//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // /// \file //===----------------------------------------------------------------------===// // #include "SIFoldOperands.h" #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineOperand.h" #define DEBUG_TYPE "si-fold-operands" using namespace llvm; namespace { /// Track a value we may want to fold into downstream users, applying /// subregister extracts along the way. struct FoldableDef { union { MachineOperand *OpToFold = nullptr; uint64_t ImmToFold; int FrameIndexToFold; }; /// Register class of the originally defined value. const TargetRegisterClass *DefRC = nullptr; /// Track the original defining instruction for the value. const MachineInstr *DefMI = nullptr; /// Subregister to apply to the value at the use point. unsigned DefSubReg = AMDGPU::NoSubRegister; /// Kind of value stored in the union. MachineOperand::MachineOperandType Kind; FoldableDef() = delete; FoldableDef(MachineOperand &FoldOp, const TargetRegisterClass *DefRC, unsigned DefSubReg = AMDGPU::NoSubRegister) : DefRC(DefRC), DefSubReg(DefSubReg), Kind(FoldOp.getType()) { if (FoldOp.isImm()) { ImmToFold = FoldOp.getImm(); } else if (FoldOp.isFI()) { FrameIndexToFold = FoldOp.getIndex(); } else { assert(FoldOp.isReg() || FoldOp.isGlobal()); OpToFold = &FoldOp; } DefMI = FoldOp.getParent(); } FoldableDef(int64_t FoldImm, const TargetRegisterClass *DefRC, unsigned DefSubReg = AMDGPU::NoSubRegister) : ImmToFold(FoldImm), DefRC(DefRC), DefSubReg(DefSubReg), Kind(MachineOperand::MO_Immediate) {} /// Copy the current def and apply \p SubReg to the value. FoldableDef getWithSubReg(const SIRegisterInfo &TRI, unsigned SubReg) const { FoldableDef Copy(*this); Copy.DefSubReg = TRI.composeSubRegIndices(DefSubReg, SubReg); return Copy; } bool isReg() const { return Kind == MachineOperand::MO_Register; } Register getReg() const { assert(isReg()); return OpToFold->getReg(); } unsigned getSubReg() const { assert(isReg()); return OpToFold->getSubReg(); } bool isImm() const { return Kind == MachineOperand::MO_Immediate; } bool isFI() const { return Kind == MachineOperand::MO_FrameIndex; } int getFI() const { assert(isFI()); return FrameIndexToFold; } bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } /// Return the effective immediate value defined by this instruction, after /// application of any subregister extracts which may exist between the use /// and def instruction. std::optional getEffectiveImmVal() const { assert(isImm()); return SIInstrInfo::extractSubregFromImm(ImmToFold, DefSubReg); } /// Check if it is legal to fold this effective value into \p MI's \p OpNo /// operand. bool isOperandLegal(const SIInstrInfo &TII, const MachineInstr &MI, unsigned OpIdx) const { switch (Kind) { case MachineOperand::MO_Immediate: { std::optional ImmToFold = getEffectiveImmVal(); if (!ImmToFold) return false; // TODO: Should verify the subregister index is supported by the class // TODO: Avoid the temporary MachineOperand MachineOperand TmpOp = MachineOperand::CreateImm(*ImmToFold); return TII.isOperandLegal(MI, OpIdx, &TmpOp); } case MachineOperand::MO_FrameIndex: { if (DefSubReg != AMDGPU::NoSubRegister) return false; MachineOperand TmpOp = MachineOperand::CreateFI(FrameIndexToFold); return TII.isOperandLegal(MI, OpIdx, &TmpOp); } default: // TODO: Try to apply DefSubReg, for global address we can extract // low/high. if (DefSubReg != AMDGPU::NoSubRegister) return false; return TII.isOperandLegal(MI, OpIdx, OpToFold); } llvm_unreachable("covered MachineOperand kind switch"); } }; struct FoldCandidate { MachineInstr *UseMI; FoldableDef Def; int ShrinkOpcode; unsigned UseOpNo; bool Commuted; FoldCandidate(MachineInstr *MI, unsigned OpNo, FoldableDef Def, bool Commuted = false, int ShrinkOp = -1) : UseMI(MI), Def(Def), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), Commuted(Commuted) {} bool isFI() const { return Def.isFI(); } int getFI() const { assert(isFI()); return Def.FrameIndexToFold; } bool isImm() const { return Def.isImm(); } bool isReg() const { return Def.isReg(); } Register getReg() const { return Def.getReg(); } bool isGlobal() const { return Def.isGlobal(); } bool needsShrink() const { return ShrinkOpcode != -1; } }; class SIFoldOperandsImpl { public: MachineRegisterInfo *MRI; const SIInstrInfo *TII; const SIRegisterInfo *TRI; const GCNSubtarget *ST; const SIMachineFunctionInfo *MFI; bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, const FoldableDef &OpToFold) const; // TODO: Just use TII::getVALUOp unsigned convertToVALUOp(unsigned Opc, bool UseVOP3 = false) const { switch (Opc) { case AMDGPU::S_ADD_I32: { if (ST->hasAddNoCarry()) return UseVOP3 ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_U32_e32; return UseVOP3 ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; } case AMDGPU::S_OR_B32: return UseVOP3 ? AMDGPU::V_OR_B32_e64 : AMDGPU::V_OR_B32_e32; case AMDGPU::S_AND_B32: return UseVOP3 ? AMDGPU::V_AND_B32_e64 : AMDGPU::V_AND_B32_e32; case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64; default: return AMDGPU::INSTRUCTION_LIST_END; } } bool foldCopyToVGPROfScalarAddOfFrameIndex(Register DstReg, Register SrcReg, MachineInstr &MI) const; bool updateOperand(FoldCandidate &Fold) const; bool canUseImmWithOpSel(const MachineInstr *MI, unsigned UseOpNo, int64_t ImmVal) const; /// Try to fold immediate \p ImmVal into \p MI's operand at index \p UseOpNo. bool tryFoldImmWithOpSel(MachineInstr *MI, unsigned UseOpNo, int64_t ImmVal) const; bool tryAddToFoldList(SmallVectorImpl &FoldList, MachineInstr *MI, unsigned OpNo, const FoldableDef &OpToFold) const; bool isUseSafeToFold(const MachineInstr &MI, const MachineOperand &UseMO) const; const TargetRegisterClass *getRegSeqInit( MachineInstr &RegSeq, SmallVectorImpl> &Defs) const; const TargetRegisterClass * getRegSeqInit(SmallVectorImpl> &Defs, Register UseReg) const; std::pair isRegSeqSplat(MachineInstr &RegSeg) const; bool tryFoldRegSeqSplat(MachineInstr *UseMI, unsigned UseOpIdx, int64_t SplatVal, const TargetRegisterClass *SplatRC) const; bool tryToFoldACImm(const FoldableDef &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, SmallVectorImpl &FoldList) const; void foldOperand(FoldableDef OpToFold, MachineInstr *UseMI, int UseOpIdx, SmallVectorImpl &FoldList, SmallVectorImpl &CopiesToReplace) const; std::optional getImmOrMaterializedImm(MachineOperand &Op) const; bool tryConstantFoldOp(MachineInstr *MI) const; bool tryFoldCndMask(MachineInstr &MI) const; bool tryFoldZeroHighBits(MachineInstr &MI) const; bool foldInstOperand(MachineInstr &MI, const FoldableDef &OpToFold) const; bool foldCopyToAGPRRegSequence(MachineInstr *CopyMI) const; bool tryFoldFoldableCopy(MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const; const MachineOperand *isClamp(const MachineInstr &MI) const; bool tryFoldClamp(MachineInstr &MI); std::pair isOMod(const MachineInstr &MI) const; bool tryFoldOMod(MachineInstr &MI); bool tryFoldRegSequence(MachineInstr &MI); bool tryFoldPhiAGPR(MachineInstr &MI); bool tryFoldLoad(MachineInstr &MI); bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); public: SIFoldOperandsImpl() = default; bool run(MachineFunction &MF); }; class SIFoldOperandsLegacy : public MachineFunctionPass { public: static char ID; SIFoldOperandsLegacy() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; return SIFoldOperandsImpl().run(MF); } StringRef getPassName() const override { return "SI Fold Operands"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().setIsSSA(); } }; } // End anonymous namespace. INITIALIZE_PASS(SIFoldOperandsLegacy, DEBUG_TYPE, "SI Fold Operands", false, false) char SIFoldOperandsLegacy::ID = 0; char &llvm::SIFoldOperandsLegacyID = SIFoldOperandsLegacy::ID; static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const MachineOperand &MO) { const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); if (const TargetRegisterClass *SubRC = TRI.getSubRegisterClass(RC, MO.getSubReg())) RC = SubRC; return RC; } // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. static unsigned macToMad(unsigned Opc) { switch (Opc) { case AMDGPU::V_MAC_F32_e64: return AMDGPU::V_MAD_F32_e64; case AMDGPU::V_MAC_F16_e64: return AMDGPU::V_MAD_F16_e64; case AMDGPU::V_FMAC_F32_e64: return AMDGPU::V_FMA_F32_e64; case AMDGPU::V_FMAC_F16_e64: return AMDGPU::V_FMA_F16_gfx9_e64; case AMDGPU::V_FMAC_F16_t16_e64: return AMDGPU::V_FMA_F16_gfx9_t16_e64; case AMDGPU::V_FMAC_F16_fake16_e64: return AMDGPU::V_FMA_F16_gfx9_fake16_e64; case AMDGPU::V_FMAC_LEGACY_F32_e64: return AMDGPU::V_FMA_LEGACY_F32_e64; case AMDGPU::V_FMAC_F64_e64: return AMDGPU::V_FMA_F64_e64; } return AMDGPU::INSTRUCTION_LIST_END; } // TODO: Add heuristic that the frame index might not fit in the addressing mode // immediate offset to avoid materializing in loops. bool SIFoldOperandsImpl::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, const FoldableDef &OpToFold) const { if (!OpToFold.isFI()) return false; const unsigned Opc = UseMI.getOpcode(); switch (Opc) { case AMDGPU::S_ADD_I32: case AMDGPU::S_ADD_U32: case AMDGPU::V_ADD_U32_e32: case AMDGPU::V_ADD_CO_U32_e32: // TODO: Possibly relax hasOneUse. It matters more for mubuf, since we have // to insert the wave size shift at every point we use the index. // TODO: Fix depending on visit order to fold immediates into the operand return UseMI.getOperand(OpNo == 1 ? 2 : 1).isImm() && MRI->hasOneNonDBGUse(UseMI.getOperand(OpNo).getReg()); case AMDGPU::V_ADD_U32_e64: case AMDGPU::V_ADD_CO_U32_e64: return UseMI.getOperand(OpNo == 2 ? 