//===-- AutoUpgrade.cpp - Implement auto-upgrade helper functions ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the auto-upgrade helper functions. // This is where deprecated IR intrinsics and other IR features are updated to // current specifications. // //===----------------------------------------------------------------------===// #include "llvm/IR/AutoUpgrade.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/IntrinsicsARM.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/IntrinsicsRISCV.h" #include "llvm/IR/IntrinsicsWebAssembly.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Regex.h" #include "llvm/TargetParser/Triple.h" #include using namespace llvm; static cl::opt DisableAutoUpgradeDebugInfo("disable-auto-upgrade-debug-info", cl::desc("Disable autoupgrade of debug info")); static void rename(GlobalValue *GV) { GV->setName(GV->getName() + ".old"); } // Upgrade the declarations of the SSE4.1 ptest intrinsics whose arguments have // changed their type from v4f32 to v2i64. static bool upgradePTESTIntrinsic(Function *F, Intrinsic::ID IID, Function *&NewFn) { // Check whether this is an old version of the function, which received // v4f32 arguments. Type *Arg0Type = F->getFunctionType()->getParamType(0); if (Arg0Type != FixedVectorType::get(Type::getFloatTy(F->getContext()), 4)) return false; // Yes, it's old, replace it with new version. rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } // Upgrade the declarations of intrinsic functions whose 8-bit immediate mask // arguments have changed their type from i32 to i8. static bool upgradeX86IntrinsicsWith8BitMask(Function *F, Intrinsic::ID IID, Function *&NewFn) { // Check that the last argument is an i32. Type *LastArgType = F->getFunctionType()->getParamType( F->getFunctionType()->getNumParams() - 1); if (!LastArgType->isIntegerTy(32)) return false; // Move this function aside and map down. rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } // Upgrade the declaration of fp compare intrinsics that change return type // from scalar to vXi1 mask. static bool upgradeX86MaskedFPCompare(Function *F, Intrinsic::ID IID, Function *&NewFn) { // Check if the return type is a vector. if (F->getReturnType()->isVectorTy()) return false; rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } static bool upgradeX86BF16Intrinsic(Function *F, Intrinsic::ID IID, Function *&NewFn) { if (F->getReturnType()->getScalarType()->isBFloatTy()) return false; rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } static bool upgradeX86BF16DPIntrinsic(Function *F, Intrinsic::ID IID, Function *&NewFn) { if (F->getFunctionType()->getParamType(1)->getScalarType()->isBFloatTy()) return false; rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); return true; } static bool shouldUpgradeX86Intrinsic(Function *F, StringRef Name) { // All of the intrinsics matches below should be marked with which llvm // version started autoupgrading them. At some point in the future we would // like to use this information to remove upgrade code for some older // intrinsics. It is currently undecided how we will determine that future // point. if (Name.consume_front("avx.")) return (Name.starts_with("blend.p") || // Added in 3.7 Name == "cvt.ps2.pd.256" || // Added in 3.9 Name == "cvtdq2.pd.256" || // Added in 3.9 Name == "cvtdq2.ps.256" || // Added in 7.0 Name.starts_with("movnt.") || // Added in 3.2 Name.starts_with("sqrt.p") || // Added in 7.0 Name.starts_with("storeu.") || // Added in 3.9 Name.starts_with("vbroadcast.s") || // Added in 3.5 Name.starts_with("vbroadcastf128") || // Added in 4.0 Name.starts_with("vextractf128.") || // Added in 3.7 Name.starts_with("vinsertf128.") || // Added in 3.7 Name.starts_with("vperm2f128.") || // Added in 6.0 Name.starts_with("vpermil.")); // Added in 3.1 if (Name.consume_front("avx2.")) return (Name == "movntdqa" || // Added in 5.0 Name.starts_with("pabs.") || // Added in 6.0 Name.starts_with("padds.") || // Added in 8.0 Name.starts_with("paddus.") || // Added in 8.0 Name.starts_with("pblendd.") || // Added in 3.7 Name == "pblendw" || // Added in 3.7 Name.starts_with("pbroadcast") || // Added in 3.8 Name.starts_with("pcmpeq.") || // Added in 3.1 Name.starts_with("pcmpgt.") || // Added in 3.1 Name.starts_with("pmax") || // Added in 3.9 Name.starts_with("pmin") || // Added in 3.9 Name.starts_with("pmovsx") || // Added in 3.9 Name.starts_with("pmovzx") || // Added in 3.9 Name == "pmul.dq" || // Added in 7.0 Name == "pmulu.dq" || // Added in 7.0 Name.starts_with("psll.dq") || // Added in 3.7 Name.starts_with("psrl.dq") || // Added in 3.7 Name.starts_with("psubs.") || // Added in 8.0 Name.starts_with("psubus.") || // Added in 8.0 Name.starts_with("vbroadcast") || // Added in 3.8 Name == "vbroadcasti128" || // Added in 3.7 Name == "vextracti128" || // Added in 3.7 Name == "vinserti128" || // Added in 3.7 Name == "vperm2i128"); // Added in 6.0 if (Name.consume_front("avx512.")) { if (Name.consume_front("mask.")) // 'avx512.mask.*' return (Name.starts_with("add.p") || // Added in 7.0. 128/256 in 4.0 Name.starts_with("and.") || // Added in 3.9 Name.starts_with("andn.") || // Added in 3.9 Name.starts_with("broadcast.s") || // Added in 3.9 Name.starts_with("broadcastf32x4.") || // Added in 6.0 Name.starts_with("broadcastf32x8.") || // Added in 6.0 Name.starts_with("broadcastf64x2.") || // Added in 6.0 Name.starts_with("broadcastf64x4.") || // Added in 6.0 Name.starts_with("broadcasti32x4.") || // Added in 6.0 Name.starts_with("broadcasti32x8.") || // Added in 6.0 Name.starts_with("broadcasti64x2.") || // Added in 6.0 Name.starts_with("broadcasti64x4.") || // Added in 6.0 Name.starts_with("cmp.b") || // Added in 5.0 Name.starts_with("cmp.d") || // Added in 5.0 Name.starts_with("cmp.q") || // Added in 5.0 Name.starts_with("cmp.w") || // Added in 5.0 Name.starts_with("compress.b") || // Added in 9.0 Name.starts_with("compress.d") || // Added in 9.0 Name.starts_with("compress.p") || // Added in 9.0 Name.starts_with("compress.q") || // Added in 9.0 Name.starts_with("compress.store.") || // Added in 7.0 Name.starts_with("compress.w") || // Added in 9.0 Name.starts_with("conflict.") || // Added in 9.0 Name.starts_with("cvtdq2pd.") || // Added in 4.0 Name.starts_with("cvtdq2ps.") || // Added in 7.0 updated 9.0 Name == "cvtpd2dq.256" || // Added in 7.0 Name == "cvtpd2ps.256" || // Added in 7.0 Name == "cvtps2pd.128" || // Added in 7.0 Name == "cvtps2pd.256" || // Added in 7.0 Name.starts_with("cvtqq2pd.") || // Added in 7.0 updated 9.0 Name == "cvtqq2ps.256" || // Added in 9.0 Name == "cvtqq2ps.512" || // Added in 9.0 Name == "cvttpd2dq.256" || // Added in 7.0 Name == "cvttps2dq.128" || // Added in 7.0 Name == "cvttps2dq.256" || // Added in 7.0 Name.starts_with("cvtudq2pd.") || // Added in 4.0 Name.starts_with("cvtudq2ps.") || // Added in 7.0 updated 9.0 Name.starts_with("cvtuqq2pd.") || // Added in 7.0 updated 9.0 Name == "cvtuqq2ps.256" || // Added in 9.0 Name == "cvtuqq2ps.512" || // Added in 9.0 Name.starts_with("dbpsadbw.") || // Added in 7.0 Name.starts_with("div.p") || // Added in 7.0. 128/256 in 4.0 Name.starts_with("expand.b") || // Added in 9.0 Name.starts_with("expand.d") || // Added in 9.0 Name.starts_with("expand.load.") || // Added in 7.0 Name.starts_with("expand.p") || // Added in 9.0 Name.starts_with("expand.q") || // Added in 9.0 Name.starts_with("expand.w") || // Added in 9.0 Name.starts_with("fpclass.p") || // Added in 7.0 Name.starts_with("insert") || // Added in 4.0 Name.starts_with("load.") || // Added in 3.9 Name.starts_with("loadu.") || // Added in 3.9 Name.starts_with("lzcnt.") || // Added in 5.0 Name.starts_with("max.p") || // Added in 7.0. 128/256 in 5.0 Name.starts_with("min.p") || // Added in 7.0. 128/256 in 5.0 Name.starts_with("movddup") || // Added in 3.9 Name.starts_with("move.s") || // Added in 4.0 Name.starts_with("movshdup") || // Added in 3.9 Name.starts_with("movsldup") || // Added in 3.9 Name.starts_with("mul.p") || // Added in 7.0. 128/256 in 4.0 Name.starts_with("or.") || // Added in 3.9 Name.starts_with("pabs.") || // Added in 6.0 Name.starts_with("packssdw.") || // Added in 5.0 Name.starts_with("packsswb.") || // Added in 5.0 Name.starts_with("packusdw.") || // Added in 5.0 Name.starts_with("packuswb.") || // Added in 5.0 Name.starts_with("padd.") || // Added in 4.0 Name.starts_with("padds.") || // Added in 8.0 Name.starts_with("paddus.") || // Added in 8.0 Name.starts_with("palignr.") || // Added in 3.9 Name.starts_with("pand.") || // Added in 3.9 Name.starts_with("pandn.") || // Added in 3.9 Name.starts_with("pavg") || // Added in 6.0 Name.starts_with("pbroadcast") || // Added in 6.0 Name.starts_with("pcmpeq.") || // Added in 3.9 Name.starts_with("pcmpgt.") || // Added in 3.9 Name.starts_with("perm.df.") || // Added in 3.9 Name.starts_with("perm.di.") || // Added in 3.9 Name.starts_with("permvar.") || // Added in 7.0 Name.starts_with("pmaddubs.w.") || // Added in 7.0 Name.starts_with("pmaddw.d.") || // Added in 7.0 Name.starts_with("pmax") || // Added in 4.0 Name.starts_with("pmin") || // Added in 4.0 Name == "pmov.qd.256" || // Added in 9.0 Name == "pmov.qd.512" || // Added in 9.0 Name == "pmov.wb.256" || // Added in 9.0 Name == "pmov.wb.512" || // Added in 9.0 Name.starts_with("pmovsx") || // Added in 4.0 Name.starts_with("pmovzx") || // Added in 4.0 Name.starts_with("pmul.dq.") || // Added in 4.0 Name.starts_with("pmul.hr.sw.") || // Added in 7.0 Name.starts_with("pmulh.w.") || // Added in 7.0 Name.starts_with("pmulhu.w.") || // Added in 7.0 Name.starts_with("pmull.") || // Added in 4.0 Name.starts_with("pmultishift.qb.") || // Added in 8.0 Name.starts_with("pmulu.dq.") || // Added in 4.0 Name.starts_with("por.") || // Added in 3.9 Name.starts_with("prol.") || // Added in 8.0 Name.starts_with("prolv.") || // Added