//====- SHA256.cpp - SHA256 implementation ---*- C++ -* ======// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /* * The SHA-256 Secure Hash Standard was published by NIST in 2002. * * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf * * The implementation is based on nacl's sha256 implementation [0] and LLVM's * pre-exsiting SHA1 code [1]. * * [0] https://hyperelliptic.org/nacl/nacl-20110221.tar.bz2 (public domain * code) * [1] llvm/lib/Support/SHA1.{h,cpp} */ //===----------------------------------------------------------------------===// #include "llvm/Support/SHA256.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Endian.h" #include "llvm/Support/SwapByteOrder.h" #include namespace llvm { #define SHR(x, c) ((x) >> (c)) #define ROTR(x, n) (((x) >> n) | ((x) << (32 - (n)))) #define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define SIGMA_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define SIGMA_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define SIGMA_2(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define SIGMA_3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define F_EXPAND(A, B, C, D, E, F, G, H, M1, M2, M3, M4, k) \ do { \ H += SIGMA_1(E) + CH(E, F, G) + M1 + k; \ D += H; \ H += SIGMA_0(A) + MAJ(A, B, C); \ M1 += SIGMA_2(M2) + M3 + SIGMA_3(M4); \ } while (0); void SHA256::init() { InternalState.State[0] = 0x6A09E667; InternalState.State[1] = 0xBB67AE85; InternalState.State[2] = 0x3C6EF372; InternalState.State[3] = 0xA54FF53A; InternalState.State[4] = 0x510E527F; InternalState.State[5] = 0x9B05688C; InternalState.State[6] = 0x1F83D9AB; InternalState.State[7] = 0x5BE0CD19; InternalState.ByteCount = 0; InternalState.BufferOffset = 0; } void SHA256::hashBlock() { uint32_t A = InternalState.State[0]; uint32_t B = InternalState.State[1]; uint32_t C = InternalState.State[2]; uint32_t D = InternalState.State[3]; uint32_t E = InternalState.State[4]; uint32_t F = InternalState.State[5]; uint32_t G = InternalState.State[6]; uint32_t H = InternalState.State[7]; uint32_t W00 = InternalState.Buffer.L[0]; uint32_t W01 = InternalState.Buffer.L[1]; uint32_t W02 = InternalState.Buffer.L[2]; uint32_t W03 = InternalState.Buffer.L[3]; uint32_t W04 = InternalState.Buffer.L[4]; uint32_t W05 = InternalState.Buffer.L[5]; uint32_t W06 = InternalState.Buffer.L[6]; uint32_t W07 = InternalState.Buffer.L[7]; uint32_t W08 = InternalState.Buffer.L[8]; uint32_t W09 = InternalState.Buffer.L[9]; uint32_t W10 = InternalState.Buffer.L[10]; uint32_t W11 = InternalState.Buffer.L[11]; uint32_t W12 = InternalState.Buffer.L[12]; uint32_t W13 = InternalState.Buffer.L[13]; uint32_t W14 = InternalState.Buffer.L[14]; uint32_t W15 = InternalState.Buffer.L[15]; F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x428A2F98); F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x71374491); F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0xB5C0FBCF); F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0xE9B5DBA5); F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x3956C25B); F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x59F111F1); F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x923F82A4); F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0xAB1C5ED5); F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xD807AA98); F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x12835B01); F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x243185BE); F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x550C7DC3); F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x72BE5D74); F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0x80DEB1FE); F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x9BDC06A7); F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC19BF174); F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0xE49B69C1); F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0xEFBE4786); F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x0FC19DC6); F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x240CA1CC); F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x2DE92C6F); F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4A7484AA); F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5CB0A9DC); F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x76F988DA); F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x983E5152); F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA831C66D); F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xB00327C8); F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xBF597FC7); F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xC6E00BF3); F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD5A79147); F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0x06CA6351); F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x14292967); F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x27B70A85); F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x2E1B2138); F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x4D2C6DFC); F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x53380D13); F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x650A7354); F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x766A0ABB); F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x81C2C92E); F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x92722C85); F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0xA2BFE8A1); F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0xA81A664B); F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0xC24B8B70); F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0xC76C51A3); F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0xD192E819); F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xD6990624); F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xF40E3585); F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0x106AA070); F_EXPAND(A, B, C, D, E, F, G, H, W00, W14, W09, W01, 0x19A4C116); F_EXPAND(H, A, B, C, D, E, F, G, W01, W15, W10, W02, 0x1E376C08); F_EXPAND(G, H, A, B, C, D, E, F, W02, W00, W11, W03, 0x2748774C); F_EXPAND(F, G, H, A, B, C, D, E, W03, W01, W12, W04, 0x34B0BCB5); F_EXPAND(E, F, G, H, A, B, C, D, W04, W02, W13, W05, 0x391C0CB3); F_EXPAND(D, E, F, G, H, A, B, C, W05, W03, W14, W06, 0x4ED8AA4A); F_EXPAND(C, D, E, F, G, H, A, B, W06, W04, W15, W07, 0x5B9CCA4F); F_EXPAND(B, C, D, E, F, G, H, A, W07, W05, W00, W08, 0x682E6FF3); F_EXPAND(A, B, C, D, E, F, G, H, W08, W06, W01, W09, 0x748F82EE); F_EXPAND(H, A, B, C, D, E, F, G, W09, W07, W02, W10, 0x78A5636F); F_EXPAND(G, H, A, B, C, D, E, F, W10, W08, W03, W11, 0x84C87814); F_EXPAND(F, G, H, A, B, C, D, E, W11, W09, W04, W12, 0x8CC70208); F_EXPAND(E, F, G, H, A, B, C, D, W12, W10, W05, W13, 0x90BEFFFA); F_EXPAND(D, E, F, G, H, A, B, C, W13, W11, W06, W14, 0xA4506CEB); F_EXPAND(C, D, E, F, G, H, A, B, W14, W12, W07, W15, 0xBEF9A3F7); F_EXPAND(B, C, D, E, F, G, H, A, W15, W13, W08, W00, 0xC67178F2); InternalState.State[0] += A; InternalState.State[1] += B; InternalState.State[2] += C; InternalState.State[3] += D; InternalState.State[4] += E; InternalState.State[5] += F; InternalState.State[6] += G; InternalState.State[7] += H; } void SHA256::addUncounted(uint8_t Data) { if constexpr (sys::IsBigEndianHost) InternalState.Buffer.C[InternalState.BufferOffset] = Data; else InternalState.Buffer.C[InternalState.BufferOffset ^ 3] = Data; InternalState.BufferOffset++; if (InternalState.BufferOffset == BLOCK_LENGTH) { hashBlock(); InternalState.BufferOffset = 0; } } void SHA256::writebyte(uint8_t Data) { ++InternalState.ByteCount; addUncounted(Data); } void SHA256::update(ArrayRef Data) { InternalState.ByteCount += Data.size(); // Finish the current block. if (InternalState.BufferOffset > 0) { const size_t Remainder = std::min( Data.size(), BLOCK_LENGTH - InternalState.BufferOffset); for (size_t I = 0; I < Remainder; ++I) addUncounted(Data[I]); Data = Data.drop_front(Remainder); } // Fast buffer filling for large inputs. while (Data.size() >= BLOCK_LENGTH) { assert(InternalState.BufferOffset == 0); static_assert(BLOCK_LENGTH % 4 == 0); constexpr size_t BLOCK_LENGTH_32 = BLOCK_LENGTH / 4; for (size_t I = 0; I < BLOCK_LENGTH_32; ++I) InternalState.Buffer.L[I] = support::endian::read32be(&Data[I * 4]); hashBlock(); Data = Data.drop_front(BLOCK_LENGTH); } // Finish the remainder. for (uint8_t C : Data) addUncounted(C); } void SHA256::update(StringRef Str) { update( ArrayRef((uint8_t *)const_cast(Str.data()), Str.size())); } void SHA256::pad() { // Implement SHA-2 padding (fips180-2 5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block addUncounted(0x80); while (InternalState.BufferOffset != 56) addUncounted(0x00); uint64_t len = InternalState.ByteCount << 3; // bit size // Append length in the last 8 bytes big edian encoded addUncounted(len >> 56); addUncounted(len >> 48); addUncounted(len >> 40); addUncounted(len >> 32); addUncounted(len >> 24); addUncounted(len >> 16); addUncounted(len >> 8); addUncounted(len); } void SHA256::final(std::array &HashResult) { // Pad to complete the last block pad(); if constexpr (sys::IsBigEndianHost) { // Just copy the current state for (int i = 0; i < 8; i++) { HashResult[i] = InternalState.State[i]; } } else { // Swap byte order back for (int i = 0; i < 8; i++) { HashResult[i] = llvm::byteswap(InternalState.State[i]); } } } std::array SHA256::final() { union { std::array HashResult; std::array ReturnResult; }; static_assert(sizeof(HashResult) == sizeof(ReturnResult)); final(HashResult); return ReturnResult; } std::array SHA256::result() { auto StateToRestore = InternalState; auto Hash = final(); // Restore the state InternalState = StateToRestore; // Return pointer to hash (32 characters) return Hash; } std::array SHA256::hash(ArrayRef Data) { SHA256 Hash; Hash.update(Data); return Hash.final(); } } // namespace llvm