//===-- NVPTXISelDAGToDAG.cpp - A dag to dag inst selector for NVPTX ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the NVPTX target. // //===----------------------------------------------------------------------===// #include "NVPTXISelDAGToDAG.h" #include "NVPTX.h" #include "NVPTXUtilities.h" #include "llvm/ADT/APInt.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/NVVMIntrinsicUtils.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; #define DEBUG_TYPE "nvptx-isel" #define PASS_NAME "NVPTX DAG->DAG Pattern Instruction Selection" static cl::opt EnableRsqrtOpt("nvptx-rsqrt-approx-opt", cl::init(true), cl::Hidden, cl::desc("Enable reciprocal sqrt optimization")); /// createNVPTXISelDag - This pass converts a legalized DAG into a /// NVPTX-specific DAG, ready for instruction scheduling. FunctionPass *llvm::createNVPTXISelDag(NVPTXTargetMachine &TM, llvm::CodeGenOptLevel OptLevel) { return new NVPTXDAGToDAGISelLegacy(TM, OptLevel); } NVPTXDAGToDAGISelLegacy::NVPTXDAGToDAGISelLegacy(NVPTXTargetMachine &tm, CodeGenOptLevel OptLevel) : SelectionDAGISelLegacy( ID, std::make_unique(tm, OptLevel)) {} char NVPTXDAGToDAGISelLegacy::ID = 0; INITIALIZE_PASS(NVPTXDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) NVPTXDAGToDAGISel::NVPTXDAGToDAGISel(NVPTXTargetMachine &tm, CodeGenOptLevel OptLevel) : SelectionDAGISel(tm, OptLevel), TM(tm) {} bool NVPTXDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget(); Scopes = NVPTXScopes(MF.getFunction().getContext()); return SelectionDAGISel::runOnMachineFunction(MF); } NVPTX::DivPrecisionLevel NVPTXDAGToDAGISel::getDivF32Level(const SDNode *N) const { return Subtarget->getTargetLowering()->getDivF32Level(*MF, *N); } bool NVPTXDAGToDAGISel::usePrecSqrtF32(const SDNode *N) const { return Subtarget->getTargetLowering()->usePrecSqrtF32(N); } bool NVPTXDAGToDAGISel::useF32FTZ() const { return Subtarget->getTargetLowering()->useF32FTZ(*MF); } bool NVPTXDAGToDAGISel::allowFMA() const { const NVPTXTargetLowering *TL = Subtarget->getTargetLowering(); return TL->allowFMA(*MF, OptLevel); } bool NVPTXDAGToDAGISel::doRsqrtOpt() const { return EnableRsqrtOpt; } /// Select - Select instructions not customized! Used for /// expanded, promoted and normal instructions. void NVPTXDAGToDAGISel::Select(SDNode *N) { if (N->isMachineOpcode()) { N->setNodeId(-1); return; // Already selected. } switch (N->getOpcode()) { case ISD::LOAD: case ISD::ATOMIC_LOAD: if (tryLoad(N)) return; break; case ISD::STORE: case ISD::ATOMIC_STORE: if (tryStore(N)) return; break; case ISD::ATOMIC_FENCE: if (tryFence(N)) return; break; case NVPTXISD::UNPACK_VECTOR: tryUNPACK_VECTOR(N); return; case ISD::EXTRACT_VECTOR_ELT: if (tryEXTRACT_VECTOR_ELEMENT(N)) return; break; case NVPTXISD::SETP_F16X2: SelectSETP_F16X2(N); return; case NVPTXISD::SETP_BF16X2: SelectSETP_BF16X2(N); return; case NVPTXISD::LoadV2: case NVPTXISD::LoadV4: case NVPTXISD::LoadV8: if (tryLoadVector(N)) return; break; case NVPTXISD::LDUV2: case NVPTXISD::LDUV4: if (tryLDU(N)) return; break; case NVPTXISD::StoreV2: case NVPTXISD::StoreV4: case NVPTXISD::StoreV8: if (tryStoreVector(N)) return; break; case ISD::INTRINSIC_W_CHAIN: if (tryIntrinsicChain(N)) return; break; case ISD::INTRINSIC_VOID: if (tryIntrinsicVoid(N)) return; break; case ISD::AND: case ISD::SRA: case ISD::SRL: // Try to select BFE if (tryBFE(N)) return; break; case ISD::ADDRSPACECAST: SelectAddrSpaceCast(N); return; case ISD::CopyToReg: { if (N->getOperand(1).getValueType() == MVT::i128) { SelectV2I64toI128(N); return; } break; } case ISD::CopyFromReg: { if (N->getOperand(1).getValueType() == MVT::i128) { SelectI128toV2I64(N); return; } break; } case NVPTXISD::ATOMIC_CMP_SWAP_B128: case NVPTXISD::ATOMIC_SWAP_B128: selectAtomicSwap128(N); return; case ISD::FADD: case ISD::FMUL: case ISD::FSUB: if (tryBF16ArithToFMA(N)) return; break; default: break; } SelectCode(N); } #define TCGEN05_LD_OPCODE(SHAPE, NUM) \ (enablePack ? NVPTX::TCGEN05_LD_##SHAPE##_##NUM##_PACK \ : NVPTX::TCGEN05_LD_##SHAPE##_##NUM) static unsigned getTcgen05LdOpcode(unsigned IID, bool enablePack) { switch (IID) { case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: return TCGEN05_LD_OPCODE(16x64b, x1); case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: return TCGEN05_LD_OPCODE(16x64b, x2); case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: return TCGEN05_LD_OPCODE(16x64b, x4); case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: return TCGEN05_LD_OPCODE(16x64b, x8); case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: return TCGEN05_LD_OPCODE(16x64b, x16); case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: return TCGEN05_LD_OPCODE(16x64b, x32); case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: return TCGEN05_LD_OPCODE(16x64b, x64); case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: return TCGEN05_LD_OPCODE(16x64b, x128); case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: return TCGEN05_LD_OPCODE(16x128b, x1); case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: return TCGEN05_LD_OPCODE(16x128b, x2); case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: return TCGEN05_LD_OPCODE(16x128b, x4); case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: return TCGEN05_LD_OPCODE(16x128b, x8); case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: return TCGEN05_LD_OPCODE(16x128b, x16); case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: return TCGEN05_LD_OPCODE(16x128b, x32); case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: return TCGEN05_LD_OPCODE(16x128b, x64); case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: return TCGEN05_LD_OPCODE(16x256b, x1); case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: return TCGEN05_LD_OPCODE(16x256b, x2); case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: return TCGEN05_LD_OPCODE(16x256b, x4); case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: return TCGEN05_LD_OPCODE(16x256b, x8); case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: return TCGEN05_LD_OPCODE(16x256b, x16); case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: return TCGEN05_LD_OPCODE(16x256b, x32); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: return TCGEN05_LD_OPCODE(16x32bx2, x1); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: return TCGEN05_LD_OPCODE(16x32bx2, x2); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: return TCGEN05_LD_OPCODE(16x32bx2, x4); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: return TCGEN05_LD_OPCODE(16x32bx2, x8); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: return TCGEN05_LD_OPCODE(16x32bx2, x16); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: return TCGEN05_LD_OPCODE(16x32bx2, x32); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: return TCGEN05_LD_OPCODE(16x32bx2, x64); case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: return TCGEN05_LD_OPCODE(16x32bx2, x128); case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: return TCGEN05_LD_OPCODE(32x32b, x1); case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: return TCGEN05_LD_OPCODE(32x32b, x2); case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: return TCGEN05_LD_OPCODE(32x32b, x4); case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: return TCGEN05_LD_OPCODE(32x32b, x8); case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: return TCGEN05_LD_OPCODE(32x32b, x16); case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: return TCGEN05_LD_OPCODE(32x32b, x32); case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: return TCGEN05_LD_OPCODE(32x32b, x64); case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: return TCGEN05_LD_OPCODE(32x32b, x128); } llvm_unreachable("unhandled tcgen05.ld lowering"); } void NVPTXDAGToDAGISel::SelectTcgen05Ld(SDNode *N, bool hasOffset) { SDLoc DL(N); unsigned IID = cast(N->getOperand(1))->getZExtValue(); if (hasOffset) { bool enablePack = cast(N->getOperand(4))->getZExtValue(); auto OffsetNode = CurDAG->getTargetConstant( cast(N->getOperand(3))->getZExtValue(), DL, MVT::i32); ReplaceNode(N, CurDAG->getMachineNode( getTcgen05LdOpcode(IID, enablePack), DL, N->getVTList(), {N->getOperand(2), OffsetNode, N->getOperand(0)})); } else { bool enablePack = cast(N->getOperand(3))->getZExtValue(); ReplaceNode(N, CurDAG->getMachineNode( getTcgen05LdOpcode(IID, enablePack), DL, N->getVTList(), {N->getOperand(2), N->getOperand(0)})); } } bool NVPTXDAGToDAGISel::tryIntrinsicChain(SDNode *N) { unsigned IID = N->getConstantOperandVal(1); switch (IID) { default: return false; case Intrinsic::nvvm_ldu_global_f: case Intrinsic::nvvm_ldu_global_i: case Intrinsic::nvvm_ldu_global_p: return tryLDU(N); case Intrinsic::nvvm_tcgen05_ld_16x64b_x1: case Intrinsic::nvvm_tcgen05_ld_16x64b_x2: case Intrinsic::nvvm_tcgen05_ld_16x64b_x4: case Intrinsic::nvvm_tcgen05_ld_16x64b_x8: case Intrinsic::nvvm_tcgen05_ld_16x64b_x16: case Intrinsic::nvvm_tcgen05_ld_16x64b_x32: case Intrinsic::nvvm_tcgen05_ld_16x64b_x64: case Intrinsic::nvvm_tcgen05_ld_16x64b_x128: case Intrinsic::nvvm_tcgen05_ld_16x128b_x1: case Intrinsic::nvvm_tcgen05_ld_16x128b_x2: case Intrinsic::nvvm_tcgen05_ld_16x128b_x4: case Intrinsic::nvvm_tcgen05_ld_16x128b_x16: case Intrinsic::nvvm_tcgen05_ld_16x128b_x32: case Intrinsic::nvvm_tcgen05_ld_16x128b_x64: case Intrinsic::nvvm_tcgen05_ld_16x256b_x1: case Intrinsic::nvvm_tcgen05_ld_16x128b_x8: case Intrinsic::nvvm_tcgen05_ld_16x256b_x2: case Intrinsic::nvvm_tcgen05_ld_16x256b_x4: case Intrinsic::nvvm_tcgen05_ld_16x256b_x8: case Intrinsic::nvvm_tcgen05_ld_16x256b_x16: case Intrinsic::nvvm_tcgen05_ld_16x256b_x32: case Intrinsic::nvvm_tcgen05_ld_32x32b_x1: case Intrinsic::nvvm_tcgen05_ld_32x32b_x2: case Intrinsic::nvvm_tcgen05_ld_32x32b_x4: case Intrinsic::nvvm_tcgen05_ld_32x32b_x8: case Intrinsic::nvvm_tcgen05_ld_32x32b_x16: case Intrinsic::nvvm_tcgen05_ld_32x32b_x32: case Intrinsic::nvvm_tcgen05_ld_32x32b_x64: case Intrinsic::nvvm_tcgen05_ld_32x32b_x128: { SelectTcgen05Ld(N); return true; } case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: { SelectTcgen05Ld(N, /* hasOffset */ true); return true; } } } // Map ISD:CONDCODE value to appropriate CmpMode expected by // NVPTXInstPrinter::printCmpMode() SDValue NVPTXDAGToDAGISel::getPTXCmpMode(const CondCodeSDNode &CondCode) { using NVPTX::PTXCmpMode::CmpMode; const unsigned PTXCmpMode = [](ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unexpected condition code."); case ISD::SETOEQ: case ISD::SETEQ: return CmpMode::EQ; case ISD::SETOGT: case ISD::SETGT: return CmpMode::GT; case ISD::SETOGE: case ISD::SETGE: return CmpMode::GE; case ISD::SETOLT: case ISD::SETLT: return CmpMode::LT; case ISD::SETOLE: case ISD::SETLE: return CmpMode::LE; case ISD::SETONE: case ISD::SETNE: return CmpMode::NE; case ISD::SETO: return CmpMode::NUM; case ISD::SETUO: return CmpMode::NotANumber; case ISD::SETUEQ: return CmpMode::EQU; case ISD::SETUGT: return CmpMode::GTU; case ISD::SETUGE: return CmpMode::GEU; case ISD::SETULT: return CmpMode::LTU; case ISD::SETULE: return CmpMode::LEU; case ISD::SETUNE: return CmpMode::NEU; } }(CondCode.get()); return CurDAG->getTargetConstant(PTXCmpMode, SDLoc(), MVT::i32); } bool NVPTXDAGToDAGISel::SelectSETP_F16X2(SDNode *N) { SDValue PTXCmpMode = getPTXCmpMode(*cast(N->getOperand(2))); SDLoc DL(N); SDNode *SetP = CurDAG->getMachineNode( NVPTX::SETP_f16x2rr, DL, MVT::i1, MVT::i1, {N->getOperand(0), N->getOperand(1), PTXCmpMode, CurDAG->getTargetConstant(useF32FTZ() ? 1 : 0, DL, MVT::i1)}); ReplaceNode(N, SetP); return true; } bool NVPTXDAGToDAGISel::SelectSETP_BF16X2(SDNode *N) { SDValue PTXCmpMode = getPTXCmpMode(*cast(N->getOperand(2))); SDLoc DL(N); SDNode *SetP = CurDAG->getMachineNode( NVPTX::SETP_bf16x2rr, DL, MVT::i1, MVT::i1, {N->getOperand(0), N->getOperand(1), PTXCmpMode, CurDAG->getTargetConstant(useF32FTZ() ? 1 : 0, DL, MVT::i1)}); ReplaceNode(N, SetP); return true; } bool NVPTXDAGToDAGISel::tryUNPACK_VECTOR(SDNode *N) { SDValue Vector = N->getOperand(0); MVT EltVT = N->getSimpleValueType(0); MachineSDNode *N2 = CurDAG->getMachineNode(NVPTX::I64toV2I32, SDLoc(N), EltVT, EltVT, Vector); ReplaceNode(N, N2); return true; } // Find all instances of extract_vector_elt that use this v2f16 vector // and coalesce them into a scattering move instruction. bool NVPTXDAGToDAGISel::tryEXTRACT_VECTOR_ELEMENT(SDNode *N) { SDValue Vector = N->getOperand(0); MVT VT = Vector.getSimpleValueType(); if (!(NVPTX::isPackedVectorTy(VT) && VT.getVectorNumElements() == 2)) return false; unsigned Opcode; if (VT.is32BitVector()) Opcode = NVPTX::I32toV2I16; else if (VT.is64BitVector()) Opcode = NVPTX::I64toV2I32; else llvm_unreachable("Unhandled packed type"); // Find and record all uses of this vector that extract element 0 or 1. SmallVector E0, E1; for (auto *U : Vector.getNode()->users()) { if (U->getOpcode() != ISD::EXTRACT_VECTOR_ELT) continue; if (U->getOperand(0) != Vector) continue; if (const ConstantSDNode *IdxConst = dyn_cast(U->getOperand(1))) { if (IdxConst->getZExtValue() == 0) E0.push_back(U); else if (IdxConst->getZExtValue() == 1) E1.push_back(U); else llvm_unreachable("Invalid vector index."); } } // There's no point scattering f16x2 if we only ever access one // element of it. if (E0.empty() || E1.empty()) return false; // Merge (EltTy extractelt(V, 0), EltTy extractelt(V,1)) // into EltTy,EltTy Split[EltTy]x2(V) MVT EltVT = VT.getVectorElementType(); SDNode *ScatterOp = CurDAG->getMachineNode(Opcode, SDLoc(N), EltVT, EltVT, Vector); for (auto *Node : E0) ReplaceUses(SDValue(Node, 0), SDValue(ScatterOp, 0)); for (auto *Node : E1) ReplaceUses(SDValue(Node, 0), SDValue(ScatterOp, 1)); return true; } static std::optional convertAS(unsigned AS) { switch (AS) { case llvm::ADDRESS_SPACE_LOCAL: return NVPTX::AddressSpace::Local; case llvm::ADDRESS_SPACE_GLOBAL: return NVPTX::AddressSpace::Global; case llvm::ADDRESS_SPACE_SHARED: return NVPTX::AddressSpace::Shared; case llvm::ADDRESS_SPACE_SHARED_CLUSTER: return NVPTX::AddressSpace::SharedCluster; case llvm::ADDRESS_SPACE_GENERIC: return NVPTX::AddressSpace::Generic; case llvm::ADDRESS_SPACE_PARAM: return NVPTX::AddressSpace::Param; case llvm::ADDRESS_SPACE_CONST: return NVPTX::AddressSpace::Const; default: return std::nullopt; } } NVPTX::AddressSpace NVPTXDAGToDAGISel::getAddrSpace(const MemSDNode *N) { return convertAS(N->getMemOperand()->getAddrSpace()) .value_or(NVPTX::AddressSpace::Generic); } NVPTX::Ordering NVPTXDAGToDAGISel::getMemOrder(const MemSDNode *N) const { // No "sem" orderings for SM/PTX versions which do not support memory ordering if (!Subtarget->hasMemoryOrdering()) return NVPTX::Ordering::NotAtomic; auto Ordering = N->getMergedOrdering(); switch (Ordering) { case AtomicOrdering::NotAtomic: return NVPTX::Ordering::NotAtomic; case AtomicOrdering::Unordered: case AtomicOrdering::Monotonic: return NVPTX::Ordering::Relaxed; case AtomicOrdering::Acquire: return NVPTX::Ordering::Acquire; case AtomicOrdering::Release: return NVPTX::Ordering::Release; case AtomicOrdering::AcquireRelease: return NVPTX::Ordering::AcquireRelease; case AtomicOrdering::SequentiallyConsistent: return NVPTX::Ordering::SequentiallyConsistent; } llvm_unreachable("Invalid atomic ordering"); } NVPTX::Scope NVPTXDAGToDAGISel::getAtomicScope(const MemSDNode *N) const { // No "scope" modifier for SM/PTX versions which do not support scoped atomics // Functionally, these atomics are at device scope if (!Subtarget->hasAtomScope()) return NVPTX::Scope::DefaultDevice; return Scopes[N->getSyncScopeID()]; } namespace { struct OperationOrderings { NVPTX::Ordering InstructionOrdering, FenceOrdering; OperationOrderings(NVPTX::Ordering IO = NVPTX::Ordering::NotAtomic, NVPTX::Ordering FO = NVPTX::Ordering::NotAtomic) : InstructionOrdering(IO), FenceOrdering(FO) {} }; static OperationOrderings getOperationOrderings(MemSDNode *N, const NVPTXSubtarget *Subtarget) { AtomicOrdering Ordering = N->getSuccessOrdering(); auto CodeAddrSpace = NVPTXDAGToDAGISel::getAddrSpace(N); bool HasMemoryOrdering = Subtarget->hasMemoryOrdering(); bool HasRelaxedMMIO = Subtarget->hasRelaxedMMIO(); // clang-format off // Lowering for Load/Store Operations (note: AcquireRelease Loads or Stores error). // Note: uses of Relaxed in the Atomic column of this table refer // to LLVM AtomicOrdering::Monotonic. // // | Atomic | Volatile | Statespace | PTX sm_60- | PTX sm_70+ | // |---------|----------|--------------------|------------|------------------------------| // | No | No | All | plain | .weak | // | No | Yes | Generic,Shared, | .volatile | .volatile | // | | | Global [0] | | | // | No | Yes | Local,Const,Param | plain [1] | .weak [1] | // | Unorder | Yes/No | All | == Relaxed | == Relaxed | // | Relaxed | No | Generic,Shared, | .volatile | | // | | | Global [0] | | | // | Other | No | Generic,Shared, | Error [2] | | // | | | Global [0] | | | // | Yes | No | Local,Const,Param | plain [1] | .weak [1] | // | Relaxed | Yes | Generic,Shared [0] | .volatile | .volatile | // | Relaxed | Yes | Global [0] | .volatile | .mmio.relaxed.sys (PTX 8.2+) | // | | | | | or .volatile (PTX 8.1-) | // | Relaxed | Yes | Local,Const,Param | plain [1] | .weak [1] | // | Other | Yes | Generic, Shared, | Error [2] | [3] | // | | | / Global [0] | | | // Lowering of CUDA C++ SequentiallyConsistent Operations and Fences to PTX // by following the ABI proven sound in: // Lustig et al, A Formal Analysis of the NVIDIA PTX Memory Consistency Model, ASPLOS’19. // https://dl.acm.org/doi/pdf/10.1145/3297858.3304043 // // | CUDA C++ Atomic Operation or Atomic Fence | PTX Atomic Operation or Fence | // |------------------------------------------------------|-------------------------------| // | cuda::atomic_thread_fence | fence.sc.; | // | (memory_order_seq_cst, cuda::thread_scope_) | | // |------------------------------------------------------|-------------------------------| // | cuda::atomic_load | fence.sc.; | // | (memory_order_seq_cst, cuda::thread_scope_) | ld.acquire.; | // |------------------------------------------------------|-------------------------------| // | cuda::atomic_store | fence.sc.; | // | (memory_order_seq_cst, cuda::thread_scope_) | st.release.; | // |------------------------------------------------------|-------------------------------| // | cuda::atomic_fetch_ | fence.sc.; | // | (memory_order_seq_cst, cuda::thread_scope_) | atom.acq_rel.; | // clang-format on // [0]: volatile and atomics are only supported on global or shared // memory locations, accessed via generic/shared/global pointers. // MMIO is only supported on global memory locations, // accessed via generic/global pointers. // TODO: Implement MMIO access via generic pointer to global. // Currently implemented for global pointers only. // [1]: Lowering volatile/atomic operations to non-volatile/non-atomic // PTX instructions fails to preserve their C++ side-effects. // // Example (https://github.com/llvm/llvm-project/issues/62057): // // void example() { // std::atomic True = true; // while (True.load(std::memory_order_relaxed)); // } // // A C++ program that calls "example" is well-defined: the infinite loop // performs an atomic operation. By lowering volatile/atomics to // "weak" memory operations, we are transforming the above into: // // void undefined_behavior() { // bool True = true; // while (True); // } // // which exhibits undefined behavior in both C++ and PTX. // // Calling "example" in CUDA C++ compiled for sm_60- exhibits undefined // behavior due to lack of Independent Forward Progress. Lowering these // to weak memory operations in sm_60- is therefore fine. // // TODO: lower atomic and volatile operations to memory locations // in local, const, and param to two PTX instructions in sm_70+: // - the "weak" memory instruction we are currently lowering to, and // - some other instruction that preserves the side-effect, e.g., // a dead dummy volatile load. if (CodeAddrSpace == NVPTX::AddressSpace::Local || CodeAddrSpace == NVPTX::AddressSpace::Const || CodeAddrSpace == NVPTX::AddressSpace::Param) { return NVPTX::Ordering::NotAtomic; } // [2]: Atomics with Ordering different than Unordered or Relaxed are not // supported on sm_60 and older; this includes volatile atomics. if (!(Ordering == AtomicOrdering::NotAtomic || Ordering == AtomicOrdering::Unordered || Ordering == AtomicOrdering::Monotonic) && !HasMemoryOrdering) { report_fatal_error( formatv("PTX does not support \"atomic\" for orderings different than" "\"NotAtomic\" or \"Monotonic\" for sm_60 or older, but order " "is: \"{}\".", toIRString(Ordering))); } // [3]: TODO: these should eventually use .mmio<.atomic sem>; for now we drop // the volatile semantics and preserve the atomic ones. // PTX volatile and PTX atomics are not available for statespace that differ // from .generic, .global, or .shared. The behavior of PTX volatile and PTX // atomics is undefined if the generic address does not refer to a .global or // .shared memory location. bool AddrGenericOrGlobalOrShared = (CodeAddrSpace == NVPTX::AddressSpace::Generic || CodeAddrSpace == NVPTX::AddressSpace::Global || CodeAddrSpace == NVPTX::AddressSpace::Shared || CodeAddrSpace == NVPTX::AddressSpace::SharedCluster); if (!AddrGenericOrGlobalOrShared) return NVPTX::Ordering::NotAtomic; bool UseRelaxedMMIO = HasRelaxedMMIO && CodeAddrSpace == NVPTX::AddressSpace::Global; switch (Ordering) { case AtomicOrdering::NotAtomic: return N->isVolatile() ? NVPTX::Ordering::Volatile : NVPTX::Ordering::NotAtomic; case AtomicOrdering::Unordered: // We lower unordered in the exact same way as 'monotonic' to respect // LLVM IR atomicity requirements. case AtomicOrdering::Monotonic: if (N->isVolatile()) return UseRelaxedMMIO ? NVPTX::Ordering::RelaxedMMIO : NVPTX::Ordering::Volatile; else return HasMemoryOrdering ? NVPTX::Ordering::Relaxed : NVPTX::Ordering::Volatile; // case AtomicOrdering::Consume: // If LLVM ever provides this, lower it to // Acquire. case AtomicOrdering::Acquire: if (!N->readMem()) report_fatal_error( formatv("PTX only supports Acquire Ordering on reads: {}", N->getOperationName())); return NVPTX::Ordering::Acquire; case AtomicOrdering::Release: if (!N->writeMem()) report_fatal_error( formatv("PTX only supports Release Ordering on writes: {}", N->getOperationName())); return NVPTX::Ordering::Release; case AtomicOrdering::AcquireRelease: { report_fatal_error( formatv("NVPTX does not support AcquireRelease Ordering on " "read-modify-write " "yet and PTX does not support it on loads or stores: {}", N->getOperationName())); } case AtomicOrdering::SequentiallyConsistent: { // LLVM-IR SequentiallyConsistent atomics map to a two-instruction PTX // sequence including a "fence.sc.sco" and the memory instruction with an // Ordering that differs from "sc": acq, rel, or acq_rel, depending on // whether the memory operation is a read, write, or read-modify-write. // // This sets the ordering of the fence to SequentiallyConsistent, and // sets the corresponding ordering for the instruction. NVPTX::Ordering InstrOrder; if (N->readMem()) InstrOrder = NVPTX::Ordering::Acquire; else if (N->writeMem()) InstrOrder = NVPTX::Ordering::Release; else report_fatal_error( formatv("NVPTX does not support SequentiallyConsistent Ordering on " "read-modify-writes yet: {}", N->getOperationName())); return OperationOrderings(InstrOrder, NVPTX::Ordering::SequentiallyConsistent); } } report_fatal_error( formatv("NVPTX backend does not support AtomicOrdering \"{}\" yet.", toIRString(Ordering))); } } // namespace NVPTX::Scope NVPTXDAGToDAGISel::getOperationScope(MemSDNode *N, NVPTX::Ordering O) const { switch (O) { case NVPTX::Ordering::NotAtomic: case NVPTX::Ordering::Volatile: // Non-atomic volatile operations // NVPTX uses Thread scope as the scope of non-atomic operations. return NVPTX::Scope::Thread; case NVPTX::Ordering::RelaxedMMIO: // RelaxedMMIO operations are always system scope. // If a RelaxedMMIO order was generated from an atomic volatile operation // with a smaller thread scope, we bump it here to system scope. return NVPTX::Scope::System; case NVPTX::Ordering::Relaxed: case NVPTX::Ordering::Acquire: case NVPTX::Ordering::Release: case NVPTX::Ordering::AcquireRelease: case NVPTX::Ordering::SequentiallyConsistent: auto S = Scopes[N->getSyncScopeID()]; // Atomic operations must have a scope greater than thread. if (S == NVPTX::Scope::Thread) report_fatal_error( formatv("Atomics need scope > \"{}\".", ScopeToString(S))); // If scope is cluster, clusters must be supported. if (S == NVPTX::Scope::Cluster) Subtarget->failIfClustersUnsupported("cluster scope"); // If operation is volatile, then its scope is system. return N->isVolatile() ? NVPTX::Scope::System : S; } llvm_unreachable("unhandled ordering"); } static bool canLowerToLDG(const MemSDNode &N, const NVPTXSubtarget &Subtarget, NVPTX::AddressSpace CodeAddrSpace) { // We use ldg (i.e. ld.global.nc) for invariant loads from the global address // space. return Subtarget.hasLDG() && CodeAddrSpace == NVPTX::AddressSpace::Global && N.isInvariant(); } static unsigned int getFenceOp(NVPTX::Ordering O, NVPTX::Scope S, NVPTXSubtarget const *T) { if (S == NVPTX::Scope::Cluster) T->failIfClustersUnsupported(".cluster scope fence"); // Fall back to .acq_rel if .acquire, .release is not supported. if (!T->hasSplitAcquireAndReleaseFences() && (O == NVPTX::Ordering::Acquire || O == NVPTX::Ordering::Release)) O = NVPTX::Ordering::AcquireRelease; switch (O) { case NVPTX::Ordering::Acquire: switch (S) { case NVPTX::Scope::System: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acquire_sys : NVPTX::INT_MEMBAR_SYS; case NVPTX::Scope::Block: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acquire_cta : NVPTX::INT_MEMBAR_CTA; case NVPTX::Scope::Cluster: return NVPTX::atomic_thread_fence_acquire_cluster; case NVPTX::Scope::Device: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acquire_gpu : NVPTX::INT_MEMBAR_GL; case NVPTX::Scope::Thread: case NVPTX::Scope::DefaultDevice: report_fatal_error( formatv("Unsupported scope \"{}\" for acquire/release/acq_rel fence.", ScopeToString(S))); } break; case NVPTX::Ordering::Release: switch (S) { case NVPTX::Scope::System: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_release_sys : NVPTX::INT_MEMBAR_SYS; case NVPTX::Scope::Block: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_release_cta : NVPTX::INT_MEMBAR_CTA; case NVPTX::Scope::Cluster: return NVPTX::atomic_thread_fence_release_cluster; case NVPTX::Scope::Device: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_release_gpu : NVPTX::INT_MEMBAR_GL; case NVPTX::Scope::Thread: case NVPTX::Scope::DefaultDevice: report_fatal_error( formatv("Unsupported scope \"{}\" for acquire/release/acq_rel fence.", ScopeToString(S))); } break; case NVPTX::Ordering::AcquireRelease: { switch (S) { case NVPTX::Scope::System: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acq_rel_sys : NVPTX::INT_MEMBAR_SYS; case NVPTX::Scope::Block: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acq_rel_cta : NVPTX::INT_MEMBAR_CTA; case NVPTX::Scope::Cluster: return NVPTX::atomic_thread_fence_acq_rel_cluster; case NVPTX::Scope::Device: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_acq_rel_gpu : NVPTX::INT_MEMBAR_GL; case NVPTX::Scope::Thread: case NVPTX::Scope::DefaultDevice: report_fatal_error( formatv("Unsupported scope \"{}\" for acquire/release/acq_rel fence.", ScopeToString(S))); } break; } case NVPTX::Ordering::SequentiallyConsistent: { switch (S) { case NVPTX::Scope::System: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_seq_cst_sys : NVPTX::INT_MEMBAR_SYS; case NVPTX::Scope::Block: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_seq_cst_cta : NVPTX::INT_MEMBAR_CTA; case NVPTX::Scope::Cluster: return NVPTX::atomic_thread_fence_seq_cst_cluster; case NVPTX::Scope::Device: return T->hasMemoryOrdering() ? NVPTX::atomic_thread_fence_seq_cst_gpu : NVPTX::INT_MEMBAR_GL; case NVPTX::Scope::Thread: case NVPTX::Scope::DefaultDevice: report_fatal_error(formatv("Unsupported scope \"{}\" for seq_cst fence.", ScopeToString(S))); } break; } case NVPTX::Ordering::NotAtomic: case NVPTX::Ordering::Relaxed: case NVPTX::Ordering::Volatile: case NVPTX::Ordering::RelaxedMMIO: report_fatal_error( formatv("Unsupported \"{}\" ordering and \"{}\" scope for fence.", OrderingToString(O), ScopeToString(S))); } llvm_unreachable("unhandled ordering"); } // Returns Memory Order and Scope of a memory instruction, and // inserts any fence before the instruction that's required to // implement its memory ordering. std::pair NVPTXDAGToDAGISel::insertMemoryInstructionFence(SDLoc DL, SDValue &Chain, MemSDNode *N) { auto [InstructionOrdering, FenceOrdering] = getOperationOrderings(N, Subtarget); auto Scope = getOperationScope(N, InstructionOrdering); // If a fence is required before the operation, insert it: switch (NVPTX::Ordering(FenceOrdering)) { case NVPTX::Ordering::NotAtomic: break; case NVPTX::Ordering::SequentiallyConsistent: { auto Op = getFenceOp(FenceOrdering, Scope, Subtarget); Chain = SDValue(CurDAG->getMachineNode(Op, DL, MVT::Other, Chain), 0); break; } default: report_fatal_error( formatv("Unexpected fence ordering: \"{}\".", OrderingToString(NVPTX::Ordering(FenceOrdering)))); } return {InstructionOrdering, Scope}; } void NVPTXDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) { SDValue Src = N->getOperand(0); AddrSpaceCastSDNode *CastN = cast(N); unsigned SrcAddrSpace = CastN->getSrcAddressSpace(); unsigned DstAddrSpace = CastN->getDestAddressSpace(); SDLoc DL(N); assert(SrcAddrSpace != DstAddrSpace && "addrspacecast must be between different address spaces"); if (DstAddrSpace == ADDRESS_SPACE_GENERIC) { // Specific to generic if (TM.is64Bit() && TM.getPointerSizeInBits(SrcAddrSpace) == 32) { SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE, DL, MVT::i32); SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_u64_u32, DL, MVT::i64, Src, CvtNone); Src = SDValue(Cvt, 0); } unsigned Opc; switch (SrcAddrSpace) { default: report_fatal_error("Bad address space in addrspacecast"); case ADDRESS_SPACE_GLOBAL: Opc = TM.is64Bit() ? NVPTX::cvta_global_64 : NVPTX::cvta_global; break; case ADDRESS_SPACE_SHARED: Opc = TM.is64Bit() ? NVPTX::cvta_shared_64 : NVPTX::cvta_shared; break; case ADDRESS_SPACE_SHARED_CLUSTER: if (!TM.is64Bit()) report_fatal_error( "Shared cluster address space is only supported in 64-bit mode"); Opc = NVPTX::cvta_shared_cluster_64; break; case ADDRESS_SPACE_CONST: Opc = TM.is64Bit() ? NVPTX::cvta_const_64 : NVPTX::cvta_const; break; case ADDRESS_SPACE_LOCAL: Opc = TM.is64Bit() ? NVPTX::cvta_local_64 : NVPTX::cvta_local; break; case ADDRESS_SPACE_PARAM: Opc = TM.is64Bit() ? NVPTX::cvta_param_64 : NVPTX::cvta_param; break; } ReplaceNode(N, CurDAG->getMachineNode(Opc, DL, N->getValueType(0), Src)); return; } else { // Generic to specific if (SrcAddrSpace != 0) report_fatal_error("Cannot cast between two non-generic address spaces"); unsigned Opc; switch (DstAddrSpace) { default: report_fatal_error("Bad address space in addrspacecast"); case ADDRESS_SPACE_GLOBAL: Opc = TM.is64Bit() ? NVPTX::cvta_to_global_64 : NVPTX::cvta_to_global; break; case ADDRESS_SPACE_SHARED: Opc = TM.is64Bit() ? NVPTX::cvta_to_shared_64 : NVPTX::cvta_to_shared; break; case ADDRESS_SPACE_SHARED_CLUSTER: if (!TM.is64Bit()) report_fatal_error( "Shared cluster address space is only supported in 64-bit mode"); Opc = NVPTX::cvta_to_shared_cluster_64; break; case ADDRESS_SPACE_CONST: Opc = TM.is64Bit() ? NVPTX::cvta_to_const_64 : NVPTX::cvta_to_const; break; case ADDRESS_SPACE_LOCAL: Opc = TM.is64Bit() ? NVPTX::cvta_to_local_64 : NVPTX::cvta_to_local; break; case ADDRESS_SPACE_PARAM: Opc = TM.is64Bit() ? NVPTX::cvta_to_param_64 : NVPTX::cvta_to_param; break; } SDNode *CVTA = CurDAG->getMachineNode(Opc, DL, N->getValueType(0), Src); if (TM.is64Bit() && TM.getPointerSizeInBits(DstAddrSpace) == 32) { SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE, DL, MVT::i32); CVTA = CurDAG->getMachineNode(NVPTX::CVT_u32_u64, DL, MVT::i32, SDValue(CVTA, 0), CvtNone); } ReplaceNode(N, CVTA); return; } } // Helper function template to reduce amount of boilerplate code for // opcode selection. static std::optional pickOpcodeForVT(MVT::SimpleValueType VT, std::optional Opcode_i16, std::optional Opcode_i32, std::optional Opcode_i64) { switch (VT) { case MVT::f16: case MVT::i16: case MVT::bf16: return Opcode_i16; case MVT::v2f16: case MVT::v2bf16: case MVT::v2i16: case MVT::v4i8: case MVT::i32: case MVT::f32: return Opcode_i32; case MVT::v2f32: case MVT::i64: case MVT::f64: return Opcode_i64; default: return std::nullopt; } } static inline bool isAddLike(const SDValue V) { return V.getOpcode() == ISD::ADD || (V->getOpcode() == ISD::OR && V->getFlags().hasDisjoint()); } static SDValue stripAssertAlign(SDValue N) { if (N.getOpcode() == ISD::AssertAlign) N = N.getOperand(0); return N; } // selectBaseADDR - Match a dag node which will serve as the base address for an // ADDR operand pair. static SDValue selectBaseADDR(SDValue N, SelectionDAG *DAG) { N = stripAssertAlign(N); if (const auto *GA = dyn_cast(N)) return DAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), GA->getValueType(0), GA->getOffset(), GA->getTargetFlags()); if (const auto *ES = dyn_cast(N)) return DAG->getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0), ES->getTargetFlags()); if (const auto *FIN = dyn_cast(N)) return DAG->getTargetFrameIndex(FIN->getIndex(), FIN->getValueType(0)); return N; } static SDValue accumulateOffset(SDValue &Addr, SDLoc DL, SelectionDAG *DAG) { Addr = stripAssertAlign(Addr); APInt AccumulatedOffset(64u, 0); while (isAddLike(Addr)) { const auto *CN = dyn_cast(Addr.getOperand(1)); if (!CN) break; const APInt CI = CN->getAPIntValue().sext(64); if (!(CI + AccumulatedOffset).isSignedIntN(32)) break; AccumulatedOffset += CI; Addr = stripAssertAlign(Addr->getOperand(0)); } return DAG->getSignedTargetConstant(AccumulatedOffset.getSExtValue(), DL, MVT::i32); } static std::pair selectADDR(SDValue Addr, SelectionDAG *DAG) { SDValue Offset = accumulateOffset(Addr, SDLoc(Addr), DAG); SDValue Base = selectBaseADDR(Addr, DAG); return {Base, Offset}; } // Select a pair of operands which represent a valid PTX address, this could be // one of the following things: // - [var] - Offset is simply set to 0 // - [reg] - Offset is simply set to 0 // - [reg+immOff] // - [var+immOff] // Note that immOff must fit into a 32-bit signed integer. bool NVPTXDAGToDAGISel::SelectADDR(SDValue Addr, SDValue &Base, SDValue &Offset) { std::tie(Base, Offset) = selectADDR(Addr, CurDAG); return true; } bool NVPTXDAGToDAGISel::tryLoad(SDNode *N) { MemSDNode *LD = cast(N); assert(LD->readMem() && "Expected load"); // do not support pre/post inc/dec const LoadSDNode *PlainLoad = dyn_cast(LD); if (PlainLoad && PlainLoad->isIndexed()) return false; // Address Space Setting const auto CodeAddrSpace = getAddrSpace(LD); if (canLowerToLDG(*LD, *Subtarget, CodeAddrSpace)) return tryLDG(LD); SDLoc DL(LD); SDValue Chain = N->getOperand(0); const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, LD); const unsigned FromTypeWidth = LD->getMemoryVT().getSizeInBits(); // Vector Setting const unsigned FromType = (PlainLoad && (PlainLoad->getExtensionType() == ISD::SEXTLOAD)) ? NVPTX::PTXLdStInstCode::Signed : NVPTX::PTXLdStInstCode::Untyped; assert(isPowerOf2_32(FromTypeWidth) && FromTypeWidth >= 8 && FromTypeWidth <= 128 && "Invalid width for load"); // Create the machine instruction DAG const auto [Base, Offset] = selectADDR(N->getOperand(1), CurDAG); SDValue Ops[] = {getI32Imm(Ordering, DL), getI32Imm(Scope, DL), getI32Imm(CodeAddrSpace, DL), getI32Imm(FromType, DL), getI32Imm(FromTypeWidth, DL), Base, Offset, Chain}; const MVT::SimpleValueType TargetVT = LD->getSimpleValueType(0).SimpleTy; const std::optional Opcode = pickOpcodeForVT(TargetVT, NVPTX::LD_i16, NVPTX::LD_i32, NVPTX::LD_i64); if (!Opcode) return false; SDNode *NVPTXLD = CurDAG->getMachineNode(*Opcode, DL, LD->getVTList(), Ops); if (!NVPTXLD) return false; MachineMemOperand *MemRef = LD->getMemOperand(); CurDAG->setNodeMemRefs(cast(NVPTXLD), {MemRef}); ReplaceNode(LD, NVPTXLD); return true; } static unsigned getStoreVectorNumElts(SDNode *N) { switch (N->getOpcode()) { case NVPTXISD::StoreV2: return 2; case NVPTXISD::StoreV4: return 4; case NVPTXISD::StoreV8: return 8; default: llvm_unreachable("Unexpected opcode"); } } bool NVPTXDAGToDAGISel::tryLoadVector(SDNode *N) { MemSDNode *LD = cast(N); // Address Space Setting const auto CodeAddrSpace = getAddrSpace(LD); if (canLowerToLDG(*LD, *Subtarget, CodeAddrSpace)) return tryLDG(LD); const MVT EltVT = LD->getSimpleValueType(0); SDLoc DL(LD); SDValue Chain = LD->getChain(); const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, LD); // Type Setting: fromType + fromTypeWidth // // Sign : ISD::SEXTLOAD // Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the // type is integer // Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float // Read at least 8 bits (predicates are stored as 8-bit values) // The last operand holds the original LoadSDNode::getExtensionType() value const unsigned ExtensionType = N->getConstantOperandVal(N->getNumOperands() - 1); const unsigned FromType = (ExtensionType == ISD::SEXTLOAD) ? NVPTX::PTXLdStInstCode::Signed : NVPTX::PTXLdStInstCode::Untyped; const unsigned FromTypeWidth = getFromTypeWidthForLoad(LD); assert(!(EltVT.isVector() && ExtensionType != ISD::NON_EXTLOAD)); const auto [Base, Offset] = selectADDR(N->getOperand(1), CurDAG); SDValue Ops[] = {getI32Imm(Ordering, DL), getI32Imm(Scope, DL), getI32Imm(CodeAddrSpace, DL), getI32Imm(FromType, DL), getI32Imm(FromTypeWidth, DL), Base, Offset, Chain}; std::optional Opcode; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case NVPTXISD::LoadV2: Opcode = pickOpcodeForVT(EltVT.SimpleTy, NVPTX::LDV_i16_v2, NVPTX::LDV_i32_v2, NVPTX::LDV_i64_v2); break; case NVPTXISD::LoadV4: Opcode = pickOpcodeForVT(EltVT.SimpleTy, NVPTX::LDV_i16_v4, NVPTX::LDV_i32_v4, NVPTX::LDV_i64_v4); break; case NVPTXISD::LoadV8: Opcode = pickOpcodeForVT(EltVT.SimpleTy, {/* no v8i16 */}, NVPTX::LDV_i32_v8, {/* no v8i64 */}); break; } if (!Opcode) return false; SDNode *NVPTXLD = CurDAG->getMachineNode(*Opcode, DL, LD->getVTList(), Ops); MachineMemOperand *MemRef = LD->getMemOperand(); CurDAG->setNodeMemRefs(cast(NVPTXLD), {MemRef}); ReplaceNode(LD, NVPTXLD); return true; } bool NVPTXDAGToDAGISel::tryLDG(MemSDNode *LD) { SDLoc DL(LD); unsigned ExtensionType; if (const auto *Load = dyn_cast(LD)) { ExtensionType = Load->getExtensionType(); } else { ExtensionType = LD->getConstantOperandVal(LD->getNumOperands() - 1); } const unsigned FromType = (ExtensionType == ISD::SEXTLOAD) ? NVPTX::PTXLdStInstCode::Signed : NVPTX::PTXLdStInstCode::Untyped; const unsigned FromTypeWidth = getFromTypeWidthForLoad(LD); assert(!(LD->getSimpleValueType(0).isVector() && ExtensionType != ISD::NON_EXTLOAD)); const auto [Base, Offset] = selectADDR(LD->getOperand(1), CurDAG); SDValue Ops[] = {getI32Imm(FromType, DL), getI32Imm(FromTypeWidth, DL), Base, Offset, LD->getChain()}; const MVT::SimpleValueType TargetVT = LD->getSimpleValueType(0).SimpleTy; std::optional Opcode; switch (LD->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case ISD::LOAD: Opcode = pickOpcodeForVT(TargetVT, NVPTX::LD_GLOBAL_NC_i16, NVPTX::LD_GLOBAL_NC_i32, NVPTX::LD_GLOBAL_NC_i64); break; case NVPTXISD::LoadV2: Opcode = pickOpcodeForVT(TargetVT, NVPTX::LD_GLOBAL_NC_v2i16, NVPTX::LD_GLOBAL_NC_v2i32, NVPTX::LD_GLOBAL_NC_v2i64); break; case NVPTXISD::LoadV4: Opcode = pickOpcodeForVT(TargetVT, NVPTX::LD_GLOBAL_NC_v4i16, NVPTX::LD_GLOBAL_NC_v4i32, NVPTX::LD_GLOBAL_NC_v4i64); break; case NVPTXISD::LoadV8: Opcode = pickOpcodeForVT(TargetVT, {/* no v8i16 */}, NVPTX::LD_GLOBAL_NC_v8i32, {/* no v8i64 */}); break; } if (!Opcode) return false; SDNode *NVPTXLDG = CurDAG->getMachineNode(*Opcode, DL, LD->getVTList(), Ops); ReplaceNode(LD, NVPTXLDG); return true; } unsigned NVPTXDAGToDAGISel::getFromTypeWidthForLoad(const MemSDNode *Mem) { auto TotalWidth = Mem->getMemoryVT().getSizeInBits(); auto NumElts = Mem->getNumValues() - 1; auto ElementBitWidth = TotalWidth / NumElts; assert(isPowerOf2_32(ElementBitWidth) && ElementBitWidth >= 8 && ElementBitWidth <= 128 && TotalWidth <= 256 && "Invalid width for load"); return ElementBitWidth; } bool NVPTXDAGToDAGISel::tryLDU(SDNode *N) { auto *LD = cast(N); SDLoc DL(N); const unsigned FromTypeWidth = getFromTypeWidthForLoad(LD); const MVT::SimpleValueType TargetVT = LD->getSimpleValueType(0).SimpleTy; // If this is an LDU intrinsic, the address is the third operand. If its an // LDU SD node (from custom vector handling), then its the second operand SDValue Addr = LD->getOperand(LD->getOpcode() == ISD::INTRINSIC_W_CHAIN ? 2 : 1); const auto [Base, Offset] = selectADDR(Addr, CurDAG); SDValue Ops[] = {getI32Imm(FromTypeWidth, DL), Base, Offset, LD->getChain()}; std::optional Opcode; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case ISD::INTRINSIC_W_CHAIN: Opcode = pickOpcodeForVT(TargetVT, NVPTX::LDU_GLOBAL_i16, NVPTX::LDU_GLOBAL_i32, NVPTX::LDU_GLOBAL_i64); break; case NVPTXISD::LDUV2: Opcode = pickOpcodeForVT(TargetVT, NVPTX::LDU_GLOBAL_v2i16, NVPTX::LDU_GLOBAL_v2i32, NVPTX::LDU_GLOBAL_v2i64); break; case NVPTXISD::LDUV4: Opcode = pickOpcodeForVT(TargetVT, NVPTX::LDU_GLOBAL_v4i16, NVPTX::LDU_GLOBAL_v4i32, {/* no v4i64 */}); break; } if (!Opcode) return false; SDNode *NVPTXLDU = CurDAG->getMachineNode(*Opcode, DL, LD->getVTList(), Ops); ReplaceNode(LD, NVPTXLDU); return true; } bool NVPTXDAGToDAGISel::tryStore(SDNode *N) { MemSDNode *ST = cast(N); assert(ST->writeMem() && "Expected store"); StoreSDNode *PlainStore = dyn_cast(ST); AtomicSDNode *AtomicStore = dyn_cast(ST); assert((PlainStore || AtomicStore) && "Expected store"); // do not support pre/post inc/dec if (PlainStore && PlainStore->isIndexed()) return false; // Address Space Setting const auto CodeAddrSpace = getAddrSpace(ST); SDLoc DL(ST); SDValue Chain = ST->getChain(); const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, ST); // Vector Setting const unsigned ToTypeWidth = ST->getMemoryVT().getSizeInBits(); // Create the machine instruction DAG SDValue Value = PlainStore ? PlainStore->getValue() : AtomicStore->getVal(); assert(isPowerOf2_32(ToTypeWidth) && ToTypeWidth >= 8 && ToTypeWidth <= 128 && "Invalid width for store"); const auto [Base, Offset] = selectADDR(ST->getBasePtr(), CurDAG); SDValue Ops[] = {selectPossiblyImm(Value), getI32Imm(Ordering, DL), getI32Imm(Scope, DL), getI32Imm(CodeAddrSpace, DL), getI32Imm(ToTypeWidth, DL), Base, Offset, Chain}; const std::optional Opcode = pickOpcodeForVT(Value.getSimpleValueType().SimpleTy, NVPTX::ST_i16, NVPTX::ST_i32, NVPTX::ST_i64); if (!Opcode) return false; SDNode *NVPTXST = CurDAG->getMachineNode(*Opcode, DL, MVT::Other, Ops); if (!NVPTXST) return false; MachineMemOperand *MemRef = ST->getMemOperand(); CurDAG->setNodeMemRefs(cast(NVPTXST), {MemRef}); ReplaceNode(ST, NVPTXST); return true; } bool NVPTXDAGToDAGISel::tryStoreVector(SDNode *N) { MemSDNode *ST = cast(N); const unsigned TotalWidth = ST->getMemoryVT().getSizeInBits(); // Address Space Setting const auto CodeAddrSpace = getAddrSpace(ST); if (CodeAddrSpace == NVPTX::AddressSpace::Const) { report_fatal_error("Cannot store to pointer that points to constant " "memory space"); } SDLoc DL(ST); SDValue Chain = ST->getChain(); const auto [Ordering, Scope] = insertMemoryInstructionFence(DL, Chain, ST); const unsigned NumElts = getStoreVectorNumElts(ST); SmallVector Ops; for (auto &V : ST->ops().slice(1, NumElts)) Ops.push_back(selectPossiblyImm(V)); SDValue Addr = N->getOperand(NumElts + 1); const unsigned ToTypeWidth = TotalWidth / NumElts; assert(isPowerOf2_32(ToTypeWidth) && ToTypeWidth >= 8 && ToTypeWidth <= 128 && TotalWidth <= 256 && "Invalid width for store"); const auto [Base, Offset] = selectADDR(Addr, CurDAG); Ops.append({getI32Imm(Ordering, DL), getI32Imm(Scope, DL), getI32Imm(CodeAddrSpace, DL), getI32Imm(ToTypeWidth, DL), Base, Offset, Chain}); const MVT::SimpleValueType EltVT = ST->getOperand(1).getSimpleValueType().SimpleTy; std::optional Opcode; switch (ST->getOpcode()) { default: return false; case NVPTXISD::StoreV2: Opcode = pickOpcodeForVT(EltVT, NVPTX::STV_i16_v2, NVPTX::STV_i32_v2, NVPTX::STV_i64_v2); break; case NVPTXISD::StoreV4: Opcode = pickOpcodeForVT(EltVT, NVPTX::STV_i16_v4, NVPTX::STV_i32_v4, NVPTX::STV_i64_v4); break; case NVPTXISD::StoreV8: Opcode = pickOpcodeForVT(EltVT, {/* no v8i16 */}, NVPTX::STV_i32_v8, {/* no v8i64 */}); break; } if (!Opcode) return false; SDNode *NVPTXST = CurDAG->getMachineNode(*Opcode, DL, MVT::Other, Ops); MachineMemOperand *MemRef = ST->getMemOperand(); CurDAG->setNodeMemRefs(cast(NVPTXST), {MemRef}); ReplaceNode(ST, NVPTXST); return true; } /// SelectBFE - Look for instruction sequences that can be made more efficient /// by using the 'bfe' (bit-field extract) PTX instruction bool NVPTXDAGToDAGISel::tryBFE(SDNode *N) { SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); SDValue Len; SDValue Start; SDValue Val; bool IsSigned = false; if (N->getOpcode() == ISD::AND) { // Canonicalize the operands // We want 'and %val, %mask' if (isa(LHS) && !isa(RHS)) { std::swap(LHS, RHS); } ConstantSDNode *Mask = dyn_cast(RHS); if (!Mask) { // We need a constant mask on the RHS of the AND return false; } // Extract the mask bits uint64_t MaskVal = Mask->getZExtValue(); if (!isMask_64(MaskVal)) { // We *could* handle shifted masks here, but doing so would require an // 'and' operation to fix up the low-order bits so we would trade // shr+and for bfe+and, which has the same throughput return false; } // How many bits are in our mask? int64_t NumBits = countr_one(MaskVal); Len = CurDAG->getTargetConstant(NumBits, DL, MVT::i32); if (LHS.getOpcode() == ISD::SRL || LHS.getOpcode() == ISD::SRA) { // We have a 'srl/and' pair, extract the effective start bit and length Val = LHS.getNode()->getOperand(0); Start = LHS.getNode()->getOperand(1); ConstantSDNode *StartConst = dyn_cast(Start); if (StartConst) { uint64_t StartVal = StartConst->getZExtValue(); // How many "good" bits do we have left? "good" is defined here as bits // that exist in the original value, not shifted in. int64_t GoodBits = Start.getValueSizeInBits() - StartVal; if (NumBits > GoodBits) { // Do not handle the case where bits have been shifted in. In theory // we could handle this, but the cost is likely higher than just // emitting the srl/and pair. return false; } Start = CurDAG->getTargetConstant(StartVal, DL, MVT::i32); } else { // Do not handle the case where the shift amount (can be zero if no srl // was found) is not constant. We could handle this case, but it would // require run-time logic that would be more expensive than just // emitting the srl/and pair. return false; } } else { // Do not handle the case where the LHS of the and is not a shift. While // it would be trivial to handle this case, it would just transform // 'and' -> 'bfe', but 'and' has higher-throughput. return false; } } else if (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) { if (LHS->getOpcode() == ISD::AND) { ConstantSDNode *ShiftCnst = dyn_cast(RHS); if (!ShiftCnst) { // Shift amount must be constant return false; } uint64_t ShiftAmt = ShiftCnst->getZExtValue(); SDValue AndLHS = LHS->getOperand(0); SDValue AndRHS = LHS->getOperand(1); // Canonicalize the AND to have the mask on the RHS if (isa(AndLHS)) { std::swap(AndLHS, AndRHS); } ConstantSDNode *MaskCnst = dyn_cast(AndRHS); if (!MaskCnst) { // Mask must be constant return false; } uint64_t MaskVal = MaskCnst->getZExtValue(); uint64_t NumZeros; uint64_t NumBits; if (isMask_64(MaskVal)) { NumZeros = 0; // The number of bits in the result bitfield will be the number of // trailing ones (the AND) minus the number of bits we shift off NumBits = llvm::countr_one(MaskVal) - ShiftAmt; } else if (isShiftedMask_64(MaskVal)) { NumZeros = llvm::countr_zero(MaskVal); unsigned NumOnes = llvm::countr_one(MaskVal >> NumZeros); // The number of bits in the result bitfield will be the number of // trailing zeros plus the number of set bits in the mask minus the // number of bits we shift off NumBits = NumZeros + NumOnes - ShiftAmt; } else { // This is not a mask we can handle return false; } if (ShiftAmt < NumZeros) { // Handling this case would require extra logic that would make this // transformation non-profitable return false; } Val = AndLHS; Start = CurDAG->getTargetConstant(ShiftAmt, DL, MVT::i32); Len = CurDAG->getTargetConstant(NumBits, DL, MVT::i32); // If pre-shift AND includes the sign bit in the bitfield, we must use // signed BFE to replicate that bit during bitfield extraction. If the // sign bit is not part of the mask, unsigned BFE will zero out upper bits // of the result if (N->getOpcode() == ISD::SRA) IsSigned = (ShiftAmt + NumBits) == Val.getValueSizeInBits(); } else if (LHS->getOpcode() == ISD::SHL) { // Here, we have a pattern like: // // (sra (shl val, NN), MM) // or // (srl (shl val, NN), MM) // // If MM >= NN, we can efficiently optimize this with bfe Val = LHS->getOperand(0); SDValue ShlRHS = LHS->getOperand(1); ConstantSDNode *ShlCnst = dyn_cast(ShlRHS); if (!ShlCnst) { // Shift amount must be constant return false; } uint64_t InnerShiftAmt = ShlCnst->getZExtValue(); SDValue ShrRHS = RHS; ConstantSDNode *ShrCnst = dyn_cast(ShrRHS); if (!ShrCnst) { // Shift amount must be constant return false; } uint64_t OuterShiftAmt = ShrCnst->getZExtValue(); // To avoid extra codegen and be profitable, we need Outer >= Inner if (OuterShiftAmt < InnerShiftAmt) { return false; } // If the outer shift is more than the type size, we have no bitfield to // extract (since we also check that the inner shift is <= the outer shift // then this also implies that the inner shift is < the type size) if (OuterShiftAmt >= Val.getValueSizeInBits()) { return false; } Start = CurDAG->getTargetConstant(OuterShiftAmt - InnerShiftAmt, DL, MVT::i32); Len = CurDAG->getTargetConstant(Val.getValueSizeInBits() - OuterShiftAmt, DL, MVT::i32); if (N->getOpcode() == ISD::SRA) { // If we have a arithmetic right shift, we need to use the signed bfe // variant IsSigned = true; } } else { // No can do... return false; } } else { // No can do... return false; } unsigned Opc; // For the BFE operations we form here from "and" and "srl", always use the // unsigned variants. if (Val.getValueType() == MVT::i32) { if (IsSigned) { Opc = NVPTX::BFE_S32rii; } else { Opc = NVPTX::BFE_U32rii; } } else if (Val.getValueType() == MVT::i64) { if (IsSigned) { Opc = NVPTX::BFE_S64rii; } else { Opc = NVPTX::BFE_U64rii; } } else { // We cannot handle this type return false; } SDValue Ops[] = { Val, Start, Len }; ReplaceNode(N, CurDAG->getMachineNode(Opc, DL, N->getVTList(), Ops)); return true; } // Select bf16/bf16v2 FADD, FSUB, FMUL as fma on targets with only fma bool NVPTXDAGToDAGISel::tryBF16ArithToFMA(SDNode *N) { EVT VT = SDValue(N, 0).getValueType(); if (VT.getScalarType() != MVT::bf16) return false; const NVPTXSubtarget *STI = TM.getSubtargetImpl(); if (STI->hasNativeBF16Support(N->getOpcode())) return false; const bool IsVec = VT.isVector(); assert(!IsVec || VT.getVectorNumElements() == 2); SDLoc DL(N); SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SmallVector Operands; auto GetConstant = [&](float Value) -> SDValue { // BF16 immediates must be legalized to integer register values APFloat APF(Value); bool LosesInfo; APF.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &LosesInfo); assert(!LosesInfo); if (IsVec) { auto API = APF.bitcastToAPInt(); API = API.concat(API); auto Const = CurDAG->getTargetConstant(API, DL, MVT::i32); return SDValue(CurDAG->getMachineNode(NVPTX::MOV_B32_i, DL, VT, Const), 0); } auto Const = CurDAG->getTargetConstantFP(APF, DL, VT); return SDValue(CurDAG->getMachineNode(NVPTX::MOV_BF16_i, DL, VT, Const), 0); }; switch (N->getOpcode()) { case ISD::FADD: // add(a, b) -> fma(a, 1.0, b) Operands = {N0, GetConstant(1.0), N1}; break; case ISD::FSUB: // sub(a, b) -> fma(b, -1.0, a) Operands = {N1, GetConstant(-1.0), N0}; break; case ISD::FMUL: // mul(a, b) -> fma(a, b, -0.0) // NOTE: The identity is -0, not 0, because -0 + 0 == 0 for floats Operands = {N0, N1, GetConstant(-0.0)}; break; default: llvm_unreachable("Unexpected opcode"); }; int Opcode = IsVec ? NVPTX::FMA_BF16x2rrr : NVPTX::FMA_BF16rrr; MachineSDNode *FMA = CurDAG->getMachineNode(Opcode, DL, VT, Operands); ReplaceNode(N, FMA); return true; } SDValue NVPTXDAGToDAGISel::selectPossiblyImm(SDValue V) { if (V.getOpcode() == ISD::BITCAST) V = V.getOperand(0); if (auto *CN = dyn_cast(V)) return CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(V), V.getValueType()); if (auto *CN = dyn_cast(V)) return CurDAG->getTargetConstantFP(CN->getValueAPF(), SDLoc(V), V.getValueType()); return V; } /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. bool NVPTXDAGToDAGISel::SelectInlineAsmMemoryOperand( const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, std::vector &OutOps) { switch (ConstraintID) { default: return true; case InlineAsm::ConstraintCode::m: { // memory const auto [Base, Offset] = selectADDR(Op, CurDAG); OutOps.push_back(Base); OutOps.push_back(Offset); return false; } } return true; } void NVPTXDAGToDAGISel::SelectV2I64toI128(SDNode *N) { // Lower a CopyToReg with two 64-bit inputs // Dst:i128, lo:i64, hi:i64 // // CopyToReg Dst, lo, hi; // // ==> // // tmp = V2I64toI128 {lo, hi}; // CopyToReg Dst, tmp; SDValue Dst = N->getOperand(1); SDValue Lo = N->getOperand(2); SDValue Hi = N->getOperand(3); SDLoc DL(N); SDNode *Mov = CurDAG->getMachineNode(NVPTX::V2I64toI128, DL, MVT::i128, {Lo, Hi}); SmallVector NewOps(N->getNumOperands() - 1); NewOps[0] = N->getOperand(0); NewOps[1] = Dst; NewOps[2] = SDValue(Mov, 0); if (N->getNumOperands() == 5) NewOps[3] = N->getOperand(4); SDValue NewValue = CurDAG->getNode(ISD::CopyToReg, DL, SmallVector(N->values()), NewOps); ReplaceNode(N, NewValue.getNode()); } void NVPTXDAGToDAGISel::SelectI128toV2I64(SDNode *N) { // Lower CopyFromReg from a 128-bit regs to two 64-bit regs // Dst:i128, Src:i128 // // {lo, hi} = CopyFromReg Src // // ==> // // {lo, hi} = I128toV2I64 Src // SDValue Ch = N->getOperand(0); SDValue Src = N->getOperand(1); SDValue Glue = N->getOperand(2); SDLoc DL(N); // Add Glue and Ch to the operands and results to avoid break the execution // order SDNode *Mov = CurDAG->getMachineNode( NVPTX::I128toV2I64, DL, {MVT::i64, MVT::i64, Ch.getValueType(), Glue.getValueType()}, {Src, Ch, Glue}); ReplaceNode(N, Mov); } bool NVPTXDAGToDAGISel::tryFence(SDNode *N) { SDLoc DL(N); assert(N->getOpcode() == ISD::ATOMIC_FENCE); unsigned int FenceOp = getFenceOp(NVPTX::Ordering(N->getConstantOperandVal(1)), Scopes[N->getConstantOperandVal(2)], Subtarget); SDValue Chain = N->getOperand(0); SDNode *FenceNode = CurDAG->getMachineNode(FenceOp, DL, MVT::Other, Chain); ReplaceNode(N, FenceNode); return true; } NVPTXScopes::NVPTXScopes(LLVMContext &C) { Scopes[C.getOrInsertSyncScopeID("singlethread")] = NVPTX::Scope::Thread; Scopes[C.getOrInsertSyncScopeID("")] = NVPTX::Scope::System; Scopes[C.getOrInsertSyncScopeID("block")] = NVPTX::Scope::Block; Scopes[C.getOrInsertSyncScopeID("cluster")] = NVPTX::Scope::Cluster; Scopes[C.getOrInsertSyncScopeID("device")] = NVPTX::Scope::Device; } NVPTX::Scope NVPTXScopes::operator[](SyncScope::ID ID) const { if (Scopes.empty()) llvm_unreachable("NVPTX Scopes must be initialized before calling " "NVPTXScopes::operator[]"); auto S = Scopes.find(ID); if (S == Scopes.end()) { // TODO: // - Add API to LLVMContext to get the name of a single scope. // - Use that API here to print an error containing the name // of this Unknown ID. report_fatal_error(formatv("Could not find scope ID={}.", int(ID))); } return S->second; } bool NVPTXScopes::empty() const { return Scopes.size() == 0; } #define CP_ASYNC_BULK_TENSOR_OPCODE(dir, dim, mode, is_s32, suffix) \ (is_s32 \ ? NVPTX::CP_ASYNC_BULK_TENSOR_##dir##_##dim##_SHARED32_##mode##suffix \ : NVPTX::CP_ASYNC_BULK_TENSOR_##dir##_##dim##_##mode##suffix) #define GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(dim, mode, is_ch, is_s32) \ (is_ch ? (CP_ASYNC_BULK_TENSOR_OPCODE(RED, dim, mode, is_s32, _CH)) \ : (CP_ASYNC_BULK_TENSOR_OPCODE(RED, dim, mode, is_s32, ))) #define GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(dim, mode, is_mc, is_ch, is_s32) \ [&]() -> auto { \ if (is_mc && is_ch) \ return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, _MC_CH); \ if (is_ch) \ return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, _CH); \ if (is_mc) \ return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, _MC); \ return CP_ASYNC_BULK_TENSOR_OPCODE(G2S, dim, mode, is_s32, ); \ }() static unsigned GetCpAsyncBulkTensorS2GReductionOpcode(size_t Dim, bool IsShared32, bool IsCacheHint, bool IsIm2Col) { if (IsIm2Col) { switch (Dim) { case 3: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(3D, IM2COL, IsCacheHint, IsShared32); case 4: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(4D, IM2COL, IsCacheHint, IsShared32); case 5: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(5D, IM2COL, IsCacheHint, IsShared32); default: llvm_unreachable("Invalid Dimension in im2col mode for " "GetCpAsyncBulkTensorS2GReductionOpcode."); } } else { switch (Dim) { case 1: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(1D, TILE, IsCacheHint, IsShared32); case 2: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(2D, TILE, IsCacheHint, IsShared32); case 3: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(3D, TILE, IsCacheHint, IsShared32); case 4: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(4D, TILE, IsCacheHint, IsShared32); case 5: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_S2G_RED(5D, TILE, IsCacheHint, IsShared32); default: llvm_unreachable("Invalid Dimension in tile mode for " "GetCpAsyncBulkTensorS2GReductionOpcode."); } } } static unsigned GetCpAsyncBulkTensorG2SOpcode(size_t Dim, bool IsShared32, bool IsMultiCast, bool IsCacheHint, bool IsIm2Col) { if (IsIm2Col) { switch (Dim) { case 3: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(3D, IM2COL, IsMultiCast, IsCacheHint, IsShared32); case 4: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(4D, IM2COL, IsMultiCast, IsCacheHint, IsShared32); case 5: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(5D, IM2COL, IsMultiCast, IsCacheHint, IsShared32); default: llvm_unreachable("Invalid Dimension in im2col mode for " "GetCpAsyncBulkTensorG2SOpcode."); } } else { switch (Dim) { case 1: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(1D, TILE, IsMultiCast, IsCacheHint, IsShared32); case 2: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(2D, TILE, IsMultiCast, IsCacheHint, IsShared32); case 3: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(3D, TILE, IsMultiCast, IsCacheHint, IsShared32); case 4: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(4D, TILE, IsMultiCast, IsCacheHint, IsShared32); case 5: return GET_CP_ASYNC_BULK_TENSOR_OPCODE_G2S(5D, TILE, IsMultiCast, IsCacheHint, IsShared32); default: llvm_unreachable( "Invalid Dimension in tile mode for GetCpAsyncBulkTensorG2SOpcode."); } } } static size_t GetDimsFromIntrinsic(unsigned IID) { switch (IID) { case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_3d: return 3; case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_4d: return 4; case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_5d: case Intrinsic::nvvm_cp_async_bulk_tensor_prefetch_im2col_5d: return 5; default: llvm_unreachable("Invalid im2col intrinsic in GetDimsFromIntrinsic."); } } void NVPTXDAGToDAGISel::SelectCpAsyncBulkTensorG2SCommon(SDNode *N, bool IsIm2Col) { // We have {Chain, Intrinsic-ID} followed by the actual intrisic args: // {dst, mbar, src, dims{d0...dN}, im2col_offsets{dims-2} // multicast, cache_hint, // multicast_flag, cache_hint_flag, cta_group_flag} // NumOperands = {Chain, IID} + {Actual intrinsic args} // = {2} + {8 + dims + im2col_offsets} size_t NumOps = N->getNumOperands(); size_t NumDims = IsIm2Col ? GetDimsFromIntrinsic(N->getConstantOperandVal(1)) : (NumOps - 10); // Offsets is always 'NumDims - 2' and only for im2col mode size_t NumOffsets = IsIm2Col ? (NumDims - 2) : 0; bool IsCacheHint = N->getConstantOperandVal(NumOps - 2) == 1; bool IsMultiCast = N->getConstantOperandVal(NumOps - 3) == 1; size_t NumBaseArgs = NumDims + NumOffsets + 3; // for {dst, mbar, src} size_t MultiCastIdx = NumBaseArgs + 2; // for Chain and IID unsigned CTAGroupVal = N->getConstantOperandVal(NumOps - 1); if ((CTAGroupVal > 0) && !Subtarget->hasCpAsyncBulkTensorCTAGroupSupport()) report_fatal_error( formatv("CpAsyncBulkTensorG2S cta_group::1/2 is not supported on sm_{}", Subtarget->getSmVersion())); SDLoc DL(N); SmallVector Ops(N->ops().slice(2, NumBaseArgs)); // Push MultiCast operand, if available if (IsMultiCast) Ops.push_back(N->getOperand(MultiCastIdx)); // Push CacheHint operand, if available if (IsCacheHint) Ops.push_back(N->getOperand(MultiCastIdx + 1)); // Flag for CTA Group Ops.push_back(getI32Imm(CTAGroupVal, DL)); // Finally, the chain operand Ops.push_back(N->getOperand(0)); bool IsShared32 = CurDAG->getDataLayout().getPointerSizeInBits(ADDRESS_SPACE_SHARED) == 32; unsigned Opcode = GetCpAsyncBulkTensorG2SOpcode( NumDims, IsShared32, IsMultiCast, IsCacheHint, IsIm2Col); ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops)); } void NVPTXDAGToDAGISel::SelectCpAsyncBulkTensorReduceCommon(SDNode *N, unsigned RedOp, bool IsIm2Col) { // We have {Chain, Intrinsic-ID} followed by the actual intrisic args: // src, dst, dims{d0...dN}, cache_hint, cache_hint_flag // NumOperands = {Chain, IID} + {Actual intrinsic args} // = {2} + {4 + dims} size_t NumOps = N->getNumOperands(); size_t NumDims = NumOps - 6; bool IsCacheHint = N->getConstantOperandVal(NumOps - 1) == 1; size_t NumArgs = NumDims + (IsCacheHint ? 3 : 2); // src, dst, cache_hint SDLoc DL(N); SmallVector Ops(N->ops().slice(2, NumArgs)); Ops.push_back(getI32Imm(RedOp, DL)); // Reduction Op Ops.push_back(N->getOperand(0)); // Chain operand bool IsShared32 = CurDAG->getDataLayout().getPointerSizeInBits(ADDRESS_SPACE_SHARED) == 32; unsigned Opcode = GetCpAsyncBulkTensorS2GReductionOpcode( NumDims, IsShared32, IsCacheHint, IsIm2Col); ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops)); } #define TCGEN05_ST_OPCODE(SHAPE, NUM) \ (enableUnpack ? NVPTX::TCGEN05_ST_##SHAPE##_##NUM##_UNPACK \ : NVPTX::TCGEN05_ST_##SHAPE##_##NUM) static unsigned getTcgen05StOpcode(unsigned IID, bool enableUnpack) { switch (IID) { case Intrinsic::nvvm_tcgen05_st_16x64b_x1: return TCGEN05_ST_OPCODE(16x64b, x1); case Intrinsic::nvvm_tcgen05_st_16x64b_x2: return TCGEN05_ST_OPCODE(16x64b, x2); case Intrinsic::nvvm_tcgen05_st_16x64b_x4: return TCGEN05_ST_OPCODE(16x64b, x4); case Intrinsic::nvvm_tcgen05_st_16x64b_x8: return TCGEN05_ST_OPCODE(16x64b, x8); case Intrinsic::nvvm_tcgen05_st_16x64b_x16: return TCGEN05_ST_OPCODE(16x64b, x16); case Intrinsic::nvvm_tcgen05_st_16x64b_x32: return TCGEN05_ST_OPCODE(16x64b, x32); case Intrinsic::nvvm_tcgen05_st_16x64b_x64: return TCGEN05_ST_OPCODE(16x64b, x64); case Intrinsic::nvvm_tcgen05_st_16x64b_x128: return TCGEN05_ST_OPCODE(16x64b, x128); case Intrinsic::nvvm_tcgen05_st_16x128b_x1: return TCGEN05_ST_OPCODE(16x128b, x1); case Intrinsic::nvvm_tcgen05_st_16x128b_x2: return TCGEN05_ST_OPCODE(16x128b, x2); case Intrinsic::nvvm_tcgen05_st_16x128b_x4: return TCGEN05_ST_OPCODE(16x128b, x4); case Intrinsic::nvvm_tcgen05_st_16x128b_x8: return TCGEN05_ST_OPCODE(16x128b, x8); case Intrinsic::nvvm_tcgen05_st_16x128b_x16: return TCGEN05_ST_OPCODE(16x128b, x16); case Intrinsic::nvvm_tcgen05_st_16x128b_x32: return TCGEN05_ST_OPCODE(16x128b, x32); case Intrinsic::nvvm_tcgen05_st_16x128b_x64: return TCGEN05_ST_OPCODE(16x128b, x64); case Intrinsic::nvvm_tcgen05_st_16x256b_x1: return TCGEN05_ST_OPCODE(16x256b, x1); case Intrinsic::nvvm_tcgen05_st_16x256b_x2: return TCGEN05_ST_OPCODE(16x256b, x2); case Intrinsic::nvvm_tcgen05_st_16x256b_x4: return TCGEN05_ST_OPCODE(16x256b, x4); case Intrinsic::nvvm_tcgen05_st_16x256b_x8: return TCGEN05_ST_OPCODE(16x256b, x8); case Intrinsic::nvvm_tcgen05_st_16x256b_x16: return TCGEN05_ST_OPCODE(16x256b, x16); case Intrinsic::nvvm_tcgen05_st_16x256b_x32: return TCGEN05_ST_OPCODE(16x256b, x32); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: return TCGEN05_ST_OPCODE(16x32bx2, x1); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: return TCGEN05_ST_OPCODE(16x32bx2, x2); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: return TCGEN05_ST_OPCODE(16x32bx2, x4); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: return TCGEN05_ST_OPCODE(16x32bx2, x8); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: return TCGEN05_ST_OPCODE(16x32bx2, x16); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: return TCGEN05_ST_OPCODE(16x32bx2, x32); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: return TCGEN05_ST_OPCODE(16x32bx2, x64); case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: return TCGEN05_ST_OPCODE(16x32bx2, x128); case Intrinsic::nvvm_tcgen05_st_32x32b_x1: return TCGEN05_ST_OPCODE(32x32b, x1); case Intrinsic::nvvm_tcgen05_st_32x32b_x2: return TCGEN05_ST_OPCODE(32x32b, x2); case Intrinsic::nvvm_tcgen05_st_32x32b_x4: return TCGEN05_ST_OPCODE(32x32b, x4); case Intrinsic::nvvm_tcgen05_st_32x32b_x8: return TCGEN05_ST_OPCODE(32x32b, x8); case Intrinsic::nvvm_tcgen05_st_32x32b_x16: return TCGEN05_ST_OPCODE(32x32b, x16); case Intrinsic::nvvm_tcgen05_st_32x32b_x32: return TCGEN05_ST_OPCODE(32x32b, x32); case Intrinsic::nvvm_tcgen05_st_32x32b_x64: return TCGEN05_ST_OPCODE(32x32b, x64); case Intrinsic::nvvm_tcgen05_st_32x32b_x128: return TCGEN05_ST_OPCODE(32x32b, x128); } llvm_unreachable("unhandled tcgen05.st lowering"); } void NVPTXDAGToDAGISel::SelectTcgen05St(SDNode *N, bool hasOffset) { SDLoc DL(N); unsigned IID = cast(N->getOperand(1))->getZExtValue(); SmallVector Operands = { N->getOperand(2) // taddr }; if (hasOffset) Operands.push_back(CurDAG->getTargetConstant( cast(N->getOperand(3))->getZExtValue(), DL, MVT::i32)); // Offset for (unsigned I = hasOffset ? 4 : 3; I < (N->getNumOperands() - 1); I++) Operands.push_back(N->getOperand(I)); bool enableUnpack = cast(N->getOperand(N->getNumOperands() - 1)) ->getZExtValue(); Operands.push_back(N->getOperand(0)); // Chain ReplaceNode(N, CurDAG->getMachineNode(getTcgen05StOpcode(IID, enableUnpack), DL, N->getVTList(), Operands)); } bool NVPTXDAGToDAGISel::tryIntrinsicVoid(SDNode *N) { unsigned IID = N->getConstantOperandVal(1); using TMARedTy = llvm::nvvm::TMAReductionOp; auto CastTy = [](TMARedTy Op) { return static_cast(Op); }; switch (IID) { default: return false; case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_tile_5d: SelectCpAsyncBulkTensorG2SCommon(N); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_g2s_im2col_5d: SelectCpAsyncBulkTensorG2SCommon(N, /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::ADD)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_add_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::ADD), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::MIN)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_min_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::MIN), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::MAX)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_max_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::MAX), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::INC)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_inc_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::INC), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::DEC)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_dec_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::DEC), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::AND)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_and_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::AND), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::OR)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_or_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::OR), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_1d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_2d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_tile_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::XOR)); return true; case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_3d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_4d: case Intrinsic::nvvm_cp_async_bulk_tensor_reduce_xor_im2col_5d: SelectCpAsyncBulkTensorReduceCommon(N, CastTy(TMARedTy::XOR), /*IsIm2Col=*/true); return true; case Intrinsic::nvvm_tcgen05_st_16x64b_x1: case Intrinsic::nvvm_tcgen05_st_16x64b_x2: case Intrinsic::nvvm_tcgen05_st_16x64b_x4: case Intrinsic::nvvm_tcgen05_st_16x64b_x8: case Intrinsic::nvvm_tcgen05_st_16x64b_x16: case Intrinsic::nvvm_tcgen05_st_16x64b_x32: case Intrinsic::nvvm_tcgen05_st_16x64b_x64: case Intrinsic::nvvm_tcgen05_st_16x64b_x128: case Intrinsic::nvvm_tcgen05_st_32x32b_x1: case Intrinsic::nvvm_tcgen05_st_32x32b_x2: case Intrinsic::nvvm_tcgen05_st_32x32b_x4: case Intrinsic::nvvm_tcgen05_st_32x32b_x8: case Intrinsic::nvvm_tcgen05_st_32x32b_x16: case Intrinsic::nvvm_tcgen05_st_32x32b_x32: case Intrinsic::nvvm_tcgen05_st_32x32b_x64: case Intrinsic::nvvm_tcgen05_st_32x32b_x128: case Intrinsic::nvvm_tcgen05_st_16x128b_x1: case Intrinsic::nvvm_tcgen05_st_16x128b_x2: case Intrinsic::nvvm_tcgen05_st_16x128b_x4: case Intrinsic::nvvm_tcgen05_st_16x128b_x8: case Intrinsic::nvvm_tcgen05_st_16x128b_x16: case Intrinsic::nvvm_tcgen05_st_16x128b_x32: case Intrinsic::nvvm_tcgen05_st_16x128b_x64: case Intrinsic::nvvm_tcgen05_st_16x256b_x1: case Intrinsic::nvvm_tcgen05_st_16x256b_x2: case Intrinsic::nvvm_tcgen05_st_16x256b_x4: case Intrinsic::nvvm_tcgen05_st_16x256b_x8: case Intrinsic::nvvm_tcgen05_st_16x256b_x16: case Intrinsic::nvvm_tcgen05_st_16x256b_x32: { SelectTcgen05St(N); return true; } case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: { SelectTcgen05St(N, /* hasOffset */ true); return true; } } } void NVPTXDAGToDAGISel::selectAtomicSwap128(SDNode *N) { MemSDNode *AN = cast(N); SDLoc dl(N); const SDValue Chain = N->getOperand(0); const auto [Base, Offset] = selectADDR(N->getOperand(1), CurDAG); SmallVector Ops{Base, Offset}; Ops.append(N->op_begin() + 2, N->op_end()); Ops.append({ getI32Imm(getMemOrder(AN), dl), getI32Imm(getAtomicScope(AN), dl), getI32Imm(getAddrSpace(AN), dl), Chain, }); assert(N->getOpcode() == NVPTXISD::ATOMIC_CMP_SWAP_B128 || N->getOpcode() == NVPTXISD::ATOMIC_SWAP_B128); unsigned Opcode = N->getOpcode() == NVPTXISD::ATOMIC_SWAP_B128 ? NVPTX::ATOM_EXCH_B128 : NVPTX::ATOM_CAS_B128; auto *ATOM = CurDAG->getMachineNode(Opcode, dl, N->getVTList(), Ops); CurDAG->setNodeMemRefs(ATOM, AN->getMemOperand()); ReplaceNode(N, ATOM); }