in 8.0 Name.starts_with("pror.") || // Added in 8.0 Name.starts_with("prorv.") || // Added in 8.0 Name.starts_with("pshuf.b.") || // Added in 4.0 Name.starts_with("pshuf.d.") || // Added in 3.9 Name.starts_with("pshufh.w.") || // Added in 3.9 Name.starts_with("pshufl.w.") || // Added in 3.9 Name.starts_with("psll.d") || // Added in 4.0 Name.starts_with("psll.q") || // Added in 4.0 Name.starts_with("psll.w") || // Added in 4.0 Name.starts_with("pslli") || // Added in 4.0 Name.starts_with("psllv") || // Added in 4.0 Name.starts_with("psra.d") || // Added in 4.0 Name.starts_with("psra.q") || // Added in 4.0 Name.starts_with("psra.w") || // Added in 4.0 Name.starts_with("psrai") || // Added in 4.0 Name.starts_with("psrav") || // Added in 4.0 Name.starts_with("psrl.d") || // Added in 4.0 Name.starts_with("psrl.q") || // Added in 4.0 Name.starts_with("psrl.w") || // Added in 4.0 Name.starts_with("psrli") || // Added in 4.0 Name.starts_with("psrlv") || // Added in 4.0 Name.starts_with("psub.") || // Added in 4.0 Name.starts_with("psubs.") || // Added in 8.0 Name.starts_with("psubus.") || // Added in 8.0 Name.starts_with("pternlog.") || // Added in 7.0 Name.starts_with("punpckh") || // Added in 3.9 Name.starts_with("punpckl") || // Added in 3.9 Name.starts_with("pxor.") || // Added in 3.9 Name.starts_with("shuf.f") || // Added in 6.0 Name.starts_with("shuf.i") || // Added in 6.0 Name.starts_with("shuf.p") || // Added in 4.0 Name.starts_with("sqrt.p") || // Added in 7.0 Name.starts_with("store.b.") || // Added in 3.9 Name.starts_with("store.d.") || // Added in 3.9 Name.starts_with("store.p") || // Added in 3.9 Name.starts_with("store.q.") || // Added in 3.9 Name.starts_with("store.w.") || // Added in 3.9 Name == "store.ss" || // Added in 7.0 Name.starts_with("storeu.") || // Added in 3.9 Name.starts_with("sub.p") || // Added in 7.0. 128/256 in 4.0 Name.starts_with("ucmp.") || // Added in 5.0 Name.starts_with("unpckh.") || // Added in 3.9 Name.starts_with("unpckl.") || // Added in 3.9 Name.starts_with("valign.") || // Added in 4.0 Name == "vcvtph2ps.128" || // Added in 11.0 Name == "vcvtph2ps.256" || // Added in 11.0 Name.starts_with("vextract") || // Added in 4.0 Name.starts_with("vfmadd.") || // Added in 7.0 Name.starts_with("vfmaddsub.") || // Added in 7.0 Name.starts_with("vfnmadd.") || // Added in 7.0 Name.starts_with("vfnmsub.") || // Added in 7.0 Name.starts_with("vpdpbusd.") || // Added in 7.0 Name.starts_with("vpdpbusds.") || // Added in 7.0 Name.starts_with("vpdpwssd.") || // Added in 7.0 Name.starts_with("vpdpwssds.") || // Added in 7.0 Name.starts_with("vpermi2var.") || // Added in 7.0 Name.starts_with("vpermil.p") || // Added in 3.9 Name.starts_with("vpermilvar.") || // Added in 4.0 Name.starts_with("vpermt2var.") || // Added in 7.0 Name.starts_with("vpmadd52") || // Added in 7.0 Name.starts_with("vpshld.") || // Added in 7.0 Name.starts_with("vpshldv.") || // Added in 8.0 Name.starts_with("vpshrd.") || // Added in 7.0 Name.starts_with("vpshrdv.") || // Added in 8.0 Name.starts_with("vpshufbitqmb.") || // Added in 8.0 Name.starts_with("xor.")); // Added in 3.9 if (Name.consume_front("mask3.")) // 'avx512.mask3.*' return (Name.starts_with("vfmadd.") || // Added in 7.0 Name.starts_with("vfmaddsub.") || // Added in 7.0 Name.starts_with("vfmsub.") || // Added in 7.0 Name.starts_with("vfmsubadd.") || // Added in 7.0 Name.starts_with("vfnmsub.")); // Added in 7.0 if (Name.consume_front("maskz.")) // 'avx512.maskz.*' return (Name.starts_with("pternlog.") || // Added in 7.0 Name.starts_with("vfmadd.") || // Added in 7.0 Name.starts_with("vfmaddsub.") || // Added in 7.0 Name.starts_with("vpdpbusd.") || // Added in 7.0 Name.starts_with("vpdpbusds.") || // Added in 7.0 Name.starts_with("vpdpwssd.") || // Added in 7.0 Name.starts_with("vpdpwssds.") || // Added in 7.0 Name.starts_with("vpermt2var.") || // Added in 7.0 Name.starts_with("vpmadd52") || // Added in 7.0 Name.starts_with("vpshldv.") || // Added in 8.0 Name.starts_with("vpshrdv.")); // Added in 8.0 // 'avx512.*' return (Name == "movntdqa" || // Added in 5.0 Name == "pmul.dq.512" || // Added in 7.0 Name == "pmulu.dq.512" || // Added in 7.0 Name.starts_with("broadcastm") || // Added in 6.0 Name.starts_with("cmp.p") || // Added in 12.0 Name.starts_with("cvtb2mask.") || // Added in 7.0 Name.starts_with("cvtd2mask.") || // Added in 7.0 Name.starts_with("cvtmask2") || // Added in 5.0 Name.starts_with("cvtq2mask.") || // Added in 7.0 Name == "cvtusi2sd" || // Added in 7.0 Name.starts_with("cvtw2mask.") || // Added in 7.0 Name == "kand.w" || // Added in 7.0 Name == "kandn.w" || // Added in 7.0 Name == "knot.w" || // Added in 7.0 Name == "kor.w" || // Added in 7.0 Name == "kortestc.w" || // Added in 7.0 Name == "kortestz.w" || // Added in 7.0 Name.starts_with("kunpck") || // added in 6.0 Name == "kxnor.w" || // Added in 7.0 Name == "kxor.w" || // Added in 7.0 Name.starts_with("padds.") || // Added in 8.0 Name.starts_with("pbroadcast") || // Added in 3.9 Name.starts_with("prol") || // Added in 8.0 Name.starts_with("pror") || // Added in 8.0 Name.starts_with("psll.dq") || // Added in 3.9 Name.starts_with("psrl.dq") || // Added in 3.9 Name.starts_with("psubs.") || // Added in 8.0 Name.starts_with("ptestm") || // Added in 6.0 Name.starts_with("ptestnm") || // Added in 6.0 Name.starts_with("storent.") || // Added in 3.9 Name.starts_with("vbroadcast.s") || // Added in 7.0 Name.starts_with("vpshld.") || // Added in 8.0 Name.starts_with("vpshrd.")); // Added in 8.0 } if (Name.consume_front("fma.")) return (Name.starts_with("vfmadd.") || // Added in 7.0 Name.starts_with("vfmsub.") || // Added in 7.0 Name.starts_with("vfmsubadd.") || // Added in 7.0 Name.starts_with("vfnmadd.") || // Added in 7.0 Name.starts_with("vfnmsub.")); // Added in 7.0 if (Name.consume_front("fma4.")) return Name.starts_with("vfmadd.s"); // Added in 7.0 if (Name.consume_front("sse.")) return (Name == "add.ss" || // Added in 4.0 Name == "cvtsi2ss" || // Added in 7.0 Name == "cvtsi642ss" || // Added in 7.0 Name == "div.ss" || // Added in 4.0 Name == "mul.ss" || // Added in 4.0 Name.starts_with("sqrt.p") || // Added in 7.0 Name == "sqrt.ss" || // Added in 7.0 Name.starts_with("storeu.") || // Added in 3.9 Name == "sub.ss"); // Added in 4.0 if (Name.consume_front("sse2.")) return (Name == "add.sd" || // Added in 4.0 Name == "cvtdq2pd" || // Added in 3.9 Name == "cvtdq2ps" || // Added in 7.0 Name == "cvtps2pd" || // Added in 3.9 Name == "cvtsi2sd" || // Added in 7.0 Name == "cvtsi642sd" || // Added in 7.0 Name == "cvtss2sd" || // Added in 7.0 Name == "div.sd" || // Added in 4.0 Name == "mul.sd" || // Added in 4.0 Name.starts_with("padds.") || // Added in 8.0 Name.starts_with("paddus.") || // Added in 8.0 Name.starts_with("pcmpeq.") || // Added in 3.1 Name.starts_with("pcmpgt.") || // Added in 3.1 Name == "pmaxs.w" || // Added in 3.9 Name == "pmaxu.b" || // Added in 3.9 Name == "pmins.w" || // Added in 3.9 Name == "pminu.b" || // Added in 3.9 Name == "pmulu.dq" || // Added in 7.0 Name.starts_with("pshuf") || // Added in 3.9 Name.starts_with("psll.dq") || // Added in 3.7 Name.starts_with("psrl.dq") || // Added in 3.7 Name.starts_with("psubs.") || // Added in 8.0 Name.starts_with("psubus.") || // Added in 8.0 Name.starts_with("sqrt.p") || // Added in 7.0 Name == "sqrt.sd" || // Added in 7.0 Name == "storel.dq" || // Added in 3.9 Name.starts_with("storeu.") || // Added in 3.9 Name == "sub.sd"); // Added in 4.0 if (Name.consume_front("sse41.")) return (Name.starts_with("blendp") || // Added in 3.7 Name == "movntdqa" || // Added in 5.0 Name == "pblendw" || // Added in 3.7 Name == "pmaxsb" || // Added in 3.9 Name == "pmaxsd" || // Added in 3.9 Name == "pmaxud" || // Added in 3.9 Name == "pmaxuw" || // Added in 3.9 Name == "pminsb" || // Added in 3.9 Name == "pminsd" || // Added in 3.9 Name == "pminud" || // Added in 3.9 Name == "pminuw" || // Added in 3.9 Name.starts_with("pmovsx") || // Added in 3.8 Name.starts_with("pmovzx") || // Added in 3.9 Name == "pmuldq"); // Added in 7.0 if (Name.consume_front("sse42.")) return Name == "crc32.64.8"; // Added in 3.4 if (Name.consume_front("sse4a.")) return Name.starts_with("movnt."); // Added in 3.9 if (Name.consume_front("ssse3.")) return (Name == "pabs.b.128" || // Added in 6.0 Name == "pabs.d.128" || // Added in 6.0 Name == "pabs.w.128"); // Added in 6.0 if (Name.consume_front("xop.")) return (Name == "vpcmov" || // Added in 3.8 Name == "vpcmov.256" || // Added in 5.0 Name.starts_with("vpcom") || // Added in 3.2, Updated in 9.0 Name.starts_with("vprot")); // Added in 8.0 return (Name == "addcarry.u32" || // Added in 8.0 Name == "addcarry.u64" || // Added in 8.0 Name == "addcarryx.u32" || // Added in 8.0 Name == "addcarryx.u64" || // Added in 8.0 Name == "subborrow.u32" || // Added in 8.0 Name == "subborrow.u64" || // Added in 8.0 Name.starts_with("vcvtph2ps.")); // Added in 11.0 } static bool upgradeX86IntrinsicFunction(Function *F, StringRef Name, Function *&NewFn) { // Only handle intrinsics that start with "x86.". if (!Name.consume_front("x86.")) return false; if (shouldUpgradeX86Intrinsic(F, Name)) { NewFn = nullptr; return true; } if (Name == "rdtscp") { // Added in 8.0 // If this intrinsic has 0 operands, it's the new version. if (F->getFunctionType()->getNumParams() == 0) return false; rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_rdtscp); return true; } Intrinsic::ID ID; // SSE4.1 ptest functions may have an old signature. if (Name.consume_front("sse41.ptest")) { // Added in 3.2 ID = StringSwitch(Name) .Case("c", Intrinsic::x86_sse41_ptestc) .Case("z", Intrinsic::x86_sse41_ptestz) .Case("nzc", Intrinsic::x86_sse41_ptestnzc) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) return upgradePTESTIntrinsic(F, ID, NewFn); return false; } // Several blend and other instructions with masks used the wrong number of // bits. // Added in 3.6 ID = StringSwitch(Name) .Case("sse41.insertps", Intrinsic::x86_sse41_insertps) .Case("sse41.dppd", Intrinsic::x86_sse41_dppd) .Case("sse41.dpps", Intrinsic::x86_sse41_dpps) .Case("sse41.mpsadbw", Intrinsic::x86_sse41_mpsadbw) .Case("avx.dp.ps.256", Intrinsic::x86_avx_dp_ps_256) .Case("avx2.mpsadbw", Intrinsic::x86_avx2_mpsadbw) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) return upgradeX86IntrinsicsWith8BitMask(F, ID, NewFn); if (Name.consume_front("avx512.mask.cmp.")) { // Added in 7.0 ID = StringSwitch(Name) .Case("pd.128", Intrinsic::x86_avx512_mask_cmp_pd_128) .Case("pd.256", Intrinsic::x86_avx512_mask_cmp_pd_256) .Case("pd.512", Intrinsic::x86_avx512_mask_cmp_pd_512) .Case("ps.128", Intrinsic::x86_avx512_mask_cmp_ps_128) .Case("ps.256", Intrinsic::x86_avx512_mask_cmp_ps_256) .Case("ps.512", Intrinsic::x86_avx512_mask_cmp_ps_512) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) return upgradeX86MaskedFPCompare(F, ID, NewFn); return false; // No other 'x86.avx523.mask.cmp.