//===- InlineAsm.cpp - Implement the InlineAsm class ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the InlineAsm class. // //===----------------------------------------------------------------------===// #include "llvm/IR/InlineAsm.h" #include "ConstantsContext.h" #include "LLVMContextImpl.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Errc.h" #include #include #include #include using namespace llvm; InlineAsm::InlineAsm(FunctionType *FTy, const std::string &asmString, const std::string &constraints, bool hasSideEffects, bool isAlignStack, AsmDialect asmDialect, bool canThrow) : Value(PointerType::getUnqual(FTy), Value::InlineAsmVal), AsmString(asmString), Constraints(constraints), FTy(FTy), HasSideEffects(hasSideEffects), IsAlignStack(isAlignStack), Dialect(asmDialect), CanThrow(canThrow) { #ifndef NDEBUG // Do various checks on the constraint string and type. cantFail(verify(getFunctionType(), constraints)); #endif } InlineAsm *InlineAsm::get(FunctionType *FTy, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack, AsmDialect asmDialect, bool canThrow) { InlineAsmKeyType Key(AsmString, Constraints, FTy, hasSideEffects, isAlignStack, asmDialect, canThrow); LLVMContextImpl *pImpl = FTy->getContext().pImpl; return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(FTy), Key); } void InlineAsm::destroyConstant() { getType()->getContext().pImpl->InlineAsms.remove(this); delete this; } FunctionType *InlineAsm::getFunctionType() const { return FTy; } void InlineAsm::collectAsmStrs(SmallVectorImpl &AsmStrs) const { StringRef AsmStr(AsmString); AsmStrs.clear(); // TODO: 1) Unify delimiter for inline asm, we also meet other delimiters // for example "\0A", ";". // 2) Enhance StringRef. Some of the special delimiter ("\0") can't be // split in StringRef. Also empty StringRef can not call split (will stuck). if (AsmStr.empty()) return; AsmStr.split(AsmStrs, "\n\t", -1, false); } /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the /// fields in this structure. If the constraint string is not understood, /// return true, otherwise return false. bool InlineAsm::ConstraintInfo::Parse(StringRef Str, InlineAsm::ConstraintInfoVector &ConstraintsSoFar) { StringRef::iterator I = Str.begin(), E = Str.end(); unsigned multipleAlternativeCount = Str.count('|') + 1; unsigned multipleAlternativeIndex = 0; ConstraintCodeVector *pCodes = &Codes; // Initialize isMultipleAlternative = multipleAlternativeCount > 1; if (isMultipleAlternative) { multipleAlternatives.resize(multipleAlternativeCount); pCodes = &multipleAlternatives[0].Codes; } Type = isInput; isEarlyClobber = false; MatchingInput = -1; isCommutative = false; isIndirect = false; currentAlternativeIndex = 0; // Parse prefixes. if (*I == '~') { Type = isClobber; ++I; // '{' must immediately follow '~'. if (I != E && *I != '{') return true; } else if (*I == '=') { ++I; Type = isOutput; } else if (*I == '!') { ++I; Type = isLabel; } if (*I == '*') { isIndirect = true; ++I; } if (I == E) return true; // Just a prefix, like "==" or "~". // Parse the modifiers. bool DoneWithModifiers = false; while (!DoneWithModifiers) { switch (*I) { default: DoneWithModifiers = true; break; case '&': // Early clobber. if (Type != isOutput || // Cannot early clobber anything but output. isEarlyClobber) // Reject &&&&&& return true; isEarlyClobber = true; break; case '%': // Commutative. if (Type == isClobber || // Cannot commute clobbers. isCommutative) // Reject %%%%% return true; isCommutative = true; break; case '#': // Comment. case '*': // Register preferencing. return true; // Not supported. } if (!DoneWithModifiers) { ++I; if (I == E) return true; // Just prefixes and modifiers! } } // Parse the various constraints. while (I != E) { if (*I == '{') { // Physical register reference. // Find the end of the register name. StringRef::iterator ConstraintEnd = std::find(I+1, E, '}'); if (ConstraintEnd == E) return true; // "{foo" pCodes->push_back(std::string(StringRef(I, ConstraintEnd + 1 - I))); I = ConstraintEnd+1; } else if (isdigit(static_cast(*I))) { // Matching Constraint // Maximal munch numbers. StringRef::iterator NumStart = I; while (I != E && isdigit(static_cast(*I))) ++I; pCodes->push_back(std::string(StringRef(NumStart, I - NumStart))); unsigned N = atoi(pCodes->back().c_str()); // Check that this is a valid matching constraint! if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput|| Type != isInput) return true; // Invalid constraint number. // If Operand N already has a matching input, reject this. An output // can't be constrained to the same value as multiple inputs. if (isMultipleAlternative) { if (multipleAlternativeIndex >= ConstraintsSoFar[N].multipleAlternatives.size()) return true; InlineAsm::SubConstraintInfo &scInfo = ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex]; if (scInfo.MatchingInput != -1) return true; // Note that operand #n has a matching input. scInfo.MatchingInput = ConstraintsSoFar.size(); assert(scInfo.MatchingInput >= 0); } else { if (ConstraintsSoFar[N].hasMatchingInput() && (size_t)ConstraintsSoFar[N].MatchingInput != ConstraintsSoFar.size()) return true; // Note that operand #n has a matching input. ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size(); assert(ConstraintsSoFar[N].MatchingInput >= 0); } } else if (*I == '|') { multipleAlternativeIndex++; pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes; ++I; } else if (*I == '^') { // Multi-letter constraint // FIXME: For now assuming these are 2-character constraints. pCodes->push_back(std::string(StringRef(I + 1, 2))); I += 3; } else if (*I == '@') { // Multi-letter constraint ++I; unsigned char C = static_cast(*I); assert(isdigit(C) && "Expected a digit!"); int N = C - '0'; assert(N > 0 && "Found a zero letter constraint!"); ++I; pCodes->push_back(std::string(StringRef(I, N))); I += N; } else { // Single letter constraint. pCodes->push_back(std::string(StringRef(I, 1))); ++I; } } return false; } /// selectAlternative - Point this constraint to the alternative constraint /// indicated by the index. void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) { if (index < multipleAlternatives.size()) { currentAlternativeIndex = index; InlineAsm::SubConstraintInfo &scInfo = multipleAlternatives[currentAlternativeIndex]; MatchingInput = scInfo.MatchingInput; Codes = scInfo.Codes; } } InlineAsm::ConstraintInfoVector InlineAsm::ParseConstraints(StringRef Constraints) { ConstraintInfoVector Result; // Scan the constraints string. for (StringRef::iterator I = Constraints.begin(), E = Constraints.end(); I != E; ) { ConstraintInfo Info; // Find the end of this constraint. StringRef::iterator ConstraintEnd = std::find(I, E, ','); if (ConstraintEnd == I || // Empty constraint like ",," Info.Parse(StringRef(I, ConstraintEnd-I), Result)) { Result.clear(); // Erroneous constraint? break; } Result.push_back(Info); // ConstraintEnd may be either the next comma or the end of the string. In // the former case, we skip the comma. I = ConstraintEnd; if (I != E) { ++I; if (I == E) { Result.clear(); break; } // don't allow "xyz," } } return Result; } static Error makeStringError(const char *Msg) { return createStringError(errc::invalid_argument, Msg); } Error InlineAsm::verify(FunctionType *Ty, StringRef ConstStr) { if (Ty->isVarArg()) return makeStringError("inline asm cannot be variadic"); ConstraintInfoVector Constraints = ParseConstraints(ConstStr); // Error parsing constraints. if (Constraints.empty() && !ConstStr.empty()) return makeStringError("failed to parse constraints"); unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0; unsigned NumIndirect = 0, NumLabels = 0; for (const ConstraintInfo &Constraint : Constraints) { switch (Constraint.Type) { case InlineAsm::isOutput: if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0 || NumLabels != 0) return makeStringError("output constraint occurs after input, " "clobber or label constraint"); if (!Constraint.isIndirect) { ++NumOutputs; break; } ++NumIndirect; [[fallthrough]]; // We fall through for Indirect Outputs. case InlineAsm::isInput: if (NumClobbers) return makeStringError("input constraint occurs after clobber " "constraint"); ++NumInputs; break; case InlineAsm::isClobber: ++NumClobbers; break; case InlineAsm::isLabel: if (NumClobbers) return makeStringError("label constraint occurs after clobber " "constraint"); ++NumLabels; break; } } switch (NumOutputs) { case 0: if (!Ty->getReturnType()->isVoidTy()) return makeStringError("inline asm without outputs must return void"); break; case 1: if (Ty->getReturnType()->isStructTy()) return makeStringError("inline asm with one output cannot return struct"); break; default: StructType *STy = dyn_cast(Ty->getReturnType()); if (!STy || STy->getNumElements() != NumOutputs) return makeStringError("number of output constraints does not match " "number of return struct elements"); break; } if (Ty->getNumParams() != NumInputs) return makeStringError("number of input constraints does not match number " "of parameters"); // We don't have access to labels here, NumLabels will be checked separately. return Error::success(); }