3 : 2).isImm() && MRI->hasOneNonDBGUse(UseMI.getOperand(OpNo).getReg()); default: break; } if (TII->isMUBUF(UseMI)) return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); if (!TII->isFLATScratch(UseMI)) return false; int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); if (OpNo == SIdx) return true; int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); return OpNo == VIdx && SIdx == -1; } /// Fold %vgpr = COPY (S_ADD_I32 x, frameindex) /// /// => %vgpr = V_ADD_U32 x, frameindex bool SIFoldOperandsImpl::foldCopyToVGPROfScalarAddOfFrameIndex( Register DstReg, Register SrcReg, MachineInstr &MI) const { if (TRI->isVGPR(*MRI, DstReg) && TRI->isSGPRReg(*MRI, SrcReg) && MRI->hasOneNonDBGUse(SrcReg)) { MachineInstr *Def = MRI->getVRegDef(SrcReg); if (!Def || Def->getNumOperands() != 4) return false; MachineOperand *Src0 = &Def->getOperand(1); MachineOperand *Src1 = &Def->getOperand(2); // TODO: This is profitable with more operand types, and for more // opcodes. But ultimately this is working around poor / nonexistent // regbankselect. if (!Src0->isFI() && !Src1->isFI()) return false; if (Src0->isFI()) std::swap(Src0, Src1); const bool UseVOP3 = !Src0->isImm() || TII->isInlineConstant(*Src0); unsigned NewOp = convertToVALUOp(Def->getOpcode(), UseVOP3); if (NewOp == AMDGPU::INSTRUCTION_LIST_END || !Def->getOperand(3).isDead()) // Check if scc is dead return false; MachineBasicBlock *MBB = Def->getParent(); const DebugLoc &DL = Def->getDebugLoc(); if (NewOp != AMDGPU::V_ADD_CO_U32_e32) { MachineInstrBuilder Add = BuildMI(*MBB, *Def, DL, TII->get(NewOp), DstReg); if (Add->getDesc().getNumDefs() == 2) { Register CarryOutReg = MRI->createVirtualRegister(TRI->getBoolRC()); Add.addDef(CarryOutReg, RegState::Dead); MRI->setRegAllocationHint(CarryOutReg, 0, TRI->getVCC()); } Add.add(*Src0).add(*Src1).setMIFlags(Def->getFlags()); if (AMDGPU::hasNamedOperand(NewOp, AMDGPU::OpName::clamp)) Add.addImm(0); Def->eraseFromParent(); MI.eraseFromParent(); return true; } assert(NewOp == AMDGPU::V_ADD_CO_U32_e32); MachineBasicBlock::LivenessQueryResult Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, *Def, 16); if (Liveness == MachineBasicBlock::LQR_Dead) { // TODO: If src1 satisfies operand constraints, use vop3 version. BuildMI(*MBB, *Def, DL, TII->get(NewOp), DstReg) .add(*Src0) .add(*Src1) .setOperandDead(3) // implicit-def $vcc .setMIFlags(Def->getFlags()); Def->eraseFromParent(); MI.eraseFromParent(); return true; } } return false; } FunctionPass *llvm::createSIFoldOperandsLegacyPass() { return new SIFoldOperandsLegacy(); } bool SIFoldOperandsImpl::canUseImmWithOpSel(const MachineInstr *MI, unsigned UseOpNo, int64_t ImmVal) const { const uint64_t TSFlags = MI->getDesc().TSFlags; if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) return false; const MachineOperand &Old = MI->getOperand(UseOpNo); int OpNo = MI->getOperandNo(&Old); unsigned Opcode = MI->getOpcode(); uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; switch (OpType) { default: return false; case AMDGPU::OPERAND_REG_IMM_V2FP16: case AMDGPU::OPERAND_REG_IMM_V2BF16: case AMDGPU::OPERAND_REG_IMM_V2INT16: case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: // VOP3 packed instructions ignore op_sel source modifiers, we cannot encode // two different constants. if ((TSFlags & SIInstrFlags::VOP3) && !(TSFlags & SIInstrFlags::VOP3P) && static_cast(ImmVal) != static_cast(ImmVal >> 16)) return false; break; } return true; } bool SIFoldOperandsImpl::tryFoldImmWithOpSel(MachineInstr *MI, unsigned UseOpNo, int64_t ImmVal) const { MachineOperand &Old = MI->getOperand(UseOpNo); unsigned Opcode = MI->getOpcode(); int OpNo = MI->getOperandNo(&Old); uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; // If the literal can be inlined as-is, apply it and short-circuit the // tests below. The main motivation for this is to avoid unintuitive // uses of opsel. if (AMDGPU::isInlinableLiteralV216(ImmVal, OpType)) { Old.ChangeToImmediate(ImmVal); return true; } // Refer to op_sel/op_sel_hi and check if we can change the immediate and // op_sel in a way that allows an inline constant. AMDGPU::OpName ModName = AMDGPU::OpName::NUM_OPERAND_NAMES; unsigned SrcIdx = ~0; if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { ModName = AMDGPU::OpName::src0_modifiers; SrcIdx = 0; } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { ModName = AMDGPU::OpName::src1_modifiers; SrcIdx = 1; } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { ModName = AMDGPU::OpName::src2_modifiers; SrcIdx = 2; } assert(ModName != AMDGPU::OpName::NUM_OPERAND_NAMES); int ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModName); MachineOperand &Mod = MI->getOperand(ModIdx); unsigned ModVal = Mod.getImm(); uint16_t ImmLo = static_cast(ImmVal >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); uint16_t ImmHi = static_cast(ImmVal >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); uint32_t Imm = (static_cast(ImmHi) << 16) | ImmLo; unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); // Helper function that attempts to inline the given value with a newly // chosen opsel pattern. auto tryFoldToInline = [&](uint32_t Imm) -> bool { if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); Old.ChangeToImmediate(Imm); return true; } // Try to shuffle the halves around and leverage opsel to get an inline // constant. uint16_t Lo = static_cast(Imm); uint16_t Hi = static_cast(Imm >> 16); if (Lo == Hi) { if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { Mod.setImm(NewModVal); Old.ChangeToImmediate(Lo); return true; } if (static_cast(Lo) < 0) { int32_t SExt = static_cast(Lo); if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { Mod.setImm(NewModVal); Old.ChangeToImmediate(SExt); return true; } } // This check is only useful for integer instructions if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16) { if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); Old.ChangeToImmediate(static_cast(Lo) << 16); return true; } } } else { uint32_t Swapped = (static_cast(Lo) << 16) | Hi; if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); Old.ChangeToImmediate(Swapped); return true; } } return false; }; if (tryFoldToInline(Imm)) return true; // Replace integer addition by subtraction and vice versa if it allows // folding the immediate to an inline constant. // // We should only ever get here for SrcIdx == 1 due to canonicalization // earlier in the pipeline, but we double-check here to be safe / fully // general. bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; if (SrcIdx == 1 && (IsUAdd || IsUSub)) { unsigned ClampIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; if (!Clamp) { uint16_t NegLo = -static_cast(Imm); uint16_t NegHi = -static_cast(Imm >> 16); uint32_t NegImm = (static_cast(NegHi) << 16) | NegLo; if (tryFoldToInline(NegImm)) { unsigned NegOpcode = IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; MI->setDesc(TII->get(NegOpcode)); return true; } } } return false; } bool SIFoldOperandsImpl::updateOperand(FoldCandidate &Fold) const { MachineInstr *MI = Fold.UseMI; MachineOperand &Old = MI->getOperand(Fold.UseOpNo); assert(Old.isReg()); std::optional ImmVal; if (Fold.isImm()) ImmVal = Fold.Def.getEffectiveImmVal(); if (ImmVal && canUseImmWithOpSel(Fold.UseMI, Fold.UseOpNo, *ImmVal)) { if (tryFoldImmWithOpSel(Fold.UseMI, Fold.UseOpNo, *ImmVal)) return true; // We can't represent the candidate as an inline constant. Try as a literal // with the original opsel, checking constant bus limitations. MachineOperand New = MachineOperand::CreateImm(*ImmVal); int OpNo = MI->getOperandNo(&Old); if (!TII->isOperandLegal(*MI, OpNo, &New)) return false; Old.ChangeToImmediate(*ImmVal); return true; } if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { MachineBasicBlock *MBB = MI->getParent(); auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); if (Liveness != MachineBasicBlock::LQR_Dead) { LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); return false; } int Op32 = Fold.ShrinkOpcode; MachineOperand &Dst0 = MI->getOperand(0); MachineOperand &Dst1 = MI->getOperand(1); assert(Dst0.isDef() && Dst1.isDef()); bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); Register NewReg0 = MRI->createVirtualRegister(Dst0RC); MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); if (HaveNonDbgCarryUse) { BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), Dst1.getReg()) .addReg(AMDGPU::VCC, RegState::Kill); } // Keep the old instruction around to avoid breaking iterators, but // replace it with a dummy instruction to remove uses. // // FIXME: We should not invert how this pass looks at operands to avoid // this. Should track set of foldable movs instead of looking for uses // when looking at a use. Dst0.setReg(NewReg0); for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) MI->removeOperand(I); MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); if (Fold.Commuted) TII->commuteInstruction(*Inst32, false); return true; } assert(!Fold.needsShrink() && "not handled"); if (ImmVal) { if (Old.isTied()) { int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); if (NewMFMAOpc == -1) return false; MI->setDesc(TII->get(NewMFMAOpc)); MI->untieRegOperand(0); } // TODO: Should we try to avoid adding this to the candidate list? MachineOperand New = MachineOperand::CreateImm(*ImmVal); int OpNo = MI->getOperandNo(&Old); if (!TII->isOperandLegal(*MI, OpNo, &New)) return false; Old.ChangeToImmediate(*ImmVal); return true; } if (Fold.isGlobal()) { Old.ChangeToGA(Fold.Def.OpToFold->getGlobal(), Fold.Def.OpToFold->getOffset(), Fold.Def.OpToFold->getTargetFlags()); return true; } if (Fold.isFI()) { Old.ChangeToFrameIndex(Fold.getFI()); return true; } MachineOperand *New = Fold.Def.OpToFold; // Rework once the VS_16 register class is updated to include proper // 16-bit SGPRs instead of 32-bit ones. if (Old.getSubReg() == AMDGPU::lo16 && TRI->isSGPRReg(*MRI, New->getReg())) Old.setSubReg(AMDGPU::NoSubRegister); Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); Old.setIsUndef(New->isUndef()); return true; } static void appendFoldCandidate(SmallVectorImpl &FoldList, FoldCandidate &&Entry) { // Skip additional folding on the same operand. for (FoldCandidate &Fold : FoldList) if (Fold.UseMI == Entry.UseMI && Fold.UseOpNo == Entry.UseOpNo) return; LLVM_DEBUG(dbgs() << "Append " << (Entry.Commuted ? "commuted" : "normal") << " operand " << Entry.UseOpNo << "\n " << *Entry.UseMI); FoldList.push_back(Entry); } static void appendFoldCandidate(SmallVectorImpl &FoldList, MachineInstr *MI, unsigned OpNo, const FoldableDef &FoldOp, bool Commuted = false, int ShrinkOp = -1) { appendFoldCandidate(FoldList, FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); } bool SIFoldOperandsImpl::tryAddToFoldList( SmallVectorImpl &FoldList, MachineInstr *MI, unsigned OpNo, const FoldableDef &OpToFold) const { const unsigned Opc = MI->getOpcode(); auto tryToFoldAsFMAAKorMK = [&]() { if (!OpToFold.isImm()) return false; const bool TryAK = OpNo == 3; const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; MI->setDesc(TII->get(NewOpc)); // We have to fold into operand which would be Imm not into OpNo. bool FoldAsFMAAKorMK = tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); if (FoldAsFMAAKorMK) { // Untie Src2 of fmac. MI->untieRegOperand(3); // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. if (OpNo == 1) { MachineOperand &Op1 = MI->getOperand(1); MachineOperand &Op2 = MI->getOperand(2); Register OldReg = Op1.getReg(); // Operand 2 might be an inlinable constant if (Op2.isImm()) { Op1.ChangeToImmediate(Op2.getImm()); Op2.ChangeToRegister(OldReg, false); } else { Op1.setReg(Op2.getReg()); Op2.setReg(OldReg); } } return true; } MI->setDesc(TII->get(Opc)); return false; }; bool IsLegal = OpToFold.isOperandLegal(*TII, *MI, OpNo); if (!IsLegal && OpToFold.isImm()) { if (std::optional ImmVal = OpToFold.getEffectiveImmVal()) IsLegal = canUseImmWithOpSel(MI, OpNo, *ImmVal); } if (!IsLegal) { // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 unsigned NewOpc = macToMad(Opc); if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { // Check if changing this to a v_mad_{f16, f32} instruction will allow us // to fold the operand. MI->setDesc(TII->get(NewOpc)); bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); if (AddOpSel) MI->addOperand(MachineOperand::CreateImm(0)); bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); if (FoldAsMAD) { MI->untieRegOperand(OpNo); return true; } if (AddOpSel) MI->removeOperand(MI->getNumExplicitOperands() - 1); MI->setDesc(TII->get(Opc)); } // Special case for s_fmac_f32 if we are trying to fold into Src2. // By transforming into fmaak we can untie Src2 and make folding legal. if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { if (tryToFoldAsFMAAKorMK()) return true; } // Special case for s_setreg_b32 if (OpToFold.isImm()) { unsigned ImmOpc = 0; if (Opc == AMDGPU::S_SETREG_B32) ImmOpc = AMDGPU::S_SETREG_IMM32_B32; else if (Opc == AMDGPU::S_SETREG_B32_mode) ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; if (ImmOpc) { MI->setDesc(TII->get(ImmOpc)); appendFoldCandidate(FoldList, MI, OpNo, OpToFold); return true; } } // Operand is not legal, so try to commute the instruction to // see if this makes it possible to fold. unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); if (!CanCommute) return false; MachineOperand &Op = MI->getOperand(OpNo); MachineOperand &CommutedOp = MI->getOperand(CommuteOpNo); // One of operands might be an Imm operand, and OpNo may refer to it after // the call of commuteInstruction() below. Such situations are avoided // here explicitly as OpNo must be a register operand to be a candidate // for memory folding. if (!Op.isReg() || !CommutedOp.isReg()) return false; // The same situation with an immediate could reproduce if both inputs are // the same register. if (Op.isReg() && CommutedOp.isReg() && (Op.getReg() == CommutedOp.getReg() && Op.getSubReg() == CommutedOp.getSubReg())) return false; if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) return false; int Op32 = -1; if (!OpToFold.isOperandLegal(*TII, *MI, CommuteOpNo)) { if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME (!OpToFold.isImm() && !OpToFold.isFI() && !OpToFold.isGlobal())) { TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); return false; } // Verify the other operand is a VGPR, otherwise we would violate the // constant bus restriction. MachineOperand &OtherOp = MI->getOperand(OpNo); if (!OtherOp.isReg() || !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) return false; assert(MI->getOperand(1).isDef()); // Make sure to get the 32-bit version of the commuted opcode. unsigned MaybeCommutedOpc = MI->getOpcode(); Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); } appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, /*Commuted=*/true, Op32); return true; } // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. // By changing into fmamk we can untie Src2. // If folding for Src0 happens first and it is identical operand to Src1 we // should avoid transforming into fmamk which requires commuting as it would // cause folding into Src1 to fail later on due to wrong OpNo used. if (Opc == AMDGPU::S_FMAC_F32 && (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { if (tryToFoldAsFMAAKorMK()) return true; } appendFoldCandidate(FoldList, MI, OpNo, OpToFold); return true; } bool SIFoldOperandsImpl::isUseSafeToFold(const MachineInstr &MI, const MachineOperand &UseMO) const { // Operands of SDWA instructions must be registers. return !TII->isSDWA(MI); } static MachineOperand *lookUpCopyChain(const SIInstrInfo &TII, const MachineRegisterInfo &MRI, Register SrcReg) { MachineOperand *Sub = nullptr; for (MachineInstr *SubDef = MRI.getVRegDef(SrcReg); SubDef && TII.isFoldableCopy(*SubDef); SubDef = MRI.getVRegDef(Sub->getReg())) { MachineOperand &SrcOp = SubDef->getOperand(1); if (SrcOp.isImm()) return &SrcOp; if (!SrcOp.isReg() || SrcOp.getReg().isPhysical()) break; Sub = &SrcOp; // TODO: Support compose if (SrcOp.getSubReg()) break; } return Sub; } const TargetRegisterClass *SIFoldOperandsImpl::getRegSeqInit( MachineInstr &RegSeq, SmallVectorImpl> &Defs) const { assert(RegSeq.isRegSequence()); const TargetRegisterClass *RC = nullptr; for (unsigned I = 1, E = RegSeq.getNumExplicitOperands(); I != E; I += 2) { MachineOperand &SrcOp = RegSeq.getOperand(I); unsigned SubRegIdx = RegSeq.getOperand(I + 1).getImm(); // Only accept reg_sequence with uniform reg class inputs for simplicity. const TargetRegisterClass *OpRC = getRegOpRC(*MRI, *TRI, SrcOp); if (!RC) RC = OpRC; else if (!TRI->getCommonSubClass(RC, OpRC)) return nullptr; if (SrcOp.getSubReg()) { // TODO: Handle subregister compose Defs.emplace_back(&SrcOp, SubRegIdx); continue; } MachineOperand *DefSrc = lookUpCopyChain(*TII, *MRI, SrcOp.getReg()); if (DefSrc && (DefSrc->isReg() || DefSrc->isImm())) { Defs.emplace_back(DefSrc, SubRegIdx); continue; } Defs.emplace_back(&SrcOp, SubRegIdx); } return RC; } // Find a def of the UseReg, check if it is a reg_sequence and find initializers // for each subreg, tracking it to an immediate if possible. Returns the // register class of the inputs on success. const TargetRegisterClass *SIFoldOperandsImpl::getRegSeqInit( SmallVectorImpl> &Defs, Register UseReg) const { MachineInstr *Def = MRI->getVRegDef(UseReg); if (!Def || !Def->isRegSequence()) return nullptr; return getRegSeqInit(*Def, Defs); } std::pair SIFoldOperandsImpl::isRegSeqSplat(MachineInstr &RegSeq) const { SmallVector, 32> Defs; const TargetRegisterClass *SrcRC = getRegSeqInit(RegSeq, Defs); if (!SrcRC) return {}; bool TryToMatchSplat64 = false; int64_t Imm; for (unsigned I = 0, E = Defs.size(); I != E; ++I) { const MachineOperand *Op = Defs[I].first; if (!Op->isImm()) return {}; int64_t SubImm = Op->getImm(); if (!I) { Imm = SubImm; continue; } if (Imm != SubImm) { if (I == 1 && (E & 1) == 0) { // If we have an even number of inputs, there's a chance this is a // 64-bit element splat broken into 32-bit pieces. TryToMatchSplat64 = true; break; } return {}; // Can only fold splat constants } } if (!TryToMatchSplat64) return {Defs[0].first->getImm(), SrcRC}; // Fallback to recognizing 64-bit splats broken into 32-bit pieces // (i.e. recognize every other other element is 0 for 64-bit immediates) int64_t SplatVal64; for (unsigned I = 0, E = Defs.size(); I != E; I += 2) { const MachineOperand *Op0 = Defs[I].first; const MachineOperand *Op1 = Defs[I + 1].first; if (!Op0->isImm() || !Op1->isImm()) return {}; unsigned SubReg0 = Defs[I].second; unsigned SubReg1 = Defs[I + 1].second; // Assume we're going to generally encounter reg_sequences with sorted // subreg indexes, so reject any that aren't consecutive. if (TRI->getChannelFromSubReg(SubReg0) + 1 != TRI->getChannelFromSubReg(SubReg1)) return {}; int64_t MergedVal = Make_64(Op1->getImm(), Op0->getImm()); if (I == 0) SplatVal64 = MergedVal; else if (SplatVal64 != MergedVal) return {}; } const TargetRegisterClass *RC64 = TRI->getSubRegisterClass( MRI->getRegClass(RegSeq.getOperand(0).getReg()), AMDGPU::sub0_sub1); return {SplatVal64, RC64}; } bool SIFoldOperandsImpl::tryFoldRegSeqSplat( MachineInstr *UseMI, unsigned UseOpIdx, int64_t SplatVal, const TargetRegisterClass *SplatRC) const { const MCInstrDesc &Desc = UseMI->getDesc(); if (UseOpIdx >= Desc.getNumOperands()) return false; // Filter out unhandled pseudos. if (!AMDGPU::isSISrcOperand(Desc, UseOpIdx)) return false; int16_t RCID = Desc.operands()[UseOpIdx].RegClass; if (RCID == -1) return false; const TargetRegisterClass *OpRC = TRI->getRegClass(RCID); // Special case 0/-1, since when interpreted