*'. } if (Name.consume_front("avx512bf16.")) { // Added in 9.0 ID = StringSwitch(Name) .Case("cvtne2ps2bf16.128", Intrinsic::x86_avx512bf16_cvtne2ps2bf16_128) .Case("cvtne2ps2bf16.256", Intrinsic::x86_avx512bf16_cvtne2ps2bf16_256) .Case("cvtne2ps2bf16.512", Intrinsic::x86_avx512bf16_cvtne2ps2bf16_512) .Case("mask.cvtneps2bf16.128", Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128) .Case("cvtneps2bf16.256", Intrinsic::x86_avx512bf16_cvtneps2bf16_256) .Case("cvtneps2bf16.512", Intrinsic::x86_avx512bf16_cvtneps2bf16_512) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) return upgradeX86BF16Intrinsic(F, ID, NewFn); // Added in 9.0 ID = StringSwitch(Name) .Case("dpbf16ps.128", Intrinsic::x86_avx512bf16_dpbf16ps_128) .Case("dpbf16ps.256", Intrinsic::x86_avx512bf16_dpbf16ps_256) .Case("dpbf16ps.512", Intrinsic::x86_avx512bf16_dpbf16ps_512) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) return upgradeX86BF16DPIntrinsic(F, ID, NewFn); return false; // No other 'x86.avx512bf16.*'. } if (Name.consume_front("xop.")) { Intrinsic::ID ID = Intrinsic::not_intrinsic; if (Name.starts_with("vpermil2")) { // Added in 3.9 // Upgrade any XOP PERMIL2 index operand still using a float/double // vector. auto Idx = F->getFunctionType()->getParamType(2); if (Idx->isFPOrFPVectorTy()) { unsigned IdxSize = Idx->getPrimitiveSizeInBits(); unsigned EltSize = Idx->getScalarSizeInBits(); if (EltSize == 64 && IdxSize == 128) ID = Intrinsic::x86_xop_vpermil2pd; else if (EltSize == 32 && IdxSize == 128) ID = Intrinsic::x86_xop_vpermil2ps; else if (EltSize == 64 && IdxSize == 256) ID = Intrinsic::x86_xop_vpermil2pd_256; else ID = Intrinsic::x86_xop_vpermil2ps_256; } } else if (F->arg_size() == 2) // frcz.ss/sd may need to have an argument dropped. Added in 3.2 ID = StringSwitch(Name) .Case("vfrcz.ss", Intrinsic::x86_xop_vfrcz_ss) .Case("vfrcz.sd", Intrinsic::x86_xop_vfrcz_sd) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } return false; // No other 'x86.xop.*' } if (Name == "seh.recoverfp") { NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::eh_recoverfp); return true; } return false; } // Upgrade ARM (IsArm) or Aarch64 (!IsArm) intrinsic fns. Return true iff so. // IsArm: 'arm.*', !IsArm: 'aarch64.*'. static bool upgradeArmOrAarch64IntrinsicFunction(bool IsArm, Function *F, StringRef Name, Function *&NewFn) { if (Name.starts_with("rbit")) { // '(arm|aarch64).rbit'. NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::bitreverse, F->arg_begin()->getType()); return true; } if (Name == "thread.pointer") { // '(arm|aarch64).thread.pointer'. NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::thread_pointer); return true; } bool Neon = Name.consume_front("neon."); if (Neon) { // '(arm|aarch64).neon.*'. // Changed in 12.0: bfdot accept v4bf16 and v8bf16 instead of v8i8 and // v16i8 respectively. if (Name.consume_front("bfdot.")) { // (arm|aarch64).neon.bfdot.*'. Intrinsic::ID ID = StringSwitch(Name) .Cases("v2f32.v8i8", "v4f32.v16i8", IsArm ? (Intrinsic::ID)Intrinsic::arm_neon_bfdot : (Intrinsic::ID)Intrinsic::aarch64_neon_bfdot) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { size_t OperandWidth = F->getReturnType()->getPrimitiveSizeInBits(); assert((OperandWidth == 64 || OperandWidth == 128) && "Unexpected operand width"); LLVMContext &Ctx = F->getParent()->getContext(); std::array Tys{ {F->getReturnType(), FixedVectorType::get(Type::getBFloatTy(Ctx), OperandWidth / 16)}}; NewFn = Intrinsic::getDeclaration(F->getParent(), ID, Tys); return true; } return false; // No other '(arm|aarch64).neon.bfdot.*'. } // Changed in 12.0: bfmmla, bfmlalb and bfmlalt are not polymorphic // anymore and accept v8bf16 instead of v16i8. if (Name.consume_front("bfm")) { // (arm|aarch64).neon.bfm*'. if (Name.consume_back(".v4f32.v16i8")) { // (arm|aarch64).neon.bfm*.v4f32.v16i8'. Intrinsic::ID ID = StringSwitch(Name) .Case("mla", IsArm ? (Intrinsic::ID)Intrinsic::arm_neon_bfmmla : (Intrinsic::ID)Intrinsic::aarch64_neon_bfmmla) .Case("lalb", IsArm ? (Intrinsic::ID)Intrinsic::arm_neon_bfmlalb : (Intrinsic::ID)Intrinsic::aarch64_neon_bfmlalb) .Case("lalt", IsArm ? (Intrinsic::ID)Intrinsic::arm_neon_bfmlalt : (Intrinsic::ID)Intrinsic::aarch64_neon_bfmlalt) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } return false; // No other '(arm|aarch64).neon.bfm*.v16i8'. } return false; // No other '(arm|aarch64).neon.bfm*. } // Continue on to Aarch64 Neon or Arm Neon. } // Continue on to Arm or Aarch64. if (IsArm) { // 'arm.*'. if (Neon) { // 'arm.neon.*'. Intrinsic::ID ID = StringSwitch(Name) .StartsWith("vclz.", Intrinsic::ctlz) .StartsWith("vcnt.", Intrinsic::ctpop) .StartsWith("vqadds.", Intrinsic::sadd_sat) .StartsWith("vqaddu.", Intrinsic::uadd_sat) .StartsWith("vqsubs.", Intrinsic::ssub_sat) .StartsWith("vqsubu.", Intrinsic::usub_sat) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { NewFn = Intrinsic::getDeclaration(F->getParent(), ID, F->arg_begin()->getType()); return true; } if (Name.consume_front("vst")) { // 'arm.neon.vst*'. static const Regex vstRegex("^([1234]|[234]lane)\\.v[a-z0-9]*$"); SmallVector Groups; if (vstRegex.match(Name, &Groups)) { static const Intrinsic::ID StoreInts[] = { Intrinsic::arm_neon_vst1, Intrinsic::arm_neon_vst2, Intrinsic::arm_neon_vst3, Intrinsic::arm_neon_vst4}; static const Intrinsic::ID StoreLaneInts[] = { Intrinsic::arm_neon_vst2lane, Intrinsic::arm_neon_vst3lane, Intrinsic::arm_neon_vst4lane}; auto fArgs = F->getFunctionType()->params(); Type *Tys[] = {fArgs[0], fArgs[1]}; if (Groups[1].size() == 1) NewFn = Intrinsic::getDeclaration(F->getParent(), StoreInts[fArgs.size() - 3], Tys); else NewFn = Intrinsic::getDeclaration( F->getParent(), StoreLaneInts[fArgs.size() - 5], Tys); return true; } return false; // No other 'arm.neon.vst*'. } return false; // No other 'arm.neon.*'. } if (Name.consume_front("mve.")) { // 'arm.mve.*'. if (Name == "vctp64") { if (cast(F->getReturnType())->getNumElements() == 4) { // A vctp64 returning a v4i1 is converted to return a v2i1. Rename // the function and deal with it below in UpgradeIntrinsicCall. rename(F); return true; } return false; // Not 'arm.mve.vctp64'. } // These too are changed to accept a v2i1 instead of the old v4i1. if (Name.consume_back(".v4i1")) { // 'arm.mve.*.v4i1'. if (Name.consume_back(".predicated.v2i64.v4i32")) // 'arm.mve.*.predicated.v2i64.v4i32.v4i1' return Name == "mull.int" || Name == "vqdmull"; if (Name.consume_back(".v2i64")) { // 'arm.mve.*.v2i64.v4i1' bool IsGather = Name.consume_front("vldr.gather."); if (IsGather || Name.consume_front("vstr.scatter.")) { if (Name.consume_front("base.")) { // Optional 'wb.' prefix. Name.consume_front("wb."); // 'arm.mve.(vldr.gather|vstr.scatter).base.(wb.)? // predicated.v2i64.v2i64.v4i1'. return Name == "predicated.v2i64"; } if (Name.consume_front("offset.predicated.")) return Name == (IsGather ? "v2i64.p0i64" : "p0i64.v2i64") || Name == (IsGather ? "v2i64.p0" : "p0.v2i64"); // No other 'arm.mve.(vldr.gather|vstr.scatter).*.v2i64.v4i1'. return false; } return false; // No other 'arm.mve.*.v2i64.v4i1'. } return false; // No other 'arm.mve.*.v4i1'. } return false; // No other 'arm.mve.*'. } if (Name.consume_front("cde.vcx")) { // 'arm.cde.vcx*'. if (Name.consume_back(".predicated.v2i64.v4i1")) // 'arm.cde.vcx*.predicated.v2i64.v4i1'. return Name == "1q" || Name == "1qa" || Name == "2q" || Name == "2qa" || Name == "3q" || Name == "3qa"; return false; // No other 'arm.cde.vcx*'. } } else { // 'aarch64.*'. if (Neon) { // 'aarch64.neon.*'. Intrinsic::ID ID = StringSwitch(Name) .StartsWith("frintn", Intrinsic::roundeven) .StartsWith("rbit", Intrinsic::bitreverse) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { NewFn = Intrinsic::getDeclaration(F->getParent(), ID, F->arg_begin()->getType()); return true; } if (Name.starts_with("addp")) { // 'aarch64.neon.addp*'. if (F->arg_size() != 2) return false; // Invalid IR. VectorType *Ty = dyn_cast(F->getReturnType()); if (Ty && Ty->getElementType()->isFloatingPointTy()) { NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_neon_faddp, Ty); return true; } } return false; // No other 'aarch64.neon.*'. } if (Name.consume_front("sve.")) { // 'aarch64.sve.*'. if (Name.consume_front("bf")) { if (Name.consume_back(".lane")) { // 'aarch64.sve.bf*.lane'. Intrinsic::ID ID = StringSwitch(Name) .Case("dot", Intrinsic::aarch64_sve_bfdot_lane_v2) .Case("mlalb", Intrinsic::aarch64_sve_bfmlalb_lane_v2) .Case("mlalt", Intrinsic::aarch64_sve_bfmlalt_lane_v2) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } return false; // No other 'aarch64.sve.bf*.lane'. } return false; // No other 'aarch64.sve.bf*'. } if (Name.consume_front("ld")) { // 'aarch64.sve.ld*'. static const Regex LdRegex("^[234](.nxv[a-z0-9]+|$)"); if (LdRegex.match(Name)) { Type *ScalarTy = dyn_cast(F->getReturnType())->getElementType(); ElementCount EC = dyn_cast(F->arg_begin()->getType()) ->getElementCount(); Type *Ty = VectorType::get(ScalarTy, EC); static const Intrinsic::ID LoadIDs[] = { Intrinsic::aarch64_sve_ld2_sret, Intrinsic::aarch64_sve_ld3_sret, Intrinsic::aarch64_sve_ld4_sret, }; NewFn = Intrinsic::getDeclaration(F->getParent(), LoadIDs[Name[0] - '2'], Ty); return true; } return false; // No other 'aarch64.sve.ld*'. } if (Name.consume_front("tuple.")) { // 'aarch64.sve.tuple.*'. if (Name.starts_with("get")) { // 'aarch64.sve.tuple.get*'. Type *Tys[] = {F->getReturnType(), F->arg_begin()->getType()}; NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::vector_extract, Tys); return true; } if (Name.starts_with("set")) { // 'aarch64.sve.tuple.set*'. auto Args = F->getFunctionType()->params(); Type *Tys[] = {Args[0], Args[2], Args[1]}; NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::vector_insert, Tys); return true; } static const Regex CreateTupleRegex("^create[234](.nxv[a-z0-9]+|$)"); if (CreateTupleRegex.match(Name)) { // 'aarch64.sve.tuple.create*'. auto Args = F->getFunctionType()->params(); Type *Tys[] = {F->getReturnType(), Args[1]}; NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::vector_insert, Tys); return true; } return false; // No other 'aarch64.sve.tuple.*'. } return false; // No other 'aarch64.sve.*'. } } return false; // No other 'arm.*', 'aarch64.*'. } static Intrinsic::ID shouldUpgradeNVPTXBF16Intrinsic(StringRef Name) { if (Name.consume_front("abs.")) return StringSwitch(Name) .Case("bf16", Intrinsic::nvvm_abs_bf16) .Case("bf16x2", Intrinsic::nvvm_abs_bf16x2) .Default(Intrinsic::not_intrinsic); if (Name.consume_front("fma.rn.")) return StringSwitch(Name) .Case("bf16", Intrinsic::nvvm_fma_rn_bf16) .Case("bf16x2", Intrinsic::nvvm_fma_rn_bf16x2) .Case("ftz.bf16", Intrinsic::nvvm_fma_rn_ftz_bf16) .Case("ftz.bf16x2", Intrinsic::nvvm_fma_rn_ftz_bf16x2) .Case("ftz.relu.bf16", Intrinsic::nvvm_fma_rn_ftz_relu_bf16) .Case("ftz.relu.bf16x2", Intrinsic::nvvm_fma_rn_ftz_relu_bf16x2) .Case("ftz.sat.bf16", Intrinsic::nvvm_fma_rn_ftz_sat_bf16) .Case("ftz.sat.bf16x2", Intrinsic::nvvm_fma_rn_ftz_sat_bf16x2) .Case("relu.bf16", Intrinsic::nvvm_fma_rn_relu_bf16) .Case("relu.bf16x2", Intrinsic::nvvm_fma_rn_relu_bf16x2) .Case("sat.bf16", Intrinsic::nvvm_fma_rn_sat_bf16) .Case("sat.bf16x2", Intrinsic::nvvm_fma_rn_sat_bf16x2) .Default(Intrinsic::not_intrinsic); if (Name.consume_front("fmax.")) return StringSwitch(Name) .Case("bf16", Intrinsic::nvvm_fmax_bf16) .Case("bf16x2", Intrinsic::nvvm_fmax_bf16x2) .Case("ftz.bf16", Intrinsic::nvvm_fmax_ftz_bf16) .Case("ftz.bf16x2", Intrinsic::nvvm_fmax_ftz_bf16x2) .Case("ftz.nan.bf16", Intrinsic::nvvm_fmax_ftz_nan_bf16) .Case("ftz.nan.bf16x2", Intrinsic::nvvm_fmax_ftz_nan_bf16x2) .Case("ftz.nan.xorsign.abs.bf16", Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_bf16) .Case("ftz.nan.xorsign.abs.bf16x2", Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_bf16x2) .Case("ftz.xorsign.abs.bf16", Intrinsic::nvvm_fmax_ftz_xorsign_abs_bf16) .Case("ftz.xorsign.abs.bf16x2", Intrinsic::nvvm_fmax_ftz_xorsign_abs_bf16x2) .Case("nan.bf16", Intrinsic::nvvm_fmax_nan_bf16) .Case("nan.bf16x2", Intrinsic::nvvm_fmax_nan_bf16x2) .Case("nan.xorsign.abs.bf16", Intrinsic::nvvm_fmax_nan_xorsign_abs_bf16) .Case("nan.xorsign.abs.bf16x2", Intrinsic::nvvm_fmax_nan_xorsign_abs_bf16x2) .Case("xorsign.abs.bf16", Intrinsic::nvvm_fmax_xorsign_abs_bf16) .Case("xorsign.abs.bf16x2", Intrinsic::nvvm_fmax_xorsign_abs_bf16x2) .Default(Intrinsic::not_intrinsic); if (Name.consume_front("fmin.")) return StringSwitch(Name) .Case("bf16", Intrinsic::nvvm_fmin_bf16) .Case("bf16x2", Intrinsic::nvvm_fmin_bf16x2) .Case("ftz.bf16", Intrinsic::nvvm_fmin_ftz_bf16) .Case("ftz.bf16x2", Intrinsic::nvvm_fmin_ftz_bf16x2) .Case("ftz.nan.bf16", Intrinsic::nvvm_fmin_ftz_nan_bf16) .Case("ftz.nan.bf16x2", Intrinsic::nvvm_fmin_ftz_nan_bf16x2) .Case("ftz.nan.xorsign.abs.bf16", Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_bf16) .Case("ftz.nan.xorsign.abs.bf16x2", Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_bf16x2) .Case("ftz.xorsign.abs.bf16", Intrinsic::nvvm_fmin_ftz_xorsign_abs_bf16) .Case("ftz.xorsign.abs.bf16x2", Intrinsic::nvvm_fmin_ftz_xorsign_abs_bf16x2) .Case("nan.bf16", Intrinsic::nvvm_fmin_nan_bf16) .Case("nan.bf16x2", Intrinsic::nvvm_fmin_nan_bf16x2) .Case("nan.xorsign.abs.bf16", Intrinsic::nvvm_fmin_nan_xorsign_abs_bf16) .Case("nan.xorsign.abs.bf16x2", Intrinsic::nvvm_fmin_nan_xorsign_abs_bf16x2) .Case("xorsign.abs.bf16", Intrinsic::nvvm_fmin_xorsign_abs_bf16) .Case("xorsign.abs.bf16x2", Intrinsic::nvvm_fmin_xorsign_abs_bf16x2) .Default(Intrinsic::not_intrinsic); if (Name.consume_front("neg.")) return StringSwitch(Name) .Case("bf16", Intrinsic::nvvm_neg_bf16) .Case("bf16x2", Intrinsic::nvvm_neg_bf16x2) .Default(Intrinsic::not_intrinsic); return Intrinsic::not_intrinsic; } static bool upgradeIntrinsicFunction1(Function *F, Function *&NewFn, bool CanUpgradeDebugIntrinsicsToRecords) { assert(F && "Illegal to upgrade a non-existent Function."); StringRef Name = F->getName(); // Quickly eliminate it, if it's not a candidate. if (!Name.consume_front("llvm.") || Name.empty()) return false; switch (Name[0]) { default: break; case 'a': { bool IsArm = Name.consume_front("arm."); if (IsArm || Name.consume_front("aarch64.")) { if (upgradeArmOrAarch64IntrinsicFunction(IsArm, F, Name, NewFn)) return true; break; } if (Name.consume_front("amdgcn.")) { if (Name == "alignbit") { // Target specific intrinsic became redundant NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::fshr, {F->getReturnType()}); return true; } if (Name.consume_front("atomic.")) { if (Name.starts_with("inc") || Name.starts_with("dec")) { // These were replaced with atomicrmw uinc_wrap and udec_wrap, so // there's no new declaration. NewFn = nullptr; return true; } break; // No other 'amdgcn.atomic.*' } if (Name.starts_with("ldexp.")) { // Target specific intrinsic became redundant NewFn = Intrinsic::getDeclaration( F->getParent(), Intrinsic::ldexp, {F->getReturnType(), F->getArg(1)->getType()}); return true; } break; // No other 'amdgcn.*' } break; } case 'c': { if (F->arg_size() == 1) { Intrinsic::ID ID = StringSwitch(Name) .StartsWith("ctlz.", Intrinsic::ctlz) .StartsWith("cttz.", Intrinsic::cttz) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID, F->arg_begin()->getType()); return true; } } if (F->arg_size() == 2 && Name.equals("coro.end")) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::coro_end); return true; } break; } case 'd': if (Name.consume_front("dbg.")) { // Mark debug intrinsics for upgrade to new debug format. if (CanUpgradeDebugIntrinsicsToRecords && F->getParent()->IsNewDbgInfoFormat) { if (Name == "addr" || Name == "value" || Name == "assign" || Name == "declare" || Name == "label") { // There's no function to replace these with. NewFn = nullptr; // But we do want these to get upgraded. return true; } } // Update llvm.dbg.addr intrinsics even in "new debug mode"; they'll get // converted to DbgVariableRecords later. if (Name == "addr" || (Name == "value" && F->arg_size() == 4)) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::dbg_value); return true; } break; // No other 'dbg.*'. } break; case 'e': if (Name.consume_front("experimental.vector.")) { Intrinsic::ID ID = StringSwitch(Name) .StartsWith("extract.", Intrinsic::vector_extract) .StartsWith("insert.", Intrinsic::vector_insert) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { const auto *FT = F->getFunctionType(); SmallVector Tys; if (ID == Intrinsic::vector_extract) // Extracting overloads the return type. Tys.push_back(FT->getReturnType()); Tys.push_back(FT->getParamType(0)); if (ID == Intrinsic::vector_insert) // Inserting overloads the inserted type. Tys.push_back(FT->getParamType(1)); rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID, Tys); return true; } if (Name.consume_front("reduce.")) { SmallVector Groups; static const Regex R("^([a-z]+)\\.[a-z][0-9]+"); if (R.match(Name, &Groups)) ID = StringSwitch(Groups[1]) .Case("add", Intrinsic::vector_reduce_add) .Case("mul", Intrinsic::vector_reduce_mul) .Case("and", Intrinsic::vector_reduce_and) .Case("or", Intrinsic::vector_reduce_or) .Case("xor", Intrinsic::vector_reduce_xor) .Case("smax", Intrinsic::vector_reduce_smax) .Case("smin", Intrinsic::vector_reduce_smin) .Case("umax", Intrinsic::vector_reduce_umax) .Case("umin", Intrinsic::vector_reduce_umin) .Case("fmax", Intrinsic::vector_reduce_fmax) .Case("fmin", Intrinsic::vector_reduce_fmin) .Default(Intrinsic::not_intrinsic); bool V2 = false; if (ID == Intrinsic::not_intrinsic) { static const Regex R2("^v2\\.([a-z]+)\\.[fi][0-9]+"); Groups.clear(); V2 = true; if (R2.match(Name, &Groups)) ID = StringSwitch(Groups[1]) .Case("fadd", Intrinsic::vector_reduce_fadd) .Case("fmul", Intrinsic::vector_reduce_fmul) .Default(Intrinsic::not_intrinsic); } if (ID != Intrinsic::not_intrinsic) { rename(F); auto Args = F->getFunctionType()->params(); NewFn = Intrinsic::getDeclaration(F->getParent(), ID, {Args[V2 ? 1 : 0]}); return true; } break; // No other 'expermental.vector.reduce.*'. } break; // No other 'experimental.vector.*'. } break; // No other 'e*'. case 'f': if (Name.starts_with("flt.rounds")) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::get_rounding); return true; } break; case 'i': if (Name.starts_with("invariant.group.barrier")) { // Rename invariant.group.barrier to launder.invariant.group auto Args = F->getFunctionType()->params(); Type* ObjectPtr[1] = {Args[0]}; rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::launder_invariant_group, ObjectPtr); return true; } break; case 'm': { // Updating the memory intrinsics (memcpy/memmove/memset) that have an // alignment parameter to embedding the alignment as an attribute of // the pointer args. if (unsigned ID = StringSwitch(Name) .StartsWith("memcpy.", Intrinsic::memcpy) .StartsWith("memmove.", Intrinsic::memmove) .Default(0)) { if (F->arg_size() == 5) { rename(F); // Get the types of dest, src, and len ArrayRef ParamTypes = F->getFunctionType()->params().slice(0, 3); NewFn = Intrinsic::getDeclaration(F->getParent(), ID, ParamTypes); return true; } } if (Name.starts_with("memset.") && F->arg_size() == 5) { rename(F); // Get the types of dest, and len const auto *FT = F->getFunctionType(); Type *ParamTypes[2] = { FT->getParamType(0), // Dest FT->getParamType(2) // len }; NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::memset, ParamTypes); return true; } break; } case 'n': { if (Name.consume_front("nvvm.")) { // Check for nvvm intrinsics corresponding exactly to an LLVM intrinsic. if (F->arg_size() == 1) { Intrinsic::ID IID = StringSwitch(Name) .Cases("brev32", "brev64", Intrinsic::bitreverse) .Case("clz.i", Intrinsic::ctlz) .Case("popc.i", Intrinsic::ctpop) .Default(Intrinsic::not_intrinsic); if (IID != Intrinsic::not_intrinsic) { NewFn = Intrinsic::getDeclaration(F->getParent(), IID, {F->getReturnType()}); return true; } } // Check for nvvm intrinsics that need a return type adjustment. if (!F->getReturnType()->getScalarType()->isBFloatTy()) { Intrinsic::ID IID = shouldUpgradeNVPTXBF16Intrinsic(Name); if (IID != Intrinsic::not_intrinsic) { NewFn = nullptr; return true; } } // The following nvvm intrinsics correspond exactly to an LLVM idiom, but // not to an intrinsic alone. We expand them in UpgradeIntrinsicCall. // // TODO: We could add lohi.i2d. bool Expand = false; if (Name.consume_front("abs.")) // nvvm.abs.{i,ii} Expand = Name == "i" || Name == "ll"; else if (Name == "clz.ll" || Name == "popc.ll" || Name == "h2f") Expand = true; else if (Name.consume_front("max.") || Name.consume_front("min.")) // nvvm.{min,max}.{i,ii,ui,ull} Expand = Name == "s" || Name == "i" || Name == "ll" || Name == "us" || Name == "ui" || Name == "ull"; else if (Name.consume_front("atomic.load.add.")) // nvvm.atomic.load.add.{f32.p,f64.p} Expand = Name.starts_with("f32.p") || Name.starts_with("f64.p"); else Expand = false; if (Expand) { NewFn = nullptr; return true; } break; // No other 'nvvm.*'. } break; } case 'o': // We only need to change the name to match the mangling including the // address space. if (Name.starts_with("objectsize.")) { Type *Tys[2] = { F->getReturnType(), F->arg_begin()->getType() }; if (F->arg_size() == 2 || F->arg_size() == 3 || F->getName() != Intrinsic::getName(Intrinsic::objectsize, Tys, F->getParent())) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), Intrinsic::objectsize, Tys); return true; } } break; case 'p': if (Name.starts_with("ptr.annotation.") && F->arg_size() == 4) { rename(F); NewFn = Intrinsic::getDeclaration( F->getParent(), Intrinsic::ptr_annotation, {F->arg_begin()->getType(), F->getArg(1)->getType()}); return true; } break; case 'r': { if (Name.consume_front("riscv.")) { Intrinsic::ID ID; ID = StringSwitch(Name) .Case("aes32dsi", Intrinsic::riscv_aes32dsi) .Case("aes32dsmi", Intrinsic::riscv_aes32dsmi) .Case("aes32esi", Intrinsic::riscv_aes32esi) .Case("aes32esmi", Intrinsic::riscv_aes32esmi) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { if (!F->getFunctionType()->getParamType(2)->isIntegerTy(32)) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } break; // No other applicable upgrades. } ID = StringSwitch(Name) .StartsWith("sm4ks", Intrinsic::riscv_sm4ks) .StartsWith("sm4ed", Intrinsic::riscv_sm4ed) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { if (!F->getFunctionType()->getParamType(2)->isIntegerTy(32) || F->getFunctionType()->getReturnType()->isIntegerTy(64)) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } break; // No other applicable upgrades. } ID = StringSwitch(Name) .StartsWith("sha256sig0", Intrinsic::riscv_sha256sig0) .StartsWith("sha256sig1", Intrinsic::riscv_sha256sig1) .StartsWith("sha256sum0", Intrinsic::riscv_sha256sum0) .StartsWith("sha256sum1", Intrinsic::riscv_sha256sum1) .StartsWith("sm3p0", Intrinsic::riscv_sm3p0) .StartsWith("sm3p1", Intrinsic::riscv_sm3p1) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { if (F->getFunctionType()->getReturnType()->isIntegerTy(64)) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } break; // No other applicable upgrades. } break; // No other 'riscv.*' intrinsics } } break; case 's': if (Name == "stackprotectorcheck") { NewFn = nullptr; return true; } break; case 'v': { if (Name == "var.annotation" && F->arg_size() == 4) { rename(F); NewFn = Intrinsic::getDeclaration( F->getParent(), Intrinsic::var_annotation, {{F->arg_begin()->getType(), F->getArg(1)->getType()}}); return true; } break; } case 'w': if (Name.consume_front("wasm.")) { Intrinsic::ID ID = StringSwitch(Name) .StartsWith("fma.", Intrinsic::wasm_relaxed_madd) .StartsWith("fms.", Intrinsic::wasm_relaxed_nmadd) .StartsWith("laneselect.", Intrinsic::wasm_relaxed_laneselect) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID, F->getReturnType()); return true; } if (Name.consume_front("dot.i8x16.i7x16.")) { ID = StringSwitch(Name) .Case("signed", Intrinsic::wasm_relaxed_dot_i8x16_i7x16_signed) .Case("add.signed", Intrinsic::wasm_relaxed_dot_i8x16_i7x16_add_signed) .Default(Intrinsic::not_intrinsic); if (ID != Intrinsic::not_intrinsic) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), ID); return true; } break; // No other 'wasm.dot.i8x16.i7x16.*'. } break; // No other 'wasm.*'. } break; case 'x': if (upgradeX86IntrinsicFunction(F, Name, NewFn)) return true; } auto *ST = dyn_cast(F->getReturnType()); if (ST && (!ST->isLiteral() || ST->isPacked()) && F->getIntrinsicID() != Intrinsic::not_intrinsic) { // Replace return type with literal non-packed struct. Only do this for // intrinsics declared to return a struct, not for intrinsics with // overloaded return type, in which case the exact struct type will be // mangled into the name. SmallVector Desc; Intrinsic::getIntrinsicInfoTableEntries(F->getIntrinsicID(), Desc); if (Desc.front().Kind == Intrinsic::IITDescriptor::Struct) { auto *FT = F->getFunctionType(); auto *NewST = StructType::get(ST->getContext(), ST->elements()); auto *NewFT = FunctionType::get(NewST, FT->params(), FT->isVarArg()); std::string Name = F->getName().str(); rename(F); NewFn = Function::Create(NewFT, F->getLinkage(), F->getAddressSpace(), Name, F->getParent()); // The new function may also need remangling. if (auto Result = llvm::Intrinsic::remangleIntrinsicFunction(NewFn)) NewFn = *Result; return true; } } // Remangle our intrinsic since we upgrade the mangling auto Result = llvm::Intrinsic::remangleIntrinsicFunction(F); if (Result != std::nullopt) { NewFn = *Result; return true; } // This may not belong here. This function is effectively being overloaded // to both detect an intrinsic which needs upgrading, and to provide the // upgraded form of the intrinsic. We should perhaps have two separate // functions for this. return false; } bool llvm::UpgradeIntrinsicFunction(Function *F, Function *&NewFn, bool CanUpgradeDebugIntrinsicsToRecords) { NewFn = nullptr; bool Upgraded = upgradeIntrinsicFunction1(F, NewFn, CanUpgradeDebugIntrinsicsToRecords); assert(F != NewFn && "Intrinsic function upgraded to the same function"); // Upgrade intrinsic attributes. This does not change the function. if (NewFn) F = NewFn; if (Intrinsic::ID id = F->getIntrinsicID()) F->setAttributes(Intrinsic::getAttributes(F->getContext(), id)); return Upgraded; } GlobalVariable *llvm::UpgradeGlobalVariable(GlobalVariable *GV) { if (!(GV->hasName() && (GV->getName() == "llvm.global_ctors" || GV->getName() == "llvm.global_dtors")) || !GV->hasInitializer()) return nullptr; ArrayType *ATy = dyn_cast(GV->getValueType()); if (!ATy) return nullptr; StructType *STy = dyn_cast(ATy->getElementType()); if (!STy || STy->getNumElements() != 2) return nullptr; LLVMContext &C = GV->getContext(); IRBuilder<> IRB(C); auto EltTy = StructType::get(STy->getElementType(0), STy->getElementType(1), IRB.getPtrTy()); Constant *Init = GV->getInitializer(); unsigned N = Init->getNumOperands(); std::vector NewCtors(N); for (unsigned i = 0; i != N; ++i) { auto Ctor = cast(Init->getOperand(i)); NewCtors[i] = ConstantStruct::get(EltTy, Ctor->getAggregateElement(0u), Ctor->getAggregateElement(1), Constant::getNullValue(IRB.getPtrTy())); } Constant *NewInit = ConstantArray::get(ArrayType::get(EltTy, N), NewCtors); return new GlobalVariable(NewInit->getType(), false, GV->getLinkage(), NewInit, GV->getName()); } // Handles upgrading SSE2/AVX2/AVX512BW PSLLDQ intrinsics by converting them // to byte shuffles. static Value *upgradeX86PSLLDQIntrinsics(IRBuilder<> &Builder, Value *Op, unsigned Shift) { auto *ResultTy = cast(Op->getType()); unsigned NumElts = ResultTy->getNumElements() * 8; // Bitcast from a 64-bit element type to a byte element type. Type *VecTy = FixedVectorType::get(Builder.getInt8Ty(), NumElts); Op = Builder.CreateBitCast(Op, VecTy, "cast"); // We'll be shuffling in zeroes. Value *Res = Constant::getNullValue(VecTy); // If shift is less than 16, emit a shuffle to move the bytes. Otherwise, // we'll just return the zero vector. if (Shift < 16) { int Idxs[64]; // 256/512-bit version is split into 2/4 16-byte lanes. for (unsigned l = 0; l != NumElts; l += 16) for (unsigned i = 0; i != 16; ++i) { unsigned Idx = NumElts + i - Shift; if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. Idxs[l + i] = Idx + l; } Res = Builder.CreateShuffleVector(Res, Op, ArrayRef(Idxs, NumElts)); } // Bitcast back to a 64-bit element type. return Builder.CreateBitCast(Res, ResultTy, "cast"); } // Handles upgrading SSE2/AVX2/AVX512BW PSRLDQ intrinsics by converting them // to byte shuffles. static Value *upgradeX86PSRLDQIntrinsics(IRBuilder<> &Builder, Value *Op, unsigned Shift) { auto *ResultTy = cast(Op->getType()); unsigned NumElts = ResultTy->getNumElements() * 8; // Bitcast from a 64-bit element type to a byte element type. Type *VecTy = FixedVectorType::get(Builder.getInt8Ty(), NumElts); Op = Builder.CreateBitCast(Op, VecTy, "cast"); // We'll be shuffling in zeroes. Value *Res = Constant::getNullValue(VecTy); // If shift is less than 16, emit a shuffle to move the bytes. Otherwise, // we'll just return the zero vector. if (Shift < 16) { int Idxs[64]; // 256/512-bit version is split into 2/4 16-byte lanes. for (unsigned l = 0; l != NumElts; l += 16) for (unsigned i = 0; i != 16; ++i) { unsigned Idx = i + Shift; if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. Idxs[l + i] = Idx + l; } Res = Builder.CreateShuffleVector(Op, Res, ArrayRef(Idxs, NumElts)); } // Bitcast back to a 64-bit element type. return Builder.CreateBitCast(Res, ResultTy, "cast"); } static Value *getX86MaskVec(IRBuilder<> &Builder, Value *Mask, unsigned NumElts) { assert(isPowerOf2_32(NumElts) && "Expected power-of-2 mask elements"); llvm::VectorType *MaskTy = FixedVectorType::get( Builder.getInt1Ty(), cast(Mask->getType())->getBitWidth()); Mask = Builder.CreateBitCast(Mask, MaskTy); // If we have less than 8 elements (1, 2 or 4), then the starting mask was an // i8 and we need to extract down to the right number of elements. if (NumElts <= 4) { int Indices[4]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; Mask = Builder.CreateShuffleVector(Mask, Mask, ArrayRef(Indices, NumElts), "extract"); } return Mask; } static Value *emitX86Select(IRBuilder<> &Builder, Value *Mask, Value *Op0, Value *Op1) { // If the mask is all ones just emit the first operation. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Op0; Mask = getX86MaskVec(Builder, Mask, cast(Op0->getType())->getNumElements()); return Builder.CreateSelect(Mask, Op0, Op1); } static Value *emitX86ScalarSelect(IRBuilder<> &Builder, Value *Mask, Value *Op0, Value *Op1) { // If the mask is all ones just emit the first operation. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Op0; auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); Mask = Builder.CreateBitCast(Mask, MaskTy); Mask = Builder.CreateExtractElement(Mask, (uint64_t)0); return Builder.CreateSelect(Mask, Op0, Op1); } // Handle autoupgrade for masked PALIGNR and VALIGND/Q intrinsics. // PALIGNR handles large immediates by shifting while VALIGN masks the immediate // so we need to handle both cases. VALIGN also doesn't have 128-bit lanes. static Value *upgradeX86ALIGNIntrinsics(IRBuilder<> &Builder, Value *Op0, Value *Op1, Value *Shift, Value *Passthru, Value *Mask, bool IsVALIGN) { unsigned ShiftVal = cast(Shift)->getZExtValue(); unsigned NumElts = cast(Op0->getType())->getNumElements(); assert((IsVALIGN || NumElts % 16 == 0) && "Illegal NumElts for PALIGNR!"); assert((!IsVALIGN || NumElts <= 16) && "NumElts too large for VALIGN!"); assert(isPowerOf2_32(NumElts) && "NumElts not a power of 2!"); // Mask the immediate for VALIGN. if (IsVALIGN) ShiftVal &= (NumElts - 1); // If palignr is shifting the pair of vectors more than the size of two // lanes, emit zero. if (ShiftVal >= 32) return llvm::Constant::getNullValue(Op0->getType()); // If palignr is shifting the pair of input vectors more than one lane, // but less than two lanes, convert to shifting in zeroes. if (ShiftVal > 16) { ShiftVal -= 16; Op1 = Op0; Op0 = llvm::Constant::getNullValue(Op0->getType()); } int Indices[64]; // 256-bit palignr operates on 128-bit lanes so we need to handle that for (unsigned l = 0; l < NumElts; l += 16) { for (unsigned i = 0; i != 16; ++i) { unsigned Idx = ShiftVal + i; if (!IsVALIGN && Idx >= 16) // Disable wrap for VALIGN. Idx += NumElts - 16; // End of lane, switch operand. Indices[l + i] = Idx + l; } } Value *Align = Builder.CreateShuffleVector( Op1, Op0, ArrayRef(Indices, NumElts), "palignr"); return emitX86Select(Builder, Mask, Align, Passthru); } static Value *upgradeX86VPERMT2Intrinsics(IRBuilder<> &Builder, CallBase &CI, bool ZeroMask, bool IndexForm) { Type *Ty = CI.getType(); unsigned VecWidth = Ty->getPrimitiveSizeInBits(); unsigned EltWidth = Ty->getScalarSizeInBits(); bool IsFloat = Ty->isFPOrFPVectorTy(); Intrinsic::ID IID; if (VecWidth == 128 && EltWidth == 32 && IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_ps_128; else if (VecWidth == 128 && EltWidth == 32 && !IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_d_128; else if (VecWidth == 128 && EltWidth == 64 && IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_pd_128; else if (VecWidth == 128 && EltWidth == 64 && !IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_q_128; else if (VecWidth == 256 && EltWidth == 32 && IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_ps_256; else if (VecWidth == 256 && EltWidth == 32 && !IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_d_256; else if (VecWidth == 256 && EltWidth == 64 && IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_pd_256; else if (VecWidth == 256 && EltWidth == 64 && !IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_q_256; else if (VecWidth == 512 && EltWidth == 32 && IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_ps_512; else if (VecWidth == 512 && EltWidth == 32 && !IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_d_512; else if (VecWidth == 512 && EltWidth == 64 && IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_pd_512; else if (VecWidth == 512 && EltWidth == 64 && !IsFloat) IID = Intrinsic::x86_avx512_vpermi2var_q_512; else if (VecWidth == 128 && EltWidth == 16) IID = Intrinsic::x86_avx512_vpermi2var_hi_128; else if (VecWidth == 256 && EltWidth == 16) IID = Intrinsic::x86_avx512_vpermi2var_hi_256; else if (VecWidth == 512 && EltWidth == 16) IID = Intrinsic::x86_avx512_vpermi2var_hi_512; else if (VecWidth == 128 && EltWidth == 8) IID = Intrinsic::x86_avx512_vpermi2var_qi_128; else if (VecWidth == 256 && EltWidth == 8) IID = Intrinsic::x86_avx512_vpermi2var_qi_256; else if (VecWidth == 512 && EltWidth == 8) IID = Intrinsic::x86_avx512_vpermi2var_qi_512; else llvm_unreachable("Unexpected intrinsic"); Value *Args[] = { CI.getArgOperand(0) , CI.getArgOperand(1), CI.getArgOperand(2) }; // If this isn't index form we need to swap operand 0 and 1. if (!IndexForm) std::swap(Args[0], Args[1]); Value *V = Builder.CreateCall(Intrinsic::getDeclaration(CI.getModule(), IID), Args); Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Builder.CreateBitCast(CI.getArgOperand(1), Ty); return emitX86Select(Builder, CI.getArgOperand(3), V, PassThru); } static Value *upgradeX86BinaryIntrinsics(IRBuilder<> &Builder, CallBase &CI, Intrinsic::ID IID) { Type *Ty = CI.getType(); Value *Op0 = CI.getOperand(0); Value *Op1 = CI.getOperand(1); Function *Intrin = Intrinsic::getDeclaration(CI.getModule(), IID, Ty); Value *Res = Builder.CreateCall(Intrin, {Op0, Op1}); if (CI.arg_size() == 4) { // For masked intrinsics. Value *VecSrc = CI.getOperand(2); Value *Mask = CI.getOperand(3); Res = emitX86Select(Builder, Mask, Res, VecSrc); } return Res; } static Value *upgradeX86Rotate(IRBuilder<> &Builder, CallBase &CI, bool IsRotateRight) { Type *Ty = CI.getType(); Value *Src = CI.getArgOperand(0); Value *Amt = CI.getArgOperand(1); // Amount may be scalar immediate, in which case create a splat vector. // Funnel shifts amounts are treated as modulo and types are all power-of-2 so // we only care about the lowest log2 bits anyway. if (Amt->getType() != Ty) { unsigned NumElts = cast(Ty)->getNumElements(); Amt = Builder.CreateIntCast(Amt, Ty->getScalarType(), false); Amt = Builder.CreateVectorSplat(NumElts, Amt); } Intrinsic::ID IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; Function *Intrin = Intrinsic::getDeclaration(CI.getModule(), IID, Ty); Value *Res = Builder.CreateCall(Intrin, {Src, Src, Amt}); if (CI.arg_size() == 4) { // For masked intrinsics. Value *VecSrc = CI.getOperand(2); Value *Mask = CI.getOperand(3); Res = emitX86Select(Builder, Mask, Res, VecSrc); } return Res; } static Value *upgradeX86vpcom(IRBuilder<> &Builder, CallBase &CI, unsigned Imm, bool IsSigned) { Type *Ty = CI.getType(); Value *LHS = CI.getArgOperand(0); Value *RHS = CI.getArgOperand(1); CmpInst::Predicate Pred; switch (Imm) { case 0x0: Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 0x1: Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 0x2: Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; case 0x3: Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 0x4: Pred = ICmpInst::ICMP_EQ; break; case 0x5: Pred = ICmpInst::ICMP_NE; break; case 0x6: return Constant::getNullValue(Ty); // FALSE case 0x7: return Constant::getAllOnesValue(Ty); // TRUE default: llvm_unreachable("Unknown XOP vpcom/vpcomu predicate"); } Value *Cmp = Builder.CreateICmp(Pred, LHS, RHS); Value *Ext = Builder.CreateSExt(Cmp, Ty); return Ext; } static Value *upgradeX86ConcatShift(IRBuilder<> &Builder, CallBase &CI, bool IsShiftRight, bool ZeroMask) { Type *Ty = CI.getType(); Value *Op0 = CI.getArgOperand(0); Value *Op1 = CI.getArgOperand(1); Value *Amt = CI.getArgOperand(2); if (IsShiftRight) std::swap(Op0, Op1); // Amount may be scalar immediate, in which case create a splat vector. // Funnel shifts amounts are treated as modulo and types are all power-of-2 so // we only care about the lowest log2 bits anyway. if (Amt->getType() != Ty) { unsigned NumElts = cast(Ty)->getNumElements(); Amt = Builder.CreateIntCast(Amt, Ty->getScalarType(), false); Amt = Builder.CreateVectorSplat(NumElts, Amt); } Intrinsic::ID IID = IsShiftRight ? Intrinsic::fshr : Intrinsic::fshl; Function *Intrin = Intrinsic::getDeclaration(CI.getModule(), IID, Ty); Value *Res = Builder.CreateCall(Intrin, {Op0, Op1, Amt}); unsigned NumArgs = CI.arg_size(); if (NumArgs >= 4) { // For masked intrinsics. Value *VecSrc = NumArgs == 5 ? CI.getArgOperand(3) : ZeroMask ? ConstantAggregateZero::get(CI.getType()) : CI.getArgOperand(0); Value *Mask = CI.getOperand(NumArgs - 1); Res = emitX86Select(Builder, Mask, Res, VecSrc); } return Res; } static Value *upgradeMaskedStore(IRBuilder<> &Builder, Value *Ptr, Value *Data, Value *Mask, bool Aligned) { // Cast the pointer to the right type. Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(Data->getType())); const Align Alignment = Aligned ? Align(Data->getType()->getPrimitiveSizeInBits().getFixedValue() / 8) : Align(1); // If the mask is all ones just emit a regular store. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Builder.CreateAlignedStore(Data, Ptr, Alignment); // Convert the mask from an integer type to a vector of i1. unsigned NumElts = cast(Data->getType())->getNumElements(); Mask = getX86MaskVec(Builder, Mask, NumElts); return Builder.CreateMaskedStore(Data, Ptr, Alignment, Mask); } static Value *upgradeMaskedLoad(IRBuilder<> &Builder, Value *Ptr, Value *Passthru, Value *Mask, bool Aligned) { Type *ValTy = Passthru->getType(); // Cast the pointer to the right type. Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(ValTy)); const Align Alignment = Aligned ? Align( Passthru->getType()->getPrimitiveSizeInBits().getFixedValue() / 8) : Align(1); // If the mask is all ones just emit a regular store. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Builder.CreateAlignedLoad(ValTy, Ptr, Alignment); // Convert the mask from an integer type to a vector of i1. unsigned NumElts = cast(ValTy)->getNumElements(); Mask = getX86MaskVec(Builder, Mask, NumElts); return Builder.CreateMaskedLoad(ValTy, Ptr, Alignment, Mask, Passthru); } static Value *upgradeAbs(IRBuilder<> &Builder, CallBase &CI) { Type *Ty = CI.getType(); Value *Op0 = CI.getArgOperand(0); Function *F = Intrinsic::getDeclaration(CI.getModule(), Intrinsic::abs, Ty); Value *Res = Builder.CreateCall(F, {Op0, Builder.getInt1(false)}); if (CI.arg_size() == 3) Res = emitX86Select(Builder, CI.getArgOperand(2), Res, CI.getArgOperand(1)); return Res; } static Value *upgradePMULDQ(IRBuilder<> &Builder, CallBase &CI, bool IsSigned) { Type *Ty = CI.getType(); // Arguments have a vXi32 type so cast to vXi64. Value *LHS = Builder.CreateBitCast(CI.getArgOperand(0), Ty); Value *RHS = Builder.CreateBitCast(CI.getArgOperand(1), Ty); if (IsSigned) { // Shift left then arithmetic shift right. Constant *ShiftAmt = ConstantInt::get(Ty, 32); LHS = Builder.CreateShl(LHS, ShiftAmt); LHS = Builder.CreateAShr(LHS, ShiftAmt); RHS = Builder.CreateShl(RHS, ShiftAmt); RHS = Builder.CreateAShr(RHS, ShiftAmt); } else { // Clear the upper bits. Constant *Mask = ConstantInt::get(Ty, 0xffffffff); LHS = Builder.CreateAnd(LHS, Mask); RHS = Builder.CreateAnd(RHS, Mask); } Value *Res = Builder.CreateMul(LHS, RHS); if (CI.arg_size() == 4) Res = emitX86Select(Builder, CI.getArgOperand(3), Res, CI.getArgOperand(2)); return Res; } // Applying mask on vector of i1's and make sure result is at least 8 bits wide. static Value *applyX86MaskOn1BitsVec(IRBuilder<> &Builder, Value *Vec, Value *Mask) { unsigned NumElts = cast(Vec->getType())->getNumElements(); if (Mask) { const auto *C = dyn_cast(Mask); if (!C || !C->isAllOnesValue()) Vec = Builder.CreateAnd(Vec, getX86MaskVec(Builder, Mask, NumElts)); } if (NumElts < 8) { int Indices[8]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; for (unsigned i = NumElts; i != 8; ++i) Indices[i] = NumElts + i % NumElts; Vec = Builder.CreateShuffleVector(Vec, Constant::getNullValue(Vec->getType()), Indices); } return Builder.CreateBitCast(Vec, Builder.getIntNTy(std::max(NumElts, 8U))); } static Value *upgradeMaskedCompare(IRBuilder<> &Builder, CallBase &CI, unsigned CC, bool Signed) { Value *Op0 = CI.getArgOperand(0); unsigned NumElts = cast(Op0->getType())->getNumElements(); Value *Cmp; if (CC == 3) { Cmp = Constant::getNullValue( FixedVectorType::get(Builder.getInt1Ty(), NumElts)); } else if (CC == 7) { Cmp = Constant::getAllOnesValue( FixedVectorType::get(Builder.getInt1Ty(), NumElts)); } else { ICmpInst::Predicate Pred; switch (CC) { default: llvm_unreachable("Unknown condition code"); case 0: Pred = ICmpInst::ICMP_EQ; break; case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 4: Pred = ICmpInst::ICMP_NE; break; case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; } Cmp = Builder.CreateICmp(Pred, Op0, CI.getArgOperand(1)); } Value *Mask = CI.getArgOperand(CI.arg_size() - 1); return applyX86MaskOn1BitsVec(Builder, Cmp, Mask); } // Replace a masked intrinsic with an older unmasked intrinsic. static Value *upgradeX86MaskedShift(IRBuilder<> &Builder, CallBase &CI, Intrinsic::ID IID) { Function *Intrin = Intrinsic::getDeclaration(CI.getModule(), IID); Value *Rep = Builder.CreateCall(Intrin, { CI.getArgOperand(0), CI.getArgOperand(1) }); return emitX86Select(Builder, CI.getArgOperand(3), Rep, CI.getArgOperand(2)); } static Value *upgradeMaskedMove(IRBuilder<> &Builder, CallBase &CI) { Value* A = CI.getArgOperand(0); Value* B = CI.getArgOperand(1); Value* Src = CI.getArgOperand(2); Value* Mask = CI.getArgOperand(3); Value* AndNode = Builder.CreateAnd(Mask, APInt(8, 1)); Value* Cmp = Builder.CreateIsNotNull(AndNode); Value* Extract1 = Builder.CreateExtractElement(B, (uint64_t)0); Value* Extract2 = Builder.CreateExtractElement(Src, (uint64_t)0); Value* Select = Builder.CreateSelect(Cmp, Extract1, Extract2); return Builder.CreateInsertElement(A, Select, (uint64_t)0); } static Value *upgradeMaskToInt(IRBuilder<> &Builder, CallBase &CI) { Value* Op = CI.getArgOperand(0); Type* ReturnOp = CI.getType(); unsigned NumElts = cast(CI.getType())->getNumElements(); Value *Mask = getX86MaskVec(Builder, Op, NumElts); return Builder.CreateSExt(Mask, ReturnOp, "vpmovm2"); } // Replace intrinsic with unmasked version and a select. static bool upgradeAVX512MaskToSelect(StringRef Name, IRBuilder<> &Builder, CallBase &CI, Value *&Rep) { Name = Name.substr(12); // Remove avx512.mask. unsigned VecWidth = CI.getType()->getPrimitiveSizeInBits(); unsigned EltWidth = CI.getType()->getScalarSizeInBits(); Intrinsic::ID IID; if (Name.starts_with("max.p")) { if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_sse_max_ps; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_sse2_max_pd; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx_max_ps_256; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx_max_pd_256; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("min.p")) { if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_sse_min_ps; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_sse2_min_pd; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx_min_ps_256; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx_min_pd_256; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pshuf.b.")) { if (VecWidth == 128) IID = Intrinsic::x86_ssse3_pshuf_b_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_pshuf_b; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pshuf_b_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pmul.hr.sw.")) { if (VecWidth == 128) IID = Intrinsic::x86_ssse3_pmul_hr_sw_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_pmul_hr_sw; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pmul_hr_sw_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pmulh.w.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse2_pmulh_w; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_pmulh_w; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pmulh_w_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pmulhu.w.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse2_pmulhu_w; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_pmulhu_w; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pmulhu_w_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pmaddw.d.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse2_pmadd_wd; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_pmadd_wd; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pmaddw_d_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pmaddubs.w.")) { if (VecWidth == 128) IID = Intrinsic::x86_ssse3_pmadd_ub_sw_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_pmadd_ub_sw; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pmaddubs_w_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("packsswb.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse2_packsswb_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_packsswb; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_packsswb_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("packssdw.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse2_packssdw_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_packssdw; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_packssdw_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("packuswb.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse2_packuswb_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_packuswb; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_packuswb_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("packusdw.")) { if (VecWidth == 128) IID = Intrinsic::x86_sse41_packusdw; else if (VecWidth == 256) IID = Intrinsic::x86_avx2_packusdw; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_packusdw_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("vpermilvar.")) { if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_avx_vpermilvar_ps; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_avx_vpermilvar_pd; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx_vpermilvar_ps_256; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx_vpermilvar_pd_256; else if (VecWidth == 512 && EltWidth == 32) IID = Intrinsic::x86_avx512_vpermilvar_ps_512; else if (VecWidth == 512 && EltWidth == 64) IID = Intrinsic::x86_avx512_vpermilvar_pd_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name == "cvtpd2dq.256") { IID = Intrinsic::x86_avx_cvt_pd2dq_256; } else if (Name == "cvtpd2ps.256") { IID = Intrinsic::x86_avx_cvt_pd2_ps_256; } else if (Name == "cvttpd2dq.256") { IID = Intrinsic::x86_avx_cvtt_pd2dq_256; } else if (Name == "cvttps2dq.128") { IID = Intrinsic::x86_sse2_cvttps2dq; } else if (Name == "cvttps2dq.256") { IID = Intrinsic::x86_avx_cvtt_ps2dq_256; } else if (Name.starts_with("permvar.")) { bool IsFloat = CI.getType()->isFPOrFPVectorTy(); if (VecWidth == 256 && EltWidth == 32 && IsFloat) IID = Intrinsic::x86_avx2_permps; else if (VecWidth == 256 && EltWidth == 32 && !IsFloat) IID = Intrinsic::x86_avx2_permd; else if (VecWidth == 256 && EltWidth == 64 && IsFloat) IID = Intrinsic::x86_avx512_permvar_df_256; else if (VecWidth == 256 && EltWidth == 64 && !IsFloat) IID = Intrinsic::x86_avx512_permvar_di_256; else if (VecWidth == 512 && EltWidth == 32 && IsFloat) IID = Intrinsic::x86_avx512_permvar_sf_512; else if (VecWidth == 512 && EltWidth == 32 && !IsFloat) IID = Intrinsic::x86_avx512_permvar_si_512; else if (VecWidth == 512 && EltWidth == 64 && IsFloat) IID = Intrinsic::x86_avx512_permvar_df_512; else if (VecWidth == 512 && EltWidth == 64 && !IsFloat) IID = Intrinsic::x86_avx512_permvar_di_512; else if (VecWidth == 128 && EltWidth == 16) IID = Intrinsic::x86_avx512_permvar_hi_128; else if (VecWidth == 256 && EltWidth == 16) IID = Intrinsic::x86_avx512_permvar_hi_256; else if (VecWidth == 512 && EltWidth == 16) IID = Intrinsic::x86_avx512_permvar_hi_512; else if (VecWidth == 128 && EltWidth == 8) IID = Intrinsic::x86_avx512_permvar_qi_128; else if (VecWidth == 256 && EltWidth == 8) IID = Intrinsic::x86_avx512_permvar_qi_256; else if (VecWidth == 512 && EltWidth == 8) IID = Intrinsic::x86_avx512_permvar_qi_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("dbpsadbw.")) { if (VecWidth == 128) IID = Intrinsic::x86_avx512_dbpsadbw_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx512_dbpsadbw_256; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_dbpsadbw_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pmultishift.qb.")) { if (VecWidth == 128) IID = Intrinsic::x86_avx512_pmultishift_qb_128; else if (VecWidth == 256) IID = Intrinsic::x86_avx512_pmultishift_qb_256; else if (VecWidth == 512) IID = Intrinsic::x86_avx512_pmultishift_qb_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("conflict.")) { if (Name[9] == 'd' && VecWidth == 128) IID = Intrinsic::x86_avx512_conflict_d_128; else if (Name[9] == 'd' && VecWidth == 256) IID = Intrinsic::x86_avx512_conflict_d_256; else if (Name[9] == 'd' && VecWidth == 512) IID = Intrinsic::x86_avx512_conflict_d_512; else if (Name[9] == 'q' && VecWidth == 128) IID = Intrinsic::x86_avx512_conflict_q_128; else if (Name[9] == 'q' && VecWidth == 256) IID = Intrinsic::x86_avx512_conflict_q_256; else if (Name[9] == 'q' && VecWidth == 512) IID = Intrinsic::x86_avx512_conflict_q_512; else llvm_unreachable("Unexpected intrinsic"); } else if (Name.starts_with("pavg.")) { if (Name[5] == 'b' && VecWidth == 128) IID = Intrinsic::x86_sse2_pavg_b; else if (Name[5] == 'b' && VecWidth == 256) IID = Intrinsic::x86_avx2_pavg_b; else if (Name[5] == 'b' && VecWidth == 512) IID = Intrinsic::x86_avx512_pavg_b_512; else if (Name[5] == 'w' && VecWidth == 128) IID = Intrinsic::x86_sse2_pavg_w; else if (Name[5] == 'w' && VecWidth == 256) IID = Intrinsic::x86_avx2_pavg_w; else if (Name[5] == 'w' && VecWidth == 512) IID = Intrinsic::x86_avx512_pavg_w_512; else llvm_unreachable("Unexpected intrinsic"); } else return false; SmallVector Args(CI.args()); Args.pop_back(); Args.pop_back(); Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI.getModule(), IID), Args); unsigned NumArgs = CI.arg_size(); Rep = emitX86Select(Builder, CI.getArgOperand(NumArgs - 1), Rep, CI.getArgOperand(NumArgs - 2)); return true; } /// Upgrade comment in call to inline asm that represents an objc retain release /// marker. void llvm::UpgradeInlineAsmString(std::string *AsmStr) { size_t Pos; if (AsmStr->find("mov\tfp") == 0 && AsmStr->find("objc_retainAutoreleaseReturnValue") != std::string::npos && (Pos = AsmStr->find("# marker")) != std::string::npos) { AsmStr->replace(Pos, 1, ";"); } } static Value *upgradeARMIntrinsicCall(StringRef Name, CallBase *CI, Function *F, IRBuilder<> &Builder) { if (Name == "mve.vctp64.old") { // Replace the old v4i1 vctp64 with a v2i1 vctp and predicate-casts to the // correct type. Value *VCTP = Builder.CreateCall( Intrinsic::getDeclaration(F->getParent(), Intrinsic::arm_mve_vctp64), CI->getArgOperand(0), CI->getName()); Value *C1 = Builder.CreateCall( Intrinsic::getDeclaration( F->getParent(), Intrinsic::arm_mve_pred_v2i, {VectorType::get(Builder.getInt1Ty(), 2, false)}), VCTP); return Builder.CreateCall( Intrinsic::getDeclaration( F->getParent(), Intrinsic::arm_mve_pred_i2v, {VectorType::get(Builder.getInt1Ty(), 4, false)}), C1); } else if (Name == "mve.mull.int.predicated.v2i64.v4i32.v4i1" || Name == "mve.vqdmull.predicated.v2i64.v4i32.v4i1" || Name == "mve.vldr.gather.base.predicated.v2i64.v2i64.v4i1" || Name == "mve.vldr.gather.base.wb.predicated.v2i64.v2i64.v4i1" || Name == "mve.vldr.gather.offset.predicated.v2i64.p0i64.v2i64.v4i1" || Name == "mve.vldr.gather.offset.predicated.v2i64.p0.v2i64.v4i1" || Name == "mve.vstr.scatter.base.predicated.v2i64.v2i64.v4i1" || Name == "mve.vstr.scatter.base.wb.predicated.v2i64.v2i64.v4i1" || Name == "mve.vstr.scatter.offset.predicated.p0i64.v2i64.v2i64.v4i1" || Name == "mve.vstr.scatter.offset.predicated.p0.v2i64.v2i64.v4i1" || Name == "cde.vcx1q.predicated.v2i64.v4i1" || Name == "cde.vcx1qa.predicated.v2i64.v4i1" || Name == "cde.vcx2q.predicated.v2i64.v4i1" || Name == "cde.vcx2qa.predicated.v2i64.v4i1" || Name == "cde.vcx3q.predicated.v2i64.v4i1" || Name == "cde.vcx3qa.predicated.v2i64.v4i1") { std::vector Tys; unsigned ID = CI->getIntrinsicID(); Type *V2I1Ty = FixedVectorType::get(Builder.getInt1Ty(), 2); switch (ID) { case Intrinsic::arm_mve_mull_int_predicated: case Intrinsic::arm_mve_vqdmull_predicated: case Intrinsic::arm_mve_vldr_gather_base_predicated: Tys = {CI->getType(), CI->getOperand(0)->getType(), V2I1Ty}; break; case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: case Intrinsic::arm_mve_vstr_scatter_base_predicated: case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: Tys = {CI->getOperand(0)->getType(), CI->getOperand(0)->getType(), V2I1Ty}; break; case Intrinsic::arm_mve_vldr_gather_offset_predicated: Tys = {CI->getType(), CI->getOperand(0)->getType(), CI->getOperand(1)->getType(), V2I1Ty}; break; case Intrinsic::arm_mve_vstr_scatter_offset_predicated: Tys = {CI->getOperand(0)->getType(), CI->getOperand(1)->getType(), CI->getOperand(2)->getType(), V2I1Ty}; break; case Intrinsic::arm_cde_vcx1q_predicated: case Intrinsic::arm_cde_vcx1qa_predicated: case Intrinsic::arm_cde_vcx2q_predicated: case Intrinsic::arm_cde_vcx2qa_predicated: case Intrinsic::arm_cde_vcx3q_predicated: case Intrinsic::arm_cde_vcx3qa_predicated: Tys = {CI->getOperand(1)->getType(), V2I1Ty}; break; default: llvm_unreachable("Unhandled Intrinsic!"); } std::vector Ops; for (Value *Op : CI->args()) { Type *Ty = Op->getType(); if (Ty->getScalarSizeInBits() == 1) { Value *C1 = Builder.CreateCall( Intrinsic::getDeclaration( F->getParent(), Intrinsic::arm_mve_pred_v2i, {VectorType::get(Builder.getInt1Ty(), 4, false)}), Op); Op = Builder.CreateCall( Intrinsic::getDeclaration(F->getParent(), Intrinsic::arm_mve_pred_i2v, {V2I1Ty}), C1); } Ops.push_back(Op); } Function *Fn = Intrinsic::getDeclaration(F->getParent(), ID, Tys); return Builder.CreateCall(Fn, Ops, CI->getName()); } llvm_unreachable("Unknown function for ARM CallBase upgrade."); } static Value *upgradeAMDGCNIntrinsicCall(StringRef Name, CallBase *CI, Function *F, IRBuilder<> &Builder) { const bool IsInc = Name.starts_with("atomic.inc."); if (IsInc || Name.starts_with("atomic.dec.")) { if (CI->getNumOperands() != 6) // Malformed bitcode. return nullptr; AtomicRMWInst::BinOp RMWOp = IsInc ? AtomicRMWInst::UIncWrap : AtomicRMWInst::UDecWrap; Value *Ptr = CI->getArgOperand(0); Value *Val = CI->getArgOperand(1); ConstantInt *OrderArg = dyn_cast(CI->getArgOperand(2)); ConstantInt *VolatileArg = dyn_cast(CI->getArgOperand(4)); AtomicOrdering Order = AtomicOrdering::SequentiallyConsistent; if (OrderArg && isValidAtomicOrdering(OrderArg->getZExtValue())) Order = static_cast(OrderArg->getZExtValue()); if (Order == AtomicOrdering::NotAtomic || Order == AtomicOrdering::Unordered) Order = AtomicOrdering::SequentiallyConsistent; // The scope argument never really worked correctly. Use agent as the most // conservative option which should still always produce the instruction. SyncScope::ID SSID = F->getContext().getOrInsertSyncScopeID("agent"); AtomicRMWInst *RMW = Builder.CreateAtomicRMW(RMWOp, Ptr, Val, std::nullopt, Order, SSID); if (!VolatileArg || !VolatileArg->isZero()) RMW->setVolatile(true); return RMW; } llvm_unreachable("Unknown function for AMDGPU intrinsic upgrade."); } /// Helper to unwrap intrinsic call MetadataAsValue operands. template static MDType *unwrapMAVOp(CallBase *CI, unsigned Op) { if (MetadataAsValue *MAV = dyn_cast(CI->getArgOperand(Op))) return dyn_cast(MAV->getMetadata()); return nullptr; } /// Convert debug intrinsic calls to non-instruction debug records. /// \p Name - Final part of the intrinsic name, e.g. 'value' in llvm.dbg.value. /// \p CI - The debug intrinsic call. static void upgradeDbgIntrinsicToDbgRecord(StringRef Name, CallBase *CI) { DbgRecord *DR = nullptr; if (Name == "label") { DