imm:$SH, u6imm:$MBE), "rldimi", "$RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64, RegConstraint<"$RAi = $RA">, NoEncode<"$RAi">; // Rotate instructions. defm RLDCL : MDSForm_1r<30, 8, (outs g8rc:$RA), (ins g8rc:$RS, gprc:$RB, u6imm:$MBE), "rldcl", "$RA, $RS, $RB, $MBE", IIC_IntRotateD, []>, isPPC64; defm RLDCR : MDSForm_1r<30, 9, (outs g8rc:$RA), (ins g8rc:$RS, gprc:$RB, u6imm:$MBE), "rldcr", "$RA, $RS, $RB, $MBE", IIC_IntRotateD, []>, isPPC64; defm RLDICL : MDForm_1r<30, 0, (outs g8rc:$RA), (ins g8rc:$RS, u6imm:$SH, u6imm:$MBE), "rldicl", "$RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64; // For fast-isel: let isCodeGenOnly = 1 in def RLDICL_32_64 : MDForm_1<30, 0, (outs g8rc:$RA), (ins gprc:$RS, u6imm:$SH, u6imm:$MBE), "rldicl $RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64; // End fast-isel. let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm RLDICL_32 : MDForm_1r<30, 0, (outs gprc:$RA), (ins gprc:$RS, u6imm:$SH, u6imm:$MBE), "rldicl", "$RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64; defm RLDICR : MDForm_1r<30, 1, (outs g8rc:$RA), (ins g8rc:$RS, u6imm:$SH, u6imm:$MBE), "rldicr", "$RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64; let isCodeGenOnly = 1 in def RLDICR_32 : MDForm_1<30, 1, (outs gprc:$RA), (ins gprc:$RS, u6imm:$SH, u6imm:$MBE), "rldicr $RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64; defm RLDIC : MDForm_1r<30, 2, (outs g8rc:$RA), (ins g8rc:$RS, u6imm:$SH, u6imm:$MBE), "rldic", "$RA, $RS, $SH, $MBE", IIC_IntRotateDI, []>, isPPC64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in { defm RLWINM8 : MForm_2r<21, (outs g8rc:$RA), (ins g8rc:$RS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwinm", "$RA, $RS, $SH, $MB, $ME", IIC_IntGeneral, []>; defm RLWNM8 : MForm_1r<23, (outs g8rc:$RA), (ins g8rc:$RS, g8rc:$RB, u5imm:$MB, u5imm:$ME), "rlwnm", "$RA, $RS, $RB, $MB, $ME", IIC_IntGeneral, []>; // RLWIMI can be commuted if the rotate amount is zero. let Interpretation64Bit = 1, isCodeGenOnly = 1 in defm RLWIMI8 : MForm_2r<20, (outs g8rc:$RA), (ins g8rc:$RAi, g8rc:$RS, u5imm:$SH, u5imm:$MB, u5imm:$ME), "rlwimi", "$RA, $RS, $SH, $MB, $ME", IIC_IntRotate, []>, PPC970_DGroup_Cracked, RegConstraint<"$RAi = $RA">, NoEncode<"$RAi">; let isSelect = 1 in def ISEL8 : AForm_4<31, 15, (outs g8rc:$RT), (ins g8rc_nox0:$RA, g8rc:$RB, crbitrc:$COND), "isel $RT, $RA, $RB, $COND", IIC_IntISEL, []>; } // Interpretation64Bit } // hasSideEffects = 0 } // End FXU Operations. def : InstAlias<"li $rD, $imm", (ADDI8 g8rc:$rD, ZERO8, s16imm64:$imm)>; def : InstAlias<"lis $rD, $imm", (ADDIS8 g8rc:$rD, ZERO8, s17imm64:$imm)>; def : InstAlias<"mr $rA, $rB", (OR8 g8rc:$rA, g8rc:$rB, g8rc:$rB)>; def : InstAlias<"mr. $rA, $rB", (OR8_rec g8rc:$rA, g8rc:$rB, g8rc:$rB)>; def : InstAlias<"not $rA, $rB", (NOR8 g8rc:$rA, g8rc:$rB, g8rc:$rB)>; def : InstAlias<"not. $rA, $rB", (NOR8_rec g8rc:$rA, g8rc:$rB, g8rc:$rB)>; def : InstAlias<"mtcr $rA", (MTCRF8 255, g8rc:$rA)>; def : InstAlias<"sub $rA, $rB, $rC", (SUBF8 g8rc:$rA, g8rc:$rC, g8rc:$rB)>; def : InstAlias<"sub. $rA, $rB, $rC", (SUBF8_rec g8rc:$rA, g8rc:$rC, g8rc:$rB)>; def : InstAlias<"subc $rA, $rB, $rC", (SUBFC8 g8rc:$rA, g8rc:$rC, g8rc:$rB)>; def : InstAlias<"subc. $rA, $rB, $rC", (SUBFC8_rec g8rc:$rA, g8rc:$rC, g8rc:$rB)>; def : InstAlias<"rotlwi $rA, $rS, $n", (RLWINM8 g8rc:$rA, g8rc:$rS, u5imm:$n, 0, 31)>; def : InstAlias<"rotlwi. $rA, $rS, $n", (RLWINM8_rec g8rc:$rA, g8rc:$rS, u5imm:$n, 0, 31)>; def : InstAlias<"rotlw $rA, $rS, $rB", (RLWNM8 g8rc:$rA, g8rc:$rS, g8rc:$rB, 0, 31)>; def : InstAlias<"rotlw. $rA, $rS, $rB", (RLWNM8_rec g8rc:$rA, g8rc:$rS, g8rc:$rB, 0, 31)>; def : InstAlias<"clrlwi $rA, $rS, $n", (RLWINM8 g8rc:$rA, g8rc:$rS, 0, u5imm:$n, 31)>; def : InstAlias<"clrlwi. $rA, $rS, $n", (RLWINM8_rec g8rc:$rA, g8rc:$rS, 0, u5imm:$n, 31)>; def : InstAlias<"isellt $rT, $rA, $rB", (ISEL8 g8rc:$rT, g8rc_nox0:$rA, g8rc:$rB, CR0LT)>; def : InstAlias<"iselgt $rT, $rA, $rB", (ISEL8 g8rc:$rT, g8rc_nox0:$rA, g8rc:$rB, CR0GT)>; def : InstAlias<"iseleq $rT, $rA, $rB", (ISEL8 g8rc:$rT, g8rc_nox0:$rA, g8rc:$rB, CR0EQ)>; def : InstAlias<"nop", (ORI8 X0, X0, 0)>; def : InstAlias<"xnop", (XORI8 X0, X0, 0)>; def : InstAlias<"cntlzw $rA, $rS", (CNTLZW8 g8rc:$rA, g8rc:$rS)>; def : InstAlias<"cntlzw. $rA, $rS", (CNTLZW8_rec g8rc:$rA, g8rc:$rS)>; def : InstAlias<"mtxer $Rx", (MTSPR8 1, g8rc:$Rx)>; def : InstAlias<"mfxer $Rx", (MFSPR8 g8rc:$Rx, 1)>; //Disable this alias