as a 64-bit element both halves // have the same bits. These are the only cases where a splat has the same // interpretation for 32-bit and 64-bit splats. if (SplatVal != 0 && SplatVal != -1) { // We need to figure out the scalar type read by the operand. e.g. the MFMA // operand will be AReg_128, and we want to check if it's compatible with an // AReg_32 constant. uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; switch (OpTy) { case AMDGPU::OPERAND_REG_INLINE_AC_INT32: case AMDGPU::OPERAND_REG_INLINE_AC_FP32: OpRC = TRI->getSubRegisterClass(OpRC, AMDGPU::sub0); break; case AMDGPU::OPERAND_REG_INLINE_AC_FP64: OpRC = TRI->getSubRegisterClass(OpRC, AMDGPU::sub0_sub1); break; default: return false; } if (!TRI->getCommonSubClass(OpRC, SplatRC)) return false; } MachineOperand TmpOp = MachineOperand::CreateImm(SplatVal); if (!TII->isOperandLegal(*UseMI, UseOpIdx, &TmpOp)) return false; return true; } bool SIFoldOperandsImpl::tryToFoldACImm( const FoldableDef &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, SmallVectorImpl &FoldList) const { const MCInstrDesc &Desc = UseMI->getDesc(); if (UseOpIdx >= Desc.getNumOperands()) return false; // Filter out unhandled pseudos. if (!AMDGPU::isSISrcOperand(Desc, UseOpIdx)) return false; MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); if (OpToFold.isImm() && OpToFold.isOperandLegal(*TII, *UseMI, UseOpIdx)) { appendFoldCandidate(FoldList, UseMI, UseOpIdx, OpToFold); return true; } // TODO: Verify the following code handles subregisters correctly. // TODO: Handle extract of global reference if (UseOp.getSubReg()) return false; if (!OpToFold.isReg()) return false; Register UseReg = OpToFold.getReg(); if (!UseReg.isVirtual()) return false; // Maybe it is just a COPY of an immediate itself. // FIXME: Remove this handling. There is already special case folding of // immediate into copy in foldOperand. This is looking for the def of the // value the folding started from in the first place. MachineInstr *Def = MRI->getVRegDef(UseReg); if (Def && TII->isFoldableCopy(*Def)) { MachineOperand &DefOp = Def->getOperand(1); if (DefOp.isImm() && TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { FoldableDef FoldableImm(DefOp.getImm(), OpToFold.DefRC, OpToFold.DefSubReg); appendFoldCandidate(FoldList, UseMI, UseOpIdx, FoldableImm); return true; } } return false; } void SIFoldOperandsImpl::foldOperand( FoldableDef OpToFold, MachineInstr *UseMI, int UseOpIdx, SmallVectorImpl &FoldList, SmallVectorImpl &CopiesToReplace) const { const MachineOperand *UseOp = &UseMI->getOperand(UseOpIdx); if (!isUseSafeToFold(*UseMI, *UseOp)) return; // FIXME: Fold operands with subregs. if (UseOp->isReg() && OpToFold.isReg()) { if (UseOp->isImplicit()) return; // Allow folding from SGPRs to 16-bit VGPRs. if (UseOp->getSubReg() != AMDGPU::NoSubRegister && (UseOp->getSubReg() != AMDGPU::lo16 || !TRI->isSGPRReg(*MRI, OpToFold.getReg()))) return; } // Special case for REG_SEQUENCE: We can't fold literals into // REG_SEQUENCE instructions, so we have to fold them into the // uses of REG_SEQUENCE. if (UseMI->isRegSequence()) { Register RegSeqDstReg = UseMI->getOperand(0).getReg(); unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); int64_t SplatVal; const TargetRegisterClass *SplatRC; std::tie(SplatVal, SplatRC) = isRegSeqSplat(*UseMI); // Grab the use operands first SmallVector UsesToProcess( llvm::make_pointer_range(MRI->use_nodbg_operands(RegSeqDstReg))); for (auto *RSUse : UsesToProcess) { MachineInstr *RSUseMI = RSUse->getParent(); unsigned OpNo = RSUseMI->getOperandNo(RSUse); if (SplatRC) { if (tryFoldRegSeqSplat(RSUseMI, OpNo, SplatVal, SplatRC)) { FoldableDef SplatDef(SplatVal, SplatRC); appendFoldCandidate(FoldList, RSUseMI, OpNo, SplatDef); continue; } } // TODO: Handle general compose if (RSUse->getSubReg() != RegSeqDstSubReg) continue; // FIXME: We should avoid recursing here. There should be a cleaner split // between the in-place mutations and adding to the fold list. foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(RSUse), FoldList, CopiesToReplace); } return; } if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) return; if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { // Verify that this is a stack access. // FIXME: Should probably use stack pseudos before frame lowering. if (TII->isMUBUF(*UseMI)) { if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != MFI->getScratchRSrcReg()) return; // Ensure this is either relative to the current frame or the current // wave. MachineOperand &SOff = *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); if (!SOff.isImm() || SOff.getImm() != 0) return; } // A frame index will resolve to a positive constant, so it should always be // safe to fold the addressing mode, even pre-GFX9. UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getFI()); const unsigned Opc = UseMI->getOpcode(); if (TII->isFLATScratch(*UseMI) && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); UseMI->setDesc(TII->get(NewOpc)); } return; } bool FoldingImmLike = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); if (FoldingImmLike && UseMI->isCopy()) { Register DestReg = UseMI->getOperand(0).getReg(); Register SrcReg = UseMI->getOperand(1).getReg(); assert(SrcReg.isVirtual()); const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); // Don't fold into a copy to a physical register with the same class. Doing // so would interfere with the register coalescer's logic which would avoid // redundant initializations. if (DestReg.isPhysical() && SrcRC->contains(DestReg)) return; const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); if (!DestReg.isPhysical() && DestRC == &AMDGPU::AGPR_32RegClass) { std::optional UseImmVal = OpToFold.getEffectiveImmVal(); if (UseImmVal && TII->isInlineConstant( *UseImmVal, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); UseMI->getOperand(1).ChangeToImmediate(*UseImmVal); CopiesToReplace.push_back(UseMI); return; } } // Allow immediates COPYd into sgpr_lo16 to be further folded while // still being legal if not further folded if (DestRC == &AMDGPU::SGPR_LO16RegClass) { assert(ST->useRealTrue16Insts()); MRI->setRegClass(DestReg, &AMDGPU::SGPR_32RegClass); DestRC = &AMDGPU::SGPR_32RegClass; } // In order to fold immediates into copies, we need to change the // copy to a MOV. unsigned MovOp = TII->getMovOpcode(DestRC); if (MovOp == AMDGPU::COPY) return; // Fold if the destination register class of the MOV instruction (ResRC) // is a superclass of (or equal to) the destination register class of the // COPY (DestRC). If this condition fails, folding would be illegal. const MCInstrDesc &MovDesc = TII->get(MovOp); assert(MovDesc.getNumDefs() > 0 && MovDesc.operands()[0].RegClass != -1); const TargetRegisterClass *ResRC = TRI->getRegClass(MovDesc.operands()[0].RegClass); if (!DestRC->hasSuperClassEq(ResRC)) return; MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); while (ImpOpI != ImpOpE) { MachineInstr::mop_iterator Tmp = ImpOpI; ImpOpI++; UseMI->removeOperand(UseMI->getOperandNo(Tmp)); } UseMI->setDesc(TII->get(MovOp)); if (MovOp == AMDGPU::V_MOV_B16_t16_e64) { const auto &SrcOp = UseMI->getOperand(UseOpIdx); MachineOperand NewSrcOp(SrcOp); MachineFunction *MF = UseMI->getParent()->getParent(); UseMI->removeOperand(1); UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // src0_modifiers UseMI->addOperand(NewSrcOp); // src0 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // op_sel UseOpIdx = 2; UseOp = &UseMI->getOperand(UseOpIdx); } CopiesToReplace.push_back(UseMI); } else { if (UseMI->isCopy() && OpToFold.isReg() && UseMI->getOperand(0).getReg().isVirtual() && !UseMI->getOperand(1).getSubReg() && OpToFold.DefMI->implicit_operands().empty()) { LLVM_DEBUG(dbgs() << "Folding " << OpToFold.OpToFold << "\n into " << *UseMI); unsigned Size = TII->getOpSize(*UseMI, 1); Register UseReg = OpToFold.getReg(); UseMI->getOperand(1).setReg(UseReg); unsigned SubRegIdx = OpToFold.getSubReg(); // Hack to allow 32-bit SGPRs to be folded into True16 instructions // Remove this if 16-bit SGPRs (i.e. SGPR_LO16) are added to the // VS_16RegClass // // Excerpt from AMDGPUGenRegisterInfo.inc // NoSubRegister, //0 // hi16, // 1 // lo16, // 2 // sub0, // 3 // ... // sub1, // 11 // sub1_hi16, // 12 // sub1_lo16, // 13 static_assert(AMDGPU::sub1_hi16 == 12, "Subregister layout has changed"); if (Size == 2 && TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && TRI->isSGPRReg(*MRI, UseReg)) { // Produce the 32 bit subregister index to which the 16-bit subregister // is aligned. if (SubRegIdx > AMDGPU::sub1) { LaneBitmask M = TRI->getSubRegIndexLaneMask(SubRegIdx); M |= M.getLane(M.getHighestLane() - 1); SmallVector Indexes; TRI->getCoveringSubRegIndexes(TRI->getRegClassForReg(*MRI, UseReg), M, Indexes); assert(Indexes.size() == 1 && "Expected one 32-bit subreg to cover"); SubRegIdx = Indexes[0]; // 32-bit registers do not have a sub0 index } else if (TII->getOpSize(*UseMI, 1) == 4) SubRegIdx = 0; else SubRegIdx = AMDGPU::sub0; } UseMI->getOperand(1).setSubReg(SubRegIdx); UseMI->getOperand(1).setIsKill(false); CopiesToReplace.push_back(UseMI); OpToFold.OpToFold->setIsKill(false); // Remove kill flags as kills may now be out of order with uses. MRI->clearKillFlags(UseReg); if (foldCopyToAGPRRegSequence(UseMI)) return; } unsigned UseOpc = UseMI->getOpcode(); if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || (UseOpc == AMDGPU::V_READLANE_B32 && (int)UseOpIdx == AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { // %vgpr = V_MOV_B32 imm // %sgpr = V_READFIRSTLANE_B32 %vgpr // => // %sgpr = S_MOV_B32 imm if (FoldingImmLike) { if (execMayBeModifiedBeforeUse(*MRI, UseMI->getOperand(UseOpIdx).getReg(), *OpToFold.DefMI, *UseMI)) return; UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); if (OpToFold.isImm()) { UseMI->getOperand(1).ChangeToImmediate( *OpToFold.getEffectiveImmVal()); } else if (OpToFold.isFI()) UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getFI()); else { assert(OpToFold.isGlobal()); UseMI->getOperand(1).ChangeToGA(OpToFold.OpToFold->getGlobal(), OpToFold.OpToFold->getOffset(), OpToFold.OpToFold->getTargetFlags()); } UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) return; } if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { if (execMayBeModifiedBeforeUse(*MRI, UseMI->getOperand(UseOpIdx).getReg(), *OpToFold.DefMI, *UseMI)) return; // %vgpr = COPY %sgpr0 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr // => // %sgpr1 = COPY %sgpr0 UseMI->setDesc(TII->get(AMDGPU::COPY)); UseMI->getOperand(1).setReg(OpToFold.getReg()); UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); UseMI->getOperand(1).setIsKill(false); UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) return; } } const MCInstrDesc &UseDesc = UseMI->getDesc(); // Don't fold into target independent nodes. Target independent opcodes // don't have defined register classes. if (UseDesc.isVariadic() || UseOp->isImplicit() || UseDesc.operands()[UseOpIdx].RegClass == -1) return; } if (!FoldingImmLike) { if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { // Don't fold if OpToFold doesn't hold an aligned register. const TargetRegisterClass *RC = TRI->getRegClassForReg(*MRI, OpToFold.getReg()); assert(RC); if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { unsigned SubReg = OpToFold.getSubReg(); if (const TargetRegisterClass *SubRC = TRI->getSubRegisterClass(RC, SubReg)) RC = SubRC; } if (!RC || !TRI->isProperlyAlignedRC(*RC)) return; } tryAddToFoldList(FoldList, UseMI, UseOpIdx, OpToFold); // FIXME: We could try to change the instruction from 64-bit to 32-bit // to enable more folding opportunities. The shrink operands pass // already does this. return; } tryAddToFoldList(FoldList, UseMI, UseOpIdx, OpToFold); } static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, uint32_t LHS, uint32_t RHS) { switch (Opcode) { case AMDGPU::V_AND_B32_e64: case AMDGPU::V_AND_B32_e32: case AMDGPU::S_AND_B32: Result = LHS & RHS; return true; case AMDGPU::V_OR_B32_e64: case AMDGPU::V_OR_B32_e32: case AMDGPU::S_OR_B32: Result = LHS | RHS; return true; case AMDGPU::V_XOR_B32_e64: case AMDGPU::V_XOR_B32_e32: case AMDGPU::S_XOR_B32: Result = LHS ^ RHS; return true; case AMDGPU::S_XNOR_B32: Result = ~(LHS ^ RHS); return true; case AMDGPU::S_NAND_B32: Result = ~(LHS & RHS); return true; case AMDGPU::S_NOR_B32: Result = ~(LHS | RHS); return true; case AMDGPU::S_ANDN2_B32: Result = LHS & ~RHS; return true; case AMDGPU::S_ORN2_B32: Result = LHS | ~RHS; return true; case AMDGPU::V_LSHL_B32_e64: case AMDGPU::V_LSHL_B32_e32: case AMDGPU::S_LSHL_B32: // The instruction ignores the high bits for out of bounds shifts. Result = LHS << (RHS & 31); return true; case AMDGPU::V_LSHLREV_B32_e64: case AMDGPU::V_LSHLREV_B32_e32: Result = RHS << (LHS & 31); return true; case AMDGPU::V_LSHR_B32_e64: case AMDGPU::V_LSHR_B32_e32: case AMDGPU::S_LSHR_B32: Result = LHS >> (RHS & 31); return true; case AMDGPU::V_LSHRREV_B32_e64: case AMDGPU::V_LSHRREV_B32_e32: Result = RHS >> (LHS & 31); return true; case AMDGPU::V_ASHR_I32_e64: case AMDGPU::V_ASHR_I32_e32: case AMDGPU::S_ASHR_I32: Result = static_cast(LHS) >> (RHS & 31); return true; case AMDGPU::V_ASHRREV_I32_e64: case AMDGPU::V_ASHRREV_I32_e32: Result = static_cast(RHS) >> (LHS & 31); return true; default: return false; } } static unsigned getMovOpc(bool IsScalar) { return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; } static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { MI.setDesc(NewDesc); // Remove any leftover implicit operands from mutating the instruction. e.g. // if we replace an s_and_b32 with a copy, we don't need the implicit scc def // anymore. const MCInstrDesc &Desc = MI.getDesc(); unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + Desc.implicit_defs().size(); for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) MI.removeOperand(I); } std::optional SIFoldOperandsImpl::getImmOrMaterializedImm(MachineOperand &Op) const { if (Op.isImm()) return Op.getImm(); if (!Op.isReg() || !Op.getReg().isVirtual()) return std::nullopt; const MachineInstr *Def = MRI->getVRegDef(Op.getReg()); if (Def && Def->isMoveImmediate()) { const MachineOperand &ImmSrc = Def->getOperand(1); if (ImmSrc.isImm()) return TII->extractSubregFromImm(ImmSrc.getImm(), Op.getSubReg()); } return std::nullopt; } // Try to simplify operations with a constant that may appear after instruction // selection. // TODO: See if a frame index with a fixed offset can fold. bool SIFoldOperandsImpl::tryConstantFoldOp(MachineInstr *MI) const { if (!MI->allImplicitDefsAreDead()) return false; unsigned Opc = MI->getOpcode(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); if (Src0Idx == -1) return false; MachineOperand *Src0 = &MI->getOperand(Src0Idx); std::optional Src0Imm = getImmOrMaterializedImm(*Src0); if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || Opc == AMDGPU::S_NOT_B32) && Src0Imm) { MI->getOperand(1).ChangeToImmediate(~*Src0Imm); mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); return true; } int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); if (Src1Idx == -1) return false; MachineOperand *Src1 = &MI->getOperand(Src1Idx); std::optional Src1Imm = getImmOrMaterializedImm(*Src1); if (!Src0Imm && !Src1Imm) return false; // and k0, k1 -> v_mov_b32 (k0 & k1) // or k0, k1 -> v_mov_b32 (k0 | k1) // xor k0, k1 -> v_mov_b32 (k0 ^ k1) if (Src0Imm && Src1Imm) { int32_t NewImm; if (!evalBinaryInstruction(Opc, NewImm, *Src0Imm, *Src1Imm)) return false; bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); // Be careful to change the right operand, src0 may belong to a different // instruction. MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); return true; } if (!MI->isCommutable()) return false; if (Src0Imm && !Src1Imm) { std::swap(Src0, Src1); std::swap(Src0Idx, Src1Idx); std::swap(Src0Imm, Src1Imm); } int32_t Src1Val = static_cast(*Src1Imm); if (Opc == AMDGPU::V_OR_B32_e64 || Opc == AMDGPU::V_OR_B32_e32 || Opc == AMDGPU::S_OR_B32) { if (Src1Val == 0) { // y = or x, 0 => y = copy x MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); } else if (Src1Val == -1) { // y = or x, -1 => y = v_mov_b32 -1 MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); } else return false; return true; } if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || Opc == AMDGPU::S_AND_B32) { if (Src1Val == 0) { // y = and x, 0 => y = v_mov_b32 0 MI->removeOperand(Src0Idx); mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); } else if (Src1Val == -1) { // y = and x, -1 => y = copy x MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); } else return false; return true; } if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || Opc == AMDGPU::S_XOR_B32) { if (Src1Val == 0) { // y = xor x, 0 => y = copy x MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); return true; } } return false; } // Try to fold an instruction into a simpler one bool SIFoldOperandsImpl::tryFoldCndMask(MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) return false; MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (!Src1->isIdenticalTo(*Src0)) { std::optional Src1Imm = getImmOrMaterializedImm(*Src1); if (!Src1Imm) return false; std::optional Src0Imm = getImmOrMaterializedImm(*Src0); if (!Src0Imm || *Src0Imm != *Src1Imm) return false; } int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) return false; LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); auto &NewDesc = TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); if (Src2Idx != -1) MI.removeOperand(Src2Idx); MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); if (Src1ModIdx != -1) MI.removeOperand(Src1ModIdx); if (Src0ModIdx != -1) MI.removeOperand(Src0ModIdx); mutateCopyOp(MI, NewDesc); LLVM_DEBUG(dbgs() << MI); return true; } bool SIFoldOperandsImpl::tryFoldZeroHighBits(MachineInstr &MI) const { if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && MI.getOpcode() != AMDGPU::V_AND_B32_e32) return false; std::optional Src0Imm = getImmOrMaterializedImm(MI.getOperand(1)); if (!Src0Imm || *Src0Imm != 0xffff || !MI.getOperand(2).isReg()) return false; Register Src1 = MI.getOperand(2).getReg(); MachineInstr *SrcDef = MRI->getVRegDef(Src1); if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) return false; Register Dst = MI.getOperand(0).getReg(); MRI->replaceRegWith(Dst, Src1); if (!MI.getOperand(2).isKill()) MRI->clearKillFlags(Src1); MI.eraseFromParent(); return true; } bool SIFoldOperandsImpl::foldInstOperand(MachineInstr &MI, const FoldableDef &OpToFold) const { // We need mutate the operands of new mov instructions to add implicit // uses of EXEC, but adding them invalidates the use_iterator, so defer // this. SmallVector CopiesToReplace; SmallVector FoldList; MachineOperand &Dst = MI.getOperand(0); bool Changed = false; if (OpToFold.isImm()) { for (auto &UseMI : make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { // Folding the immediate may reveal operations that can be constant // folded or replaced with a copy. This can happen for example after // frame indices are lowered to constants or from splitting 64-bit // constants. // // We may also encounter cases where one or both operands are // immediates materialized into a register, which would ordinarily not // be folded due to multiple uses or operand constraints. if (tryConstantFoldOp(&UseMI)) { LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); Changed = true; } } } SmallVector UsesToProcess( llvm::make_pointer_range(MRI->use_nodbg_operands(Dst.getReg()))); for (auto *U : UsesToProcess) { MachineInstr *UseMI = U->getParent(); FoldableDef SubOpToFold = OpToFold.getWithSubReg(*TRI, U->getSubReg()); foldOperand(SubOpToFold, UseMI, UseMI->getOperandNo(U), FoldList, CopiesToReplace); } if (CopiesToReplace.empty() && FoldList.empty()) return Changed; MachineFunction *MF = MI.getParent()->getParent(); // Make sure we add EXEC uses to any new v_mov instructions created. for (MachineInstr *Copy : CopiesToReplace) Copy->addImplicitDefUseOperands(*MF); SetVector ConstantFoldCandidates; for (FoldCandidate &Fold : FoldList) { assert(!Fold.isReg() || Fold.Def.OpToFold); if (Fold.isReg() && Fold.getReg().isVirtual()) { Register Reg = Fold.getReg(); const MachineInstr *DefMI = Fold.Def.DefMI; if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) continue; } if (updateOperand(Fold)) { // Clear kill flags. if (Fold.isReg()) { assert(Fold.Def.OpToFold && Fold.isReg()); // FIXME: Probably shouldn't bother trying to fold if not an // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR // copies. MRI->clearKillFlags(Fold.getReg()); } LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " << static_cast(Fold.UseOpNo) << " of " << *Fold.UseMI); if (Fold.isImm()) ConstantFoldCandidates.insert(Fold.UseMI); } else if (Fold.Commuted) { // Restoring instruction's original operand order if fold has failed. TII->commuteInstruction(*Fold.UseMI, false); } } for (MachineInstr *MI : ConstantFoldCandidates) { if (tryConstantFoldOp(MI)) { LLVM_DEBUG(dbgs() << "Constant folded " << *MI); Changed = true; } } return true; } /// Fold %agpr = COPY (REG_SEQUENCE x_MOV_B32, ...) into REG_SEQUENCE /// (V_ACCVGPR_WRITE_B32_e64) ... depending on the reg_sequence input values. bool SIFoldOperandsImpl::foldCopyToAGPRRegSequence(MachineInstr *CopyMI) const { // It is very tricky to store a value into an AGPR. v_accvgpr_write_b32 can // only accept VGPR or inline immediate. Recreate a reg_sequence with its // initializers right here, so we will rematerialize immediates and avoid // copies via different reg classes. const TargetRegisterClass *DefRC = MRI->getRegClass(CopyMI->getOperand(0).getReg()); if (!TRI->isAGPRClass(DefRC)) return false; Register UseReg = CopyMI->getOperand(1).getReg(); MachineInstr *RegSeq = MRI->getVRegDef(UseReg); if (!RegSeq || !RegSeq->isRegSequence()) return false; const DebugLoc &DL = CopyMI->getDebugLoc(); MachineBasicBlock &MBB = *CopyMI->getParent(); MachineInstrBuilder B(*MBB.getParent(), CopyMI); DenseMap VGPRCopies; const TargetRegisterClass *UseRC = MRI->getRegClass(CopyMI->getOperand(1).getReg()); // Value, subregindex for new REG_SEQUENCE SmallVector, 32> NewDefs; unsigned NumRegSeqOperands = RegSeq->getNumOperands(); unsigned NumFoldable = 0; for (unsigned I = 1; I != NumRegSeqOperands; I += 2) { MachineOperand &RegOp = RegSeq->getOperand(I); unsigned SubRegIdx = RegSeq->getOperand(I + 1).getImm(); if (RegOp.getSubReg()) { // TODO: Handle subregister compose NewDefs.emplace_back(&RegOp, SubRegIdx); continue; } MachineOperand *Lookup = lookUpCopyChain(*TII, *MRI, RegOp.getReg()); if (!Lookup) Lookup = &RegOp; if (Lookup->isImm()) { // Check if this is an agpr_32 subregister. const TargetRegisterClass *DestSuperRC = TRI->getMatchingSuperRegClass( DefRC, &AMDGPU::AGPR_32RegClass, SubRegIdx); if (DestSuperRC && TII->isInlineConstant(*Lookup, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { ++NumFoldable; NewDefs.emplace_back(Lookup, SubRegIdx); continue; } } const TargetRegisterClass *InputRC = Lookup->isReg() ? MRI->getRegClass(Lookup->getReg()) : MRI->getRegClass(RegOp.getReg()); // TODO: Account for Lookup->getSubReg() // If we can't find a matching super class, this is an SGPR->AGPR or // VGPR->AGPR subreg copy (or something constant-like we have to materialize // in the AGPR). We can't directly copy from SGPR to AGPR on gfx908, so we // want to rewrite to copy to an intermediate VGPR class. const TargetRegisterClass *MatchRC = TRI->getMatchingSuperRegClass(DefRC, InputRC, SubRegIdx); if (!MatchRC) { ++NumFoldable; NewDefs.emplace_back(&RegOp, SubRegIdx); continue; } NewDefs.emplace_back(&RegOp, SubRegIdx); } // Do not clone a reg_sequence and merely change the result register class. if (NumFoldable == 0) return false; CopyMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); for (unsigned I = CopyMI->getNumOperands() - 1; I > 0; --I) CopyMI->removeOperand(I); for (auto [Def, DestSubIdx] : NewDefs) { if (!Def->isReg()) { // TODO: Should we use single write for each repeated value like in // register case? Register Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); BuildMI(MBB, CopyMI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp) .add(*Def); B.addReg(Tmp); } else { TargetInstrInfo::RegSubRegPair Src = getRegSubRegPair(*Def); Def->setIsKill(false); Register &VGPRCopy = VGPRCopies[Src]; if (!VGPRCopy) { const TargetRegisterClass *VGPRUseSubRC = TRI->getSubRegisterClass(UseRC, DestSubIdx); // We cannot build a reg_sequence out of the same registers, they // must be copied. Better do it here before copyPhysReg() created // several reads to do the AGPR->VGPR->AGPR copy. // Direct copy from SGPR to AGPR is not possible on gfx908. To avoid // creation of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() // later, create a copy here and track if we already have such a copy. if (TRI->getSubRegisterClass(MRI->getRegClass(Src.Reg), Src.SubReg) != VGPRUseSubRC) { VGPRCopy = MRI->createVirtualRegister(VGPRUseSubRC); BuildMI(MBB, CopyMI, DL, TII->get(AMDGPU::COPY), VGPRCopy).add(*Def); B.addReg(VGPRCopy); } else { // If it is already a VGPR, do not copy the register. B.add(*Def); } } else { B.addReg(VGPRCopy); } } B.addImm(DestSubIdx); } LLVM_DEBUG(dbgs() << "Folded " << *CopyMI); return true; } bool SIFoldOperandsImpl::tryFoldFoldableCopy( MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { Register DstReg = MI.getOperand(0).getReg(); // Specially track simple redefs of m0 to the same value in a block, so we // can erase the later ones. if (DstReg == AMDGPU::M0) { MachineOperand &NewM0Val = MI.getOperand(1); if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { MI.eraseFromParent(); return true; } // We aren't tracking other physical registers CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? nullptr : &NewM0Val; return false; } MachineOperand *OpToFoldPtr; if (MI.getOpcode() == AMDGPU::V_MOV_B16_t16_e64) { // Folding when any src_modifiers are non-zero is unsupported if (TII->hasAnyModifiersSet(MI)) return false; OpToFoldPtr = &MI.getOperand(2); } else OpToFoldPtr = &MI.getOperand(1); MachineOperand &OpToFold = *OpToFoldPtr; bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); // FIXME: We could also be folding things like TargetIndexes. if (!FoldingImm && !OpToFold.isReg()) return false; if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) return false; // Prevent folding operands backwards in the function. For example, // the COPY opcode must not be replaced by 1 in this example: // // %3 = COPY %vgpr0; VGPR_32:%3 // ... // %vgpr0 = V_MOV_B32_e32 1, implicit %exec if (!DstReg.isVirtual()) return false; const TargetRegisterClass *DstRC = MRI->getRegClass(MI.getOperand(0).getReg()); // True16: Fix malformed 16-bit sgpr COPY produced by peephole-opt // Can remove this code if proper 16-bit SGPRs are implemented // Example: Pre-peephole-opt // %29:sgpr_lo16 = COPY %16.lo16:sreg_32 // %32:sreg_32 = COPY %29:sgpr_lo16 // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 // Post-peephole-opt and DCE // %32:sreg_32 = COPY %16.lo16:sreg_32 // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 // After this transform // %32:sreg_32 = COPY %16:sreg_32 // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 // After the fold operands pass // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %16:sreg_32 if (MI.getOpcode() == AMDGPU::COPY && OpToFold.isReg() && OpToFold.getSubReg()) { if (DstRC == &AMDGPU::SReg_32RegClass && DstRC == MRI->getRegClass(OpToFold.getReg())) { assert(OpToFold.getSubReg() == AMDGPU::lo16); OpToFold.setSubReg(0); } } // Fold copy to AGPR through reg_sequence // TODO: Handle with subregister extract if (OpToFold.isReg() && MI.isCopy() && !MI.getOperand(1).getSubReg()) { if (foldCopyToAGPRRegSequence(&MI)) return true; } FoldableDef Def(OpToFold, DstRC); bool Changed = foldInstOperand(MI, Def); // If we managed to fold all uses of this copy then we might as well // delete it now. // The only reason we need to follow chains of copies here is that // tryFoldRegSequence looks forward through copies before folding a // REG_SEQUENCE into its eventual users. auto *InstToErase = &MI; while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { auto &SrcOp = InstToErase->getOperand(1); auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); InstToErase->eraseFromParent(); Changed = true; InstToErase = nullptr; if (!SrcReg || SrcReg.isPhysical()) break; InstToErase = MRI->getVRegDef(SrcReg); if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) break; } if (InstToErase && InstToErase->isRegSequence() && MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { InstToErase->eraseFromParent(); Changed = true; } if (Changed) return true; // Run this after foldInstOperand to avoid turning scalar additions into // vector additions when the result scalar result could just be folded into // the user(s). return OpToFold.isReg() && foldCopyToVGPROfScalarAddOfFrameIndex(DstReg, OpToFold.getReg(), MI); } // Clamp patterns are canonically selected to v_max_* instructions, so only // handle them. const MachineOperand * SIFoldOperandsImpl::isClamp(const MachineInstr &MI) const { unsigned Op = MI.getOpcode(); switch (Op) { case AMDGPU::V_MAX_F32_e64: case AMDGPU::V_MAX_F16_e64: case AMDGPU::V_MAX_F16_t16_e64: case AMDGPU::V_MAX_F16_fake16_e64: case AMDGPU::V_MAX_F64_e64: case AMDGPU::V_MAX_NUM_F64_e64: case AMDGPU::V_PK_MAX_F16: { if (MI.mayRaiseFPException()) return nullptr; if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) return nullptr; // Make sure sources are identical. const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (!Src0->isReg() || !Src1->isReg() || Src0->getReg() != Src1->getReg() || Src0->getSubReg() != Src1->getSubReg() || Src0->getSubReg() != AMDGPU::NoSubRegister) return nullptr; // Can't fold up if we have modifiers. if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) return nullptr; unsigned Src0Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); unsigned Src1Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); // Having a 0 op_sel_hi would require swizzling the output in the source // instruction, which we can't do. unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0u; if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) return nullptr; return Src0; } default: return nullptr; } } // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. bool SIFoldOperandsImpl::tryFoldClamp(MachineInstr &MI) { const MachineOperand *ClampSrc = isClamp(MI); if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) return false; if (!ClampSrc->getReg().isVirtual()) return false; // Look through COPY. COPY only observed with True16. Register DefSrcReg = TRI->lookThruCopyLike(ClampSrc->getReg(), MRI); MachineInstr *Def = MRI->getVRegDef(DefSrcReg.isVirtual() ? DefSrcReg : ClampSrc->getReg()); // The type of clamp must be compatible. if (TII->getClampMask(*Def) != TII->getClampMask(MI)) return false; if (Def->mayRaiseFPException()) return false; MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); if (!DefClamp) return false; LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); // Clamp is applied after omod, so it is OK if omod is set. DefClamp->setImm(1); Register DefReg = Def->getOperand(0).getReg(); Register MIDstReg = MI.getOperand(0).getReg(); if (TRI->isSGPRReg(*MRI, DefReg)) { // Pseudo scalar instructions have a SGPR for dst and clamp is a v_max* // instruction with a VGPR dst. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY), MIDstReg) .addReg(DefReg); } else { MRI->replaceRegWith(MIDstReg, DefReg); } MI.eraseFromParent(); // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac // instruction, so we might as well convert it to the more flexible VOP3-only // mad/fma form. if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) Def->eraseFromParent(); return true; } static int getOModValue(unsigned Opc, int64_t Val) { switch (Opc) { case AMDGPU::V_MUL_F64_e64: case AMDGPU::V_MUL_F64_pseudo_e64: { switch (Val) { case 0x3fe0000000000000: // 0.5 return SIOutMods::DIV2; case 0x4000000000000000: // 2.0 return SIOutMods::MUL2; case 0x4010000000000000: // 4.0 return SIOutMods::MUL4; default: return SIOutMods::NONE; } } case AMDGPU::V_MUL_F32_e64: { switch (static_cast(Val)) { case 0x3f000000: // 0.5 return SIOutMods::DIV2; case 0x40000000: // 2.0 return SIOutMods::MUL2; case 0x40800000: // 4.0 return SIOutMods::MUL4; default: return SIOutMods::NONE; } } case AMDGPU::V_MUL_F16_e64: case AMDGPU::V_MUL_F16_t16_e64: case AMDGPU::V_MUL_F16_fake16_e64: { switch (static_cast(Val)) { case 0x3800: // 0.5 return SIOutMods::DIV2; case 0x4000: // 2.0 return SIOutMods::MUL2; case 0x4400: // 4.0 return SIOutMods::MUL4; default: return SIOutMods::NONE; } } default: llvm_unreachable("invalid mul opcode"); } } // FIXME: Does this really not support denormals with f16? // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not // handled, so will anything other than that break? std::pair SIFoldOperandsImpl::isOMod(const MachineInstr &MI) const { unsigned Op = MI.getOpcode(); switch (Op) { case AMDGPU::V_MUL_F64_e64: case AMDGPU::V_MUL_F64_pseudo_e64: case AMDGPU::V_MUL_F32_e64: case AMDGPU::V_MUL_F16_t16_e64: case AMDGPU::V_MUL_F16_fake16_e64: case AMDGPU::V_MUL_F16_e64: { // If output denormals are enabled, omod is ignored. if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || Op == AMDGPU::V_MUL_F16_fake16_e64) && MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign) || MI.mayRaiseFPException()) return std::pair(nullptr, SIOutMods::NONE); const MachineOperand *RegOp = nullptr; const MachineOperand *ImmOp = nullptr; const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src0->isImm()) { ImmOp = Src0; RegOp = Src1; } else if (Src1->isImm()) { ImmOp = Src1; RegOp = Src0; } else return std::pair(nullptr, SIOutMods::NONE); int OMod = getOModValue(Op, ImmOp->getImm()); if (OMod == SIOutMods::NONE || TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) return std::pair(nullptr, SIOutMods::NONE); return std::pair(RegOp, OMod); } case AMDGPU::V_ADD_F64_e64: case AMDGPU::V_ADD_F64_pseudo_e64: case AMDGPU::V_ADD_F32_e64: case AMDGPU::V_ADD_F16_e64: case AMDGPU::V_ADD_F16_t16_e64: case AMDGPU::V_ADD_F16_fake16_e64: { // If output denormals are enabled, omod is ignored. if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || Op == AMDGPU::V_ADD_F16_fake16_e64) && MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) return std::pair(nullptr, SIOutMods::NONE); // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && Src0->getSubReg() == Src1->getSubReg() && !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) return std::pair(Src0, SIOutMods::MUL2); return std::pair(nullptr, SIOutMods::NONE); } default: return std::pair(nullptr, SIOutMods::NONE); } } // FIXME: Does this need to check IEEE bit on function? bool SIFoldOperandsImpl::tryFoldOMod(MachineInstr &MI) { const MachineOperand *RegOp; int OMod; std::tie(RegOp, OMod) = isOMod(MI); if (OMod == SIOutMods::NONE || !RegOp->isReg() || RegOp->getSubReg() != AMDGPU::NoSubRegister || !MRI->hasOneNonDBGUser(RegOp->getReg())) return false; MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) return false; if (Def->mayRaiseFPException()) return false; // Clamp is applied after omod. If the source already has clamp set, don't // fold it. if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) return false; LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); DefOMod->setImm(OMod); MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); // Kill flags can be wrong if we replaced a def inside a loop with a def // outside the loop. MRI->clearKillFlags(Def->getOperand(0).getReg()); MI.eraseFromParent(); // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac // instruction, so we might as well convert it to the more flexible VOP3-only // mad/fma form. if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) Def->eraseFromParent(); return true; } // Try to fold a reg_sequence with vgpr output and agpr inputs into an // instruction which can take an agpr. So far that means a store. bool SIFoldOperandsImpl::tryFoldRegSequence(MachineInstr &MI) { assert(MI.isRegSequence()); auto Reg = MI.getOperand(0).getReg(); if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) return false; SmallVector, 32> Defs; if (!getRegSeqInit(Defs, Reg)) return false; for (auto &[Op, SubIdx] : Defs) { if (!Op->isReg()) return false; if (TRI->isAGPR(*MRI, Op->getReg())) continue; // Maybe this is a COPY from AREG const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) return false; if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) return false; } MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); MachineInstr *UseMI = Op->getParent(); while (UseMI->isCopy() && !Op->getSubReg()) { Reg = UseMI->getOperand(0).getReg(); if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) return false; Op = &*MRI->use_nodbg_begin(Reg); UseMI = Op->getParent(); } if (Op->getSubReg()) return false; unsigned OpIdx = Op - &UseMI->getOperand(0); const MCInstrDesc &InstDesc = UseMI->getDesc(); const TargetRegisterClass *OpRC = TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); if (!OpRC || !TRI->isVectorSuperClass(OpRC)) return false; const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); auto Dst = MRI->createVirtualRegister(NewDstRC); auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), Dst); for (auto &[Def, SubIdx] : Defs) { Def->setIsKill(false); if (TRI->isAGPR(*MRI, Def->getReg())) { RS.add(*Def); } else { // This is a copy MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); SubDef->getOperand(1).setIsKill(false); RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); } RS.addImm(SubIdx); } Op->setReg(Dst); if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { Op->setReg(Reg); RS->eraseFromParent(); return false; } LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, // in which case we can erase them all later in runOnMachineFunction. if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) MI.eraseFromParent(); return true; } /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg static bool isAGPRCopy(const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI, const MachineInstr &Copy, Register &OutReg, unsigned &OutSubReg) { assert(Copy.isCopy()); const MachineOperand &CopySrc = Copy.getOperand(1); Register CopySrcReg = CopySrc.getReg(); if (!CopySrcReg.isVirtual()) return false; // Common case: copy from AGPR directly, e.g. // %1:vgpr_32 = COPY %0:agpr_32 if (TRI.isAGPR(MRI, CopySrcReg)) { OutReg = CopySrcReg; OutSubReg = CopySrc.getSubReg(); return true; } // Sometimes it can also involve two copies, e.g. // %1:vgpr_256 = COPY %0:agpr_256 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); if (!CopySrcDef || !CopySrcDef->isCopy()) return false; const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); Register OtherCopySrcReg = OtherCopySrc.getReg(); if (!OtherCopySrcReg.isVirtual() || CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || !TRI.isAGPR(MRI, OtherCopySrcReg)) return false; OutReg = OtherCopySrcReg; OutSubReg = CopySrc.getSubReg(); return true; } // Try to hoist an AGPR to VGPR copy across a PHI. // This should allow folding of an AGPR into a consumer which may support it. // // Example 1: LCSSA PHI // loop: // %1:vreg = COPY %0:areg // exit: // %2:vreg = PHI %1:vreg, %loop // => // loop: // exit: // %1:areg = PHI %0:areg, %loop // %2:vreg = COPY %1:areg // // Example 2: PHI with multiple incoming values: // entry: // %1:vreg = GLOBAL_LOAD(..) // loop: // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop // %3:areg = COPY %2:vreg // %4:areg = (instr using %3:areg) // %5:vreg = COPY %4:areg // => // entry: // %1:vreg = GLOBAL_LOAD(..) // %2:areg = COPY %1:vreg // loop: // %3:areg = PHI %2:areg, %entry, %X:areg, // %4:areg = (instr using %3:areg) bool SIFoldOperandsImpl::tryFoldPhiAGPR(MachineInstr &PHI) { assert(PHI.isPHI()); Register PhiOut = PHI.getOperand(0).getReg(); if (!TRI->isVGPR(*MRI, PhiOut)) return false; // Iterate once over all incoming values of the PHI to check if this PHI is // eligible, and determine the exact AGPR RC we'll target. const TargetRegisterClass *ARC = nullptr; for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { MachineOperand &MO = PHI.getOperand(K); MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); if (!Copy || !Copy->isCopy()) continue; Register AGPRSrc; unsigned AGPRRegMask = AMDGPU::NoSubRegister; if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) continue; const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) CopyInRC = SubRC; if (ARC && !ARC->hasSubClassEq(CopyInRC)) return false; ARC = CopyInRC; } if (!ARC) return false; bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); // Rewrite the PHI's incoming values to ARC. LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { MachineOperand &MO = PHI.getOperand(K); Register Reg = MO.getReg(); MachineBasicBlock::iterator InsertPt; MachineBasicBlock *InsertMBB = nullptr; // Look at the def of Reg, ignoring all copies. unsigned CopyOpc = AMDGPU::COPY; if (MachineInstr *Def = MRI->getVRegDef(Reg)) { // Look at pre-existing COPY instructions from ARC: Steal the operand. If // the copy was single-use, it will be removed by DCE later. if (Def->isCopy()) { Register AGPRSrc; unsigned AGPRSubReg = AMDGPU::NoSubRegister; if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { MO.setReg(AGPRSrc); MO.setSubReg(AGPRSubReg); continue; } // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which // is unlikely to be profitable. // // Note that V_ACCVGPR_WRITE is only used for AGPR_32. MachineOperand &CopyIn = Def->getOperand(1); if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && TRI->isSGPRReg(*MRI, CopyIn.getReg())) CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; } InsertMBB = Def->getParent(); InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); } else { InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); InsertPt = InsertMBB->getFirstTerminator(); } Register NewReg = MRI->createVirtualRegister(ARC); MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), TII->get(CopyOpc), NewReg) .addReg(Reg); MO.setReg(NewReg); (void)MI; LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); } // Replace the PHI's result with a new register. Register NewReg = MRI->createVirtualRegister(ARC); PHI.getOperand(0).setReg(NewReg); // COPY that new register back to the original PhiOut register. This COPY will // usually be folded out later. MachineBasicBlock *MBB = PHI.getParent(); BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), TII->get(AMDGPU::COPY), PhiOut) .addReg(NewReg); LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); return true; } // Attempt to convert VGPR load to an AGPR load. bool SIFoldOperandsImpl::tryFoldLoad(MachineInstr &MI) { assert(MI.mayLoad()); if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) return false; MachineOperand &Def = MI.getOperand(0); if (!Def.isDef()) return false; Register DefReg = Def.getReg(); if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) return false; SmallVector Users( llvm::make_pointer_range(MRI->use_nodbg_instructions(DefReg))); SmallVector MoveRegs; if (Users.empty()) return false; // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. while (!Users.empty()) { const MachineInstr *I = Users.pop_back_val(); if (!I->isCopy() && !I->isRegSequence()) return false; Register DstReg = I->getOperand(0).getReg(); // Physical registers may have more than one instruction definitions if (DstReg.isPhysical()) return false; if (TRI->isAGPR(*MRI, DstReg)) continue; MoveRegs.push_back(DstReg); for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) Users.push_back(&U); } const TargetRegisterClass *RC = MRI->getRegClass(DefReg); MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); if (!TII->isOperandLegal(MI, 0, &Def)) { MRI->setRegClass(DefReg, RC); return false; } while (!MoveRegs.empty()) { Register Reg = MoveRegs.pop_back_val(); MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); } LLVM_DEBUG(dbgs() << "Folded " << MI); return true; } // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. // For GFX90A and later, this is pretty much always a good thing, but for GFX908 // there's cases where it can create a lot more AGPR-AGPR copies, which are // expensive on this architecture due to the lack of V_ACCVGPR_MOV. // // This function looks at all AGPR PHIs in a basic block and collects their // operands. Then, it checks for register that are used more than once across // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from // having to create one VGPR temporary per use, which can get very messy if // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector // element). // // Example // a: // %in:agpr_256 = COPY %foo:vgpr_256 // c: // %x:agpr_32 = .. // b: // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c // => // a: // %in:agpr_256 = COPY %foo:vgpr_256 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 // %tmp_agpr:agpr_32 = COPY %tmp // c: // %x:agpr_32 = .. // b: // %0:areg = PHI %tmp_agpr, %a, %x, %c // %1:areg = PHI %tmp_agpr, %a, %y, %c // %2:areg = PHI %tmp_agpr, %a, %z, %c bool SIFoldOperandsImpl::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { // This is only really needed on GFX908 where AGPR-AGPR copies are // unreasonably difficult. if (ST->hasGFX90AInsts()) return false; // Look at all AGPR Phis and collect the register + subregister used. DenseMap, std::vector> RegToMO; for (auto &MI : MBB) { if (!MI.isPHI()) break; if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) continue; for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { MachineOperand &PhiMO = MI.getOperand(K); if (!PhiMO.getSubReg()) continue; RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); } } // For all (Reg, SubReg) pair that are used more than once, cache the value in // a VGPR. bool Changed = false; for (const auto &[Entry, MOs] : RegToMO) { if (MOs.size() == 1) continue; const auto [Reg, SubReg] = Entry; MachineInstr *Def = MRI->getVRegDef(Reg); MachineBasicBlock *DefMBB = Def->getParent(); // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded // out. const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); Register TempVGPR = MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); MachineInstr *VGPRCopy = BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) .addReg(Reg, /* flags */ 0, SubReg); // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. Register TempAGPR = MRI->createVirtualRegister(ARC); BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), TII->get(AMDGPU::COPY), TempAGPR) .addReg(TempVGPR); LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); for (MachineOperand *MO : MOs) { MO->setReg(TempAGPR); MO->setSubReg(AMDGPU::NoSubRegister); LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); } Changed = true; } return Changed; } bool SIFoldOperandsImpl::run(MachineFunction &MF) { MRI = &MF.getRegInfo(); ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); TRI = &TII->getRegisterInfo(); MFI = MF.getInfo(); // omod is ignored by hardware if IEEE bit is enabled. omod also does not // correctly handle signed zeros. // // FIXME: Also need to check strictfp bool IsIEEEMode = MFI->getMode().IEEE; bool HasNSZ = MFI->hasNoSignedZerosFPMath(); bool Changed = false; for (MachineBasicBlock *MBB : depth_first(&MF)) { MachineOperand *CurrentKnownM0Val = nullptr; for (auto &MI : make_early_inc_range(*MBB)) { Changed |= tryFoldCndMask(MI); if (tryFoldZeroHighBits(MI)) { Changed = true; continue; } if (MI.isRegSequence() && tryFoldRegSequence(MI)) { Changed = true; continue; } if (MI.isPHI() && tryFoldPhiAGPR(MI)) { Changed = true; continue; } if (MI.mayLoad() && tryFoldLoad(MI)) { Changed = true; continue; } if (TII->isFoldableCopy(MI)) { Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); continue; } // Saw an unknown clobber of m0, so we no longer know what it is. if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) CurrentKnownM0Val = nullptr; // TODO: Omod might be OK if there is NSZ only on the source // instruction, and not the omod multiply. if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || !tryFoldOMod(MI)) Changed |= tryFoldClamp(MI); } Changed |= tryOptimizeAGPRPhis(*MBB); } return Changed; } PreservedAnalyses SIFoldOperandsPass::run(MachineFunction &MF, MachineFunctionAnalysisManager &) { MFPropsModifier _(*this, MF); bool Changed = SIFoldOperandsImpl().run(MF); if (!Changed) { return PreservedAnalyses::all(); } auto PA = getMachineFunctionPassPreservedAnalyses(); PA.preserveSet(); return PA; }