on AIX for now because as does not support them. let Predicates = [ModernAs] in { def : InstAlias<"mtudscr $Rx", (MTSPR8 3, g8rc:$Rx)>; def : InstAlias<"mfudscr $Rx", (MFSPR8 g8rc:$Rx, 3)>; def : InstAlias<"mfrtcu $Rx", (MFSPR8 g8rc:$Rx, 4)>; def : InstAlias<"mfrtcl $Rx", (MFSPR8 g8rc:$Rx, 5)>; def : InstAlias<"mtlr $Rx", (MTSPR8 8, g8rc:$Rx)>; def : InstAlias<"mflr $Rx", (MFSPR8 g8rc:$Rx, 8)>; def : InstAlias<"mtctr $Rx", (MTSPR8 9, g8rc:$Rx)>; def : InstAlias<"mfctr $Rx", (MFSPR8 g8rc:$Rx, 9)>; def : InstAlias<"mtuamr $Rx", (MTSPR8 13, g8rc:$Rx)>; def : InstAlias<"mfuamr $Rx", (MFSPR8 g8rc:$Rx, 13)>; def : InstAlias<"mtdscr $Rx", (MTSPR8 17, g8rc:$Rx)>; def : InstAlias<"mfdscr $Rx", (MFSPR8 g8rc:$Rx, 17)>; def : InstAlias<"mtdsisr $Rx", (MTSPR8 18, g8rc:$Rx)>; def : InstAlias<"mfdsisr $Rx", (MFSPR8 g8rc:$Rx, 18)>; def : InstAlias<"mtdar $Rx", (MTSPR8 19, g8rc:$Rx)>; def : InstAlias<"mfdar $Rx", (MFSPR8 g8rc:$Rx, 19)>; def : InstAlias<"mtdec $Rx", (MTSPR8 22, g8rc:$Rx)>; def : InstAlias<"mfdec $Rx", (MFSPR8 g8rc:$Rx, 22)>; def : InstAlias<"mtsdr1 $Rx", (MTSPR8 25, g8rc:$Rx)>; def : InstAlias<"mfsdr1 $Rx", (MFSPR8 g8rc:$Rx, 25)>; def : InstAlias<"mtsrr0 $Rx", (MTSPR8 26, g8rc:$Rx)>; def : InstAlias<"mfsrr0 $Rx", (MFSPR8 g8rc:$Rx, 26)>; def : InstAlias<"mtsrr1 $Rx", (MTSPR8 27, g8rc:$Rx)>; def : InstAlias<"mfsrr1 $Rx", (MFSPR8 g8rc:$Rx, 27)>; def : InstAlias<"mtcfar $Rx", (MTSPR8 28, g8rc:$Rx)>; def : InstAlias<"mfcfar $Rx", (MFSPR8 g8rc:$Rx, 28)>; def : InstAlias<"mtamr $Rx", (MTSPR8 29, g8rc:$Rx)>; def : InstAlias<"mfamr $Rx", (MFSPR8 g8rc:$Rx, 29)>; foreach SPRG = 0-3 in { def : InstAlias<"mfsprg $RT, "#SPRG, (MFSPR8 g8rc:$RT, !add(SPRG, 272))>; def : InstAlias<"mfsprg"#SPRG#" $RT", (MFSPR8 g8rc:$RT, !add(SPRG, 272))>; def : InstAlias<"mtsprg "#SPRG#", $RT", (MTSPR8 !add(SPRG, 272), g8rc:$RT)>; def : InstAlias<"mtsprg"#SPRG#" $RT", (MTSPR8 !add(SPRG, 272), g8rc:$RT)>; } def : InstAlias<"mfasr $RT", (MFSPR8 g8rc:$RT, 280)>; def : InstAlias<"mtasr $RT", (MTSPR8 280, g8rc:$RT)>; def : InstAlias<"mttbl $Rx", (MTSPR8 284, g8rc:$Rx)>; def : InstAlias<"mttbu $Rx", (MTSPR8 285, g8rc:$Rx)>; def : InstAlias<"mfpvr $RT", (MFSPR8 g8rc:$RT, 287)>; def : InstAlias<"mfspefscr $Rx", (MFSPR8 g8rc:$Rx, 512)>; def : InstAlias<"mtspefscr $Rx", (MTSPR8 512, g8rc:$Rx)>; } //===----------------------------------------------------------------------===// // Load/Store instructions. // // Sign extending loads. let PPC970_Unit = 2 in { let Interpretation64Bit = 1, isCodeGenOnly = 1 in def LHA8: DForm_1<42, (outs g8rc:$RST), (ins (memri $D, $RA):$addr), "lha $RST, $addr", IIC_LdStLHA, [(set i64:$RST, (sextloadi16 DForm:$addr))]>, PPC970_DGroup_Cracked, SExt32To64; def LWA : DSForm_1<58, 2, (outs g8rc:$RST), (ins (memrix $D, $RA):$addr), "lwa $RST, $addr", IIC_LdStLWA, [(set i64:$RST, (sextloadi32 DSForm:$addr))]>, isPPC64, PPC970_DGroup_Cracked, SExt32To64; let Interpretation64Bit = 1, isCodeGenOnly = 1 in def LHAX8: XForm_1_memOp<31, 343, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lhax $RST, $addr", IIC_LdStLHA, [(set i64:$RST, (sextloadi16 XForm:$addr))]>, PPC970_DGroup_Cracked, SExt32To64; def LWAX : XForm_1_memOp<31, 341, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lwax $RST, $addr", IIC_LdStLHA, [(set i64:$RST, (sextloadi32 XForm:$addr))]>, isPPC64, PPC970_DGroup_Cracked, SExt32To64; // For fast-isel: let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0 in { def LWA_32 : DSForm_1<58, 2, (outs gprc:$RST), (ins (memrix $D, $RA):$addr), "lwa $RST, $addr", IIC_LdStLWA, []>, isPPC64, PPC970_DGroup_Cracked, SExt32To64; def LWAX_32 : XForm_1_memOp<31, 341, (outs gprc:$RST), (ins (memrr $RA, $RB):$addr), "lwax $RST, $addr", IIC_LdStLHA, []>, isPPC64, PPC970_DGroup_Cracked, SExt32To64; } // end fast-isel isCodeGenOnly // Update forms. let mayLoad = 1, hasSideEffects = 0 in { let Interpretation64Bit = 1, isCodeGenOnly = 1 in def LHAU8 : DForm_1<43, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memri $D, $RA):$addr), "lhau $RST, $addr", IIC_LdStLHAU, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; // NO LWAU! let Interpretation64Bit = 1, isCodeGenOnly = 1 in def LHAUX8 : XForm_1_memOp<31, 375, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrr $RA, $RB):$addr), "lhaux $RST, $addr", IIC_LdStLHAUX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LWAUX : XForm_1_memOp<31, 373, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrr $RA, $RB):$addr), "lwaux $RST, $addr", IIC_LdStLHAUX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">, isPPC64; } } let Interpretation64Bit = 1, isCodeGenOnly = 1 in { // Zero extending loads. let PPC970_Unit = 2 in { def LBZ8 : DForm_1<34, (outs g8rc:$RST), (ins (memri $D, $RA):$addr), "lbz $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (zextloadi8 DForm:$addr))]>, ZExt32To64, SExt32To64; def LHZ8 : DForm_1<40, (outs g8rc:$RST), (ins (memri $D, $RA):$addr), "lhz $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (zextloadi16 DForm:$addr))]>, ZExt32To64, SExt32To64; def LWZ8 : DForm_1<32, (outs g8rc:$RST), (ins (memri $D, $RA):$addr), "lwz $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (zextloadi32 DForm:$addr))]>, isPPC64, ZExt32To64; def LBZX8 : XForm_1_memOp<31, 87, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lbzx $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (zextloadi8 XForm:$addr))]>, ZExt32To64, SExt32To64; def LHZX8 : XForm_1_memOp<31, 279, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lhzx $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (zextloadi16 XForm:$addr))]>, ZExt32To64, SExt32To64; def LWZX8 : XForm_1_memOp<31, 23, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lwzx $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (zextloadi32 XForm:$addr))]>, ZExt32To64; // Update forms. let mayLoad = 1, hasSideEffects = 0 in { def LBZU8 : DForm_1<35, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memri $D, $RA):$addr), "lbzu $RST, $addr", IIC_LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LHZU8 : DForm_1<41, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memri $D, $RA):$addr), "lhzu $RST, $addr", IIC_LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LWZU8 : DForm_1<33, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memri $D, $RA):$addr), "lwzu $RST, $addr", IIC_LdStLoadUpd, []>, RegConstraint<"$addr.reg = $ea_result">, NoEncode<"$ea_result">; def LBZUX8 : XForm_1_memOp<31, 119, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrr $RA, $RB):$addr), "lbzux $RST, $addr", IIC_LdStLoadUpdX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LHZUX8 : XForm_1_memOp<31, 311, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrr $RA, $RB):$addr), "lhzux $RST, $addr", IIC_LdStLoadUpdX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; def LWZUX8 : XForm_1_memOp<31, 55, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrr $RA, $RB):$addr), "lwzux $RST, $addr", IIC_LdStLoadUpdX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">; } } } // Interpretation64Bit // Full 8-byte loads. let PPC970_Unit = 2 in { def LD : DSForm_1<58, 0, (outs g8rc:$RST), (ins (memrix $D, $RA):$addr), "ld $RST, $addr", IIC_LdStLD, [(set i64:$RST, (load DSForm:$addr))]>, isPPC64; // The following four definitions are selected for small code model only. // Otherwise, we need to create two instructions to form a 32-bit offset, // so we have a custom matcher for TOC_ENTRY in PPCDAGToDAGIsel::Select(). def LDtoc: PPCEmitTimePseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg), "#LDtoc", [(set i64:$rD, (PPCtoc_entry tglobaladdr:$disp, i64:$reg))]>, isPPC64; def LDtocJTI: PPCEmitTimePseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg), "#LDtocJTI", [(set i64:$rD, (PPCtoc_entry tjumptable:$disp, i64:$reg))]>, isPPC64; def LDtocCPT: PPCEmitTimePseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg), "#LDtocCPT", [(set i64:$rD, (PPCtoc_entry tconstpool:$disp, i64:$reg))]>, isPPC64; def LDtocBA: PPCEmitTimePseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc:$reg), "#LDtocCPT", [(set i64:$rD, (PPCtoc_entry tblockaddress:$disp, i64:$reg))]>, isPPC64; def LDX : XForm_1_memOp<31, 21, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "ldx $RST, $addr", IIC_LdStLD, [(set i64:$RST, (load XForm:$addr))]>, isPPC64; let Predicates = [IsISA2_06] in { def LDBRX : XForm_1_memOp<31, 532, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "ldbrx $RST, $addr", IIC_LdStLoad, [(set i64:$RST, (PPClbrx ForceXForm:$addr, i64))]>, isPPC64; } let mayLoad = 1, hasSideEffects = 0, isCodeGenOnly = 1 in { def LHBRX8 : XForm_1_memOp<31, 790, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lhbrx $RST, $addr", IIC_LdStLoad, []>, ZExt32To64; def LWBRX8 : XForm_1_memOp<31, 534, (outs g8rc:$RST), (ins (memrr $RA, $RB):$addr), "lwbrx $RST, $addr", IIC_LdStLoad, []>, ZExt32To64; } let mayLoad = 1, hasSideEffects = 0 in { def LDU : DSForm_1<58, 1, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrix $D, $RA):$addr), "ldu $RST, $addr", IIC_LdStLDU, []>, RegConstraint<"$addr.reg = $ea_result">, isPPC64, NoEncode<"$ea_result">; def LDUX : XForm_1_memOp<31, 53, (outs g8rc:$RST, ptr_rc_nor0:$ea_result), (ins (memrr $RA, $RB):$addr), "ldux $RST, $addr", IIC_LdStLDUX, []>, RegConstraint<"$addr.ptrreg = $ea_result">, NoEncode<"$ea_result">, isPPC64; } let mayLoad = 1, hasNoSchedulingInfo = 1 in { // Full 16-byte load. // Early clobber $RTp to avoid assigned to the same register as RA. // TODO: Add scheduling info. def LQ : DQForm_RTp5_RA17_MEM<56, 0, (outs g8prc:$RTp), (ins (memrix16 $DQ, $RA):$addr), "lq $RTp, $addr", IIC_LdStLQ, []>, RegConstraint<"@earlyclobber $RTp">, isPPC64; // We don't really have LQX in the ISA, make a pseudo one so that we can // handle x-form during isel. Make it pre-ra may expose // oppotunities to some opts(CSE, LICM and etc.) for the result of adding // RA and RB. def LQX_PSEUDO : PPCCustomInserterPseudo<(outs g8prc:$RTp), (ins memrr:$src), "#LQX_PSEUDO", []>; def RESTORE_QUADWORD : PPCEmitTimePseudo<(outs g8prc:$RTp), (ins memrix:$src), "#RESTORE_QUADWORD", []>; } } def : Pat<(int_ppc_atomic_load_i128 iaddrX16:$src), (SPLIT_QUADWORD (LQ memrix16:$src))>; def : Pat<(int_ppc_atomic_load_i128 ForceXForm:$src), (SPLIT_QUADWORD (LQX_PSEUDO memrr:$src))>; // Support for medium and large code model. let hasSideEffects = 0 in { let isReMaterializable = 1 in { def ADDIStocHA8: PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, tocentry:$disp), "#ADDIStocHA8", []>, isPPC64; def ADDItocL8: PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, tocentry:$disp), "#ADDItocL8", []>, isPPC64; } // Local Data Transform def ADDItoc8 : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, tocentry:$disp), "#ADDItoc8", []>, isPPC64; let mayLoad = 1 in def LDtocL: PPCEmitTimePseudo<(outs g8rc:$rD), (ins tocentry:$disp, g8rc_nox0:$reg), "#LDtocL", []>, isPPC64; } // Support for thread-local storage. def ADDISgotTprelHA: PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDISgotTprelHA", [(set i64:$rD, (PPCaddisGotTprelHA i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; def LDgotTprelL: PPCEmitTimePseudo<(outs g8rc_nox0:$rD), (ins s16imm64:$disp, g8rc_nox0:$reg), "#LDgotTprelL", [(set i64:$rD, (PPCldGotTprelL tglobaltlsaddr:$disp, i64:$reg))]>, isPPC64; let Defs = [CR7], Itinerary = IIC_LdStSync in def CFENCE8 : PPCPostRAExpPseudo<(outs), (ins g8rc:$cr), "#CFENCE8", []>; def : Pat<(PPCaddTls i64:$in, tglobaltlsaddr:$g), (ADD8TLS $in, tglobaltlsaddr:$g)>; def ADDIStlsgdHA: PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDIStlsgdHA", [(set i64:$rD, (PPCaddisTlsgdHA i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; def ADDItlsgdL : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDItlsgdL", [(set i64:$rD, (PPCaddiTlsgdL i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; class GETtlsADDRPseudo : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc:$reg, tlsgd:$sym), asmstr, [(set i64:$rD, (PPCgetTlsAddr i64:$reg, tglobaltlsaddr:$sym))]>, isPPC64; class GETtlsldADDRPseudo : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc:$reg, tlsgd:$sym), asmstr, [(set i64:$rD, (PPCgetTlsldAddr i64:$reg, tglobaltlsaddr:$sym))]>, isPPC64; let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1 in { // LR8 is a true define, while the rest of the Defs are clobbers. X3 is // explicitly defined when this op is created, so not mentioned here. // This is lowered to BL8_NOP_TLS by the assembly printer, so the size must be // correct because the branch select pass is relying on it. let Defs = [X0,X4,X5,X6,X7,X8,X9,X10,X11,X12,LR8,CTR8,CR0,CR1,CR5,CR6,CR7], Size = 8 in def GETtlsADDR : GETtlsADDRPseudo <"#GETtlsADDR">; let Defs = [X0,X2,X4,X5,X6,X7,X8,X9,X10,X11,X12,LR8,CTR8,CR0,CR1,CR5,CR6,CR7], Size = 8 in def GETtlsADDRPCREL : GETtlsADDRPseudo <"#GETtlsADDRPCREL">; // LR8 is a true define, while the rest of the Defs are clobbers. X3 is // explicitly defined when this op is created, so not mentioned here. let Defs = [X0,X4,X5,X6,X7,X8,X9,X10,X11,X12,LR8,CTR8,CR0,CR1,CR5,CR6,CR7] in def GETtlsldADDR : GETtlsldADDRPseudo <"#GETtlsldADDR">; let Defs = [X0,X2,X4,X5,X6,X7,X8,X9,X10,X11,X12,LR8,CTR8,CR0,CR1,CR5,CR6,CR7] in def GETtlsldADDRPCREL : GETtlsldADDRPseudo <"#GETtlsldADDRPCREL">; // On AIX, the call to __tls_get_addr needs two inputs in X3/X4 for the // offset and region handle respectively. The call is not followed by a nop // so we don't need to mark it with a size of 8 bytes. Finally, the assembly // manual mentions this exact set of registers as the clobbered set, others // are guaranteed not to be clobbered. let Defs = [X0,X4,X5,X11,LR8,CR0] in { def GETtlsADDR64AIX : PPCEmitTimePseudo<(outs g8rc:$rD),(ins g8rc:$offset, g8rc:$handle), "GETtlsADDR64AIX", [(set i64:$rD, (PPCgetTlsAddr i64:$offset, i64:$handle))]>, isPPC64; // On AIX, the call to .__tls_get_mod needs one input in X3 for the module handle. def GETtlsMOD64AIX : PPCEmitTimePseudo<(outs g8rc:$rD),(ins g8rc:$handle), "GETtlsMOD64AIX", [(set i64:$rD, (PPCgetTlsMod i64:$handle))]>, isPPC64; } } // Combined op for ADDItlsgdL and GETtlsADDR, late expanded. X3 and LR8 // are true defines while the rest of the Defs are clobbers. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [X0,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,LR8,CTR8,CR0,CR1,CR5,CR6,CR7] in def ADDItlsgdLADDR : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp, tlsgd:$sym), "#ADDItlsgdLADDR", [(set i64:$rD, (PPCaddiTlsgdLAddr i64:$reg, tglobaltlsaddr:$disp, tglobaltlsaddr:$sym))]>, isPPC64; def ADDIStlsldHA: PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDIStlsldHA", [(set i64:$rD, (PPCaddisTlsldHA i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; def ADDItlsldL : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDItlsldL", [(set i64:$rD, (PPCaddiTlsldL i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; // This pseudo is expanded to two copies to put the variable offset in R4 and // the region handle in R3 and GETtlsADDR64AIX. def TLSGDAIX8 : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc:$offset, g8rc:$handle), "#TLSGDAIX8", [(set i64:$rD, (PPCTlsgdAIX i64:$offset, i64:$handle))]>; // This pseudo is expanded to the call to GETtlsMOD64AIX. def TLSLDAIX8 : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc:$handle), "#TLSLDAIX8", [(set i64:$rD, (PPCTlsldAIX i64:$handle))]>; // Combined op for ADDItlsldL and GETtlsADDR, late expanded. X3 and LR8 // are true defines, while the rest of the Defs are clobbers. let hasExtraSrcRegAllocReq = 1, hasExtraDefRegAllocReq = 1, Defs = [X0,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,LR8,CTR8,CR0,CR1,CR5,CR6,CR7] in def ADDItlsldLADDR : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp, tlsgd:$sym), "#ADDItlsldLADDR", [(set i64:$rD, (PPCaddiTlsldLAddr i64:$reg, tglobaltlsaddr:$disp, tglobaltlsaddr:$sym))]>, isPPC64; def ADDISdtprelHA: PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDISdtprelHA", [(set i64:$rD, (PPCaddisDtprelHA i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; def ADDIdtprelL : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#ADDIdtprelL", [(set i64:$rD, (PPCaddiDtprelL i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; def PADDIdtprel : PPCEmitTimePseudo<(outs g8rc:$rD), (ins g8rc_nox0:$reg, s16imm64:$disp), "#PADDIdtprel", [(set i64:$rD, (PPCpaddiDtprel i64:$reg, tglobaltlsaddr:$disp))]>, isPPC64; let PPC970_Unit = 2 in { let Interpretation64Bit = 1, isCodeGenOnly = 1 in { // Truncating stores. def STB8 : DForm_1<38, (outs), (ins g8rc:$RST, (memri $D, $RA):$addr), "stb $RST, $addr", IIC_LdStStore, [(truncstorei8 i64:$RST, DForm:$addr)]>; def STH8 : DForm_1<44, (outs), (ins g8rc:$RST, (memri $D, $RA):$addr), "sth $RST, $addr", IIC_LdStStore, [(truncstorei16 i64:$RST, DForm:$addr)]>; def STW8 : DForm_1<36, (outs), (ins g8rc:$RST, (memri $D, $RA):$addr), "stw $RST, $addr", IIC_LdStStore, [(truncstorei32 i64:$RST, DForm:$addr)]>; def STBX8 : XForm_8_memOp<31, 215, (outs), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stbx $RST, $addr", IIC_LdStStore, [(truncstorei8 i64:$RST, XForm:$addr)]>, PPC970_DGroup_Cracked; def STHX8 : XForm_8_memOp<31, 407, (outs), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "sthx $RST, $addr", IIC_LdStStore, [(truncstorei16 i64:$RST, XForm:$addr)]>, PPC970_DGroup_Cracked; def STWX8 : XForm_8_memOp<31, 151, (outs), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stwx $RST, $addr", IIC_LdStStore, [(truncstorei32 i64:$RST, XForm:$addr)]>, PPC970_DGroup_Cracked; } // Interpretation64Bit // Normal 8-byte stores. def STD : DSForm_1<62, 0, (outs), (ins g8rc:$RST, (memrix $D, $RA):$addr), "std $RST, $addr", IIC_LdStSTD, [(store i64:$RST, DSForm:$addr)]>, isPPC64; def STDX : XForm_8_memOp<31, 149, (outs), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stdx $RST, $addr", IIC_LdStSTD, [(store i64:$RST, XForm:$addr)]>, isPPC64, PPC970_DGroup_Cracked; let Predicates = [IsISA2_06] in { def STDBRX: XForm_8_memOp<31, 660, (outs), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stdbrx $RST, $addr", IIC_LdStStore, [(PPCstbrx i64:$RST, ForceXForm:$addr, i64)]>, isPPC64, PPC970_DGroup_Cracked; } let mayStore = 1, hasNoSchedulingInfo = 1 in { // Normal 16-byte stores. // TODO: Add scheduling info. def STQ : DSForm_1<62, 2, (outs), (ins g8prc:$RST, (memrix $D, $RA):$addr), "stq $RST, $addr", IIC_LdStSTQ, []>, isPPC64; def STQX_PSEUDO : PPCCustomInserterPseudo<(outs), (ins g8prc:$RSp, memrr:$dst), "#STQX_PSEUDO", []>; def SPILL_QUADWORD : PPCEmitTimePseudo<(outs), (ins g8prc:$RSp, memrix:$dst), "#SPILL_QUADWORD", []>; } } def BUILD_QUADWORD : PPCPostRAExpPseudo< (outs g8prc:$RTp), (ins g8rc:$lo, g8rc:$hi), "#BUILD_QUADWORD", []>; def : Pat<(int_ppc_atomic_store_i128 i64:$lo, i64:$hi, DSForm:$dst), (STQ (BUILD_QUADWORD g8rc:$lo, g8rc:$hi), memrix:$dst)>; def : Pat<(int_ppc_atomic_store_i128 i64:$lo, i64:$hi, ForceXForm:$dst), (STQX_PSEUDO (BUILD_QUADWORD g8rc:$lo, g8rc:$hi), memrr:$dst)>; // Stores with Update (pre-inc). let PPC970_Unit = 2, mayStore = 1, mayLoad = 0 in { let Interpretation64Bit = 1, isCodeGenOnly = 1 in { def STBU8 : DForm_1<39, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memri $D, $RA):$addr), "stbu $RST, $addr", IIC_LdStSTU, []>, RegConstraint<"$addr.reg = $ea_res">, NoEncode<"$ea_res">; def STHU8 : DForm_1<45, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memri $D, $RA):$addr), "sthu $RST, $addr", IIC_LdStSTU, []>, RegConstraint<"$addr.reg = $ea_res">, NoEncode<"$ea_res">; def STWU8 : DForm_1<37, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memri $D, $RA):$addr), "stwu $RST, $addr", IIC_LdStSTU, []>, RegConstraint<"$addr.reg = $ea_res">, NoEncode<"$ea_res">; def STBUX8: XForm_8_memOp<31, 247, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stbux $RST, $addr", IIC_LdStSTUX, []>, RegConstraint<"$addr.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STHUX8: XForm_8_memOp<31, 439, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "sthux $RST, $addr", IIC_LdStSTUX, []>, RegConstraint<"$addr.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; def STWUX8: XForm_8_memOp<31, 183, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stwux $RST, $addr", IIC_LdStSTUX, []>, RegConstraint<"$addr.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked; } // Interpretation64Bit def STDU : DSForm_1<62, 1, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memrix $D, $RA):$addr), "stdu $RST, $addr", IIC_LdStSTU, []>, RegConstraint<"$addr.reg = $ea_res">, NoEncode<"$ea_res">, isPPC64; def STDUX : XForm_8_memOp<31, 181, (outs ptr_rc_nor0:$ea_res), (ins g8rc:$RST, (memrr $RA, $RB):$addr), "stdux $RST, $addr", IIC_LdStSTUX, []>, RegConstraint<"$addr.ptrreg = $ea_res">, NoEncode<"$ea_res">, PPC970_DGroup_Cracked, isPPC64; } // Patterns to match the pre-inc stores. We can't put the patterns on // the instruction definitions directly as ISel wants the address base // and offset to be separate operands, not a single complex operand. def : Pat<(pre_truncsti8 i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STBU8 $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_truncsti16 i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STHU8 $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_truncsti32 i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STWU8 $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(DSFormPreStore i64:$rS, iPTR:$ptrreg, iaddroff:$ptroff), (STDU $rS, iaddroff:$ptroff, $ptrreg)>; def : Pat<(pre_truncsti8 i64:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STBUX8 $rS, $ptrreg, $ptroff)>; def : Pat<(pre_truncsti16 i64:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STHUX8 $rS, $ptrreg, $ptroff)>; def : Pat<(pre_truncsti32 i64:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STWUX8 $rS, $ptrreg, $ptroff)>; def : Pat<(pre_store i64:$rS, iPTR:$ptrreg, iPTR:$ptroff), (STDUX $rS, $ptrreg, $ptroff)>; //===----------------------------------------------------------------------===// // Floating point instructions. // let PPC970_Unit = 3, hasSideEffects = 0, mayRaiseFPException = 1, Uses = [RM] in { // FPU Operations. defm FCFID : XForm_26r<63, 846, (outs f8rc:$RST), (ins f8rc:$RB), "fcfid", "$RST, $RB", IIC_FPGeneral, [(set f64:$RST, (PPCany_fcfid f64:$RB))]>, isPPC64; defm FCTID : XForm_26r<63, 814, (outs f8rc:$RST), (ins f8rc:$RB), "fctid", "$RST, $RB", IIC_FPGeneral, []>, isPPC64; defm FCTIDU : XForm_26r<63, 942, (outs f8rc:$RST), (ins f8rc:$RB), "fctidu", "$RST, $RB", IIC_FPGeneral, []>, isPPC64; defm FCTIDZ : XForm_26r<63, 815, (outs f8rc:$RST), (ins f8rc:$RB), "fctidz", "$RST, $RB", IIC_FPGeneral, [(set f64:$RST, (PPCany_fctidz f64:$RB))]>, isPPC64; defm FCFIDU : XForm_26r<63, 974, (outs f8rc:$RST), (ins f8rc:$RB), "fcfidu", "$RST, $RB", IIC_FPGeneral, [(set f64:$RST, (PPCany_fcfidu f64:$RB))]>, isPPC64; defm FCFIDS : XForm_26r<59, 846, (outs f4rc:$RST), (ins f8rc:$RB), "fcfids", "$RST, $RB", IIC_FPGeneral, [(set f32:$RST, (PPCany_fcfids f64:$RB))]>, isPPC64; defm FCFIDUS : XForm_26r<59, 974, (outs f4rc:$RST), (ins f8rc:$RB), "fcfidus", "$RST, $RB", IIC_FPGeneral, [(set f32:$RST, (PPCany_fcfidus f64:$RB))]>, isPPC64; defm FCTIDUZ : XForm_26r<63, 943, (outs f8rc:$RST), (ins f8rc:$RB), "fctiduz", "$RST, $RB", IIC_FPGeneral, [(set f64:$RST, (PPCany_fctiduz f64:$RB))]>, isPPC64; defm FCTIWUZ : XForm_26r<63, 143, (outs f8rc:$RST), (ins f8rc:$RB), "fctiwuz", "$RST, $RB", IIC_FPGeneral, [(set f64:$RST, (PPCany_fctiwuz f64:$RB))]>, isPPC64; } // These instructions store a hash computed from the value of the link register // and the value of the stack pointer. let mayStore = 1, Interpretation64Bit = 1, isCodeGenOnly = 1 in { def HASHST8 : XForm_XD6_RA5_RB5<31, 722, (outs), (ins g8rc:$RB, (memrihash $D, $RA):$addr), "hashst $RB, $addr", IIC_IntGeneral, []>; def HASHSTP8 : XForm_XD6_RA5_RB5<31, 658, (outs), (ins g8rc:$RB, (memrihash $D, $RA):$addr), "hashstp $RB, $addr", IIC_IntGeneral, []>; } // These instructions check a hash computed from the value of the link register // and the value of the stack pointer. The hasSideEffects flag is needed as the // instruction may TRAP if the hash does not match the hash stored at the // specified address. let mayLoad = 1, hasSideEffects = 1, Interpretation64Bit = 1, isCodeGenOnly = 1 in { def HASHCHK8 : XForm_XD6_RA5_RB5<31, 754, (outs), (ins g8rc:$RB, (memrihash $D, $RA):$addr), "hashchk $RB, $addr", IIC_IntGeneral, []>; def HASHCHKP8 : XForm_XD6_RA5_RB5<31, 690, (outs), (ins g8rc:$RB, (memrihash $D, $RA):$addr), "hashchkp $RB, $addr", IIC_IntGeneral, []>; } let Interpretation64Bit = 1, isCodeGenOnly = 1, hasSideEffects = 1 in def ADDEX8 : Z23Form_RTAB5_CY2<31, 170, (outs g8rc:$RT), (ins g8rc:$RA, g8rc:$RB, u2imm:$CY), "addex $RT, $RA, $RB, $CY", IIC_IntGeneral, [(set i64:$RT, (int_ppc_addex i64:$RA, i64:$RB, timm:$CY))]>; //===----------------------------------------------------------------------===// // Instruction Patterns // // Extensions and truncates to/from 32-bit regs. def : Pat<(i64 (zext i32:$in)), (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), 0, 32)>; def : Pat<(i64 (anyext i32:$in)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32)>; def : Pat<(i32 (trunc i64:$in)), (EXTRACT_SUBREG $in, sub_32)>; // Implement the 'not' operation with the NOR instruction. // (we could use the default xori pattern, but nor has lower latency on some // cores (such as the A2)). def i64not : OutPatFrag<(ops node:$in), (NOR8 $in, $in)>; def : Pat<(not i64:$in), (i64not $in)>; // Extending loads with i64 targets. def : Pat<(zextloadi1 DForm:$src), (LBZ8 DForm:$src)>; def : Pat<(zextloadi1 XForm:$src), (LBZX8 XForm:$src)>; def : Pat<(extloadi1 DForm:$src), (LBZ8 DForm:$src)>; def : Pat<(extloadi1 XForm:$src), (LBZX8 XForm:$src)>; def : Pat<(extloadi8 DForm:$src), (LBZ8 DForm:$src)>; def : Pat<(extloadi8 XForm:$src), (LBZX8 XForm:$src)>; def : Pat<(extloadi16 DForm:$src), (LHZ8 DForm:$src)>; def : Pat<(extloadi16 XForm:$src), (LHZX8 XForm:$src)>; def : Pat<(extloadi32 DForm:$src), (LWZ8 DForm:$src)>; def : Pat<(extloadi32 XForm:$src), (LWZX8 XForm:$src)>; // Standard shifts. These are represented separately from the real shifts above // so that we can distinguish between shifts that allow 6-bit and 7-bit shift // amounts. def : Pat<(sra i64:$rS, i32:$rB), (SRAD $rS, $rB)>; def : Pat<(srl i64:$rS, i32:$rB), (SRD $rS, $rB)>; def : Pat<(shl i64:$rS, i32:$rB), (SLD $rS, $rB)>; // SUBFIC def : Pat<(sub imm64SExt16:$imm, i64:$in), (SUBFIC8 $in, imm:$imm)>; // SHL/SRL def : Pat<(shl i64:$in, (i32 imm:$imm)), (RLDICR $in, imm:$imm, (SHL64 imm:$imm))>; def : Pat<(srl i64:$in, (i32 imm:$imm)), (RLDICL $in, (SRL64 imm:$imm), imm:$imm)>; // ROTL def : Pat<(rotl i64:$in, i32:$sh), (RLDCL $in, $sh, 0)>; def : Pat<(rotl i64:$in, (i32 imm:$imm)), (RLDICL $in, imm:$imm, 0)>; // Hi and Lo for Darwin Global Addresses. def : Pat<(PPChi tglobaladdr:$in, 0), (LIS8 tglobaladdr:$in)>; def : Pat<(PPClo tglobaladdr:$in, 0), (LI8 tglobaladdr:$in)>; def : Pat<(PPChi tconstpool:$in , 0), (LIS8 tconstpool:$in)>; def : Pat<(PPClo tconstpool:$in , 0), (LI8 tconstpool:$in)>; def : Pat<(PPChi tjumptable:$in , 0), (LIS8 tjumptable:$in)>; def : Pat<(PPClo tjumptable:$in , 0), (LI8 tjumptable:$in)>; def : Pat<(PPChi tblockaddress:$in, 0), (LIS8 tblockaddress:$in)>; def : Pat<(PPClo tblockaddress:$in, 0), (LI8 tblockaddress:$in)>; def : Pat<(PPChi tglobaltlsaddr:$g, i64:$in), (ADDIS8 $in, tglobaltlsaddr:$g)>; def : Pat<(PPClo tglobaltlsaddr:$g, i64:$in), (ADDI8 $in, tglobaltlsaddr:$g)>; def : Pat<(add i64:$in, (PPChi tglobaladdr:$g, 0)), (ADDIS8 $in, tglobaladdr:$g)>; def : Pat<(add i64:$in, (PPChi tconstpool:$g, 0)), (ADDIS8 $in, tconstpool:$g)>; def : Pat<(add i64:$in, (PPChi tjumptable:$g, 0)), (ADDIS8 $in, tjumptable:$g)>; def : Pat<(add i64:$in, (PPChi tblockaddress:$g, 0)), (ADDIS8 $in, tblockaddress:$g)>; // AIX 64-bit small code model TLS access. // This is used for global dynamic accesses when loading the region handle and // variable offset, and also for local-exec accesses to load the offset of a // TLS variable from the TOC, prior to adding it to r13. def : Pat<(i64 (PPCtoc_entry tglobaltlsaddr:$disp, i64:$reg)), (i64 (LDtoc tglobaltlsaddr:$disp, i64:$reg))>; // The following pattern matches 64-bit local- and initial-exec TLS accesses on AIX. // PPCaddTls is used in local- and initial-exec accesses in order to: // - Get the address of a variable (adding the variable offset to the thread // pointer in r13). // - Create an opportunity to optimize the user of the loaded address. def : Pat<(PPCaddTls i64:$in, i64:$addr), (ADD8TLS $in, $addr)>; // 64-bits atomic loads and stores def : Pat<(atomic_load_64 DSForm:$src), (LD memrix:$src)>; def : Pat<(atomic_load_64 XForm:$src), (LDX memrr:$src)>; def : Pat<(atomic_store_64 i64:$val, DSForm:$ptr), (STD g8rc:$val, memrix:$ptr)>; def : Pat<(atomic_store_64 i64:$val, XForm:$ptr), (STDX g8rc:$val, memrr:$ptr)>; let Predicates = [IsISA3_0, In64BitMode] in { def : Pat<(i64 (int_ppc_cmpeqb g8rc:$a, g8rc:$b)), (i64 (SETB8 (CMPEQB $a, $b)))>; def : Pat<(i64 (int_ppc_setb g8rc:$a, g8rc:$b)), (i64 (SETB8 (CMPD $a, $b)))>; def : Pat<(i64 (int_ppc_maddhd g8rc:$a, g8rc:$b, g8rc:$c)), (i64 (MADDHD $a, $b, $c))>; def : Pat<(i64 (int_ppc_maddhdu g8rc:$a, g8rc:$b, g8rc:$c)), (i64 (MADDHDU $a, $b, $c))>; def : Pat<(i64 (int_ppc_maddld g8rc:$a, g8rc:$b, g8rc:$c)), (i64 (MADDLD8 $a, $b, $c))>; } let Predicates = [In64BitMode] in { def : Pat<(i64 (int_ppc_mulhd g8rc:$a, g8rc:$b)), (i64 (MULHD $a, $b))>; def : Pat<(i64 (int_ppc_mulhdu g8rc:$a, g8rc:$b)), (i64 (MULHDU $a, $b))>; def : Pat<(int_ppc_load8r ForceXForm:$ptr), (LDBRX ForceXForm:$ptr)>; def : Pat<(int_ppc_store8r g8rc:$a, ForceXForm:$ptr), (STDBRX g8rc:$a, ForceXForm:$ptr)>; } def : Pat<(i64 (int_ppc_cmpb g8rc:$a, g8rc:$b)), (i64 (CMPB8 $a, $b))>; let Predicates = [IsISA3_0] in { // DARN (deliver random number) // L=0 for 32-bit, L=1 for conditioned random, L=2 for raw random def : Pat<(int_ppc_darn32), (EXTRACT_SUBREG (DARN 0), sub_32)>; def : Pat<(int_ppc_darn), (DARN 1)>; def : Pat<(int_ppc_darnraw), (DARN 2)>; class X_RA5_RB5 opcode, bits<10> xo, string opc, RegisterOperand ty, InstrItinClass itin, list pattern> : X_L1_RS5_RS5{ let L = 1; } class X_L1_RA5_RB5 opcode, bits<10> xo, string opc, RegisterOperand ty, InstrItinClass itin, list pattern> : X_L1_RS5_RS5; let Interpretation64Bit = 1, isCodeGenOnly = 1 in { def CP_COPY8 : X_RA5_RB5<31, 774, "copy" , g8rc, IIC_LdStCOPY, []>; def CP_PASTE8_rec : X_L1_RA5_RB5<31, 902, "paste.", g8rc, IIC_LdStPASTE, []>,isRecordForm; } // SLB Invalidate Entry Global def SLBIEG : XForm_26<31, 466, (outs), (ins gprc:$RST, gprc:$RB), "slbieg $RST, $RB", IIC_SprSLBIEG, []>; // SLB Synchronize def SLBSYNC : XForm_0<31, 338, (outs), (ins), "slbsync", IIC_SprSLBSYNC, []>; } // IsISA3_0 def : Pat<(int_ppc_stdcx ForceXForm:$dst, g8rc:$A), (STDCX g8rc:$A, ForceXForm:$dst)>; def : Pat<(PPCStoreCond ForceXForm:$dst, g8rc:$A, 8), (STDCX g8rc:$A, ForceXForm:$dst)>; def : Pat<(i64 (int_ppc_mfspr timm:$SPR)), (MFSPR8 $SPR)>; def : Pat<(int_ppc_mtspr timm:$SPR, g8rc:$RT), (MTSPR8 $SPR, $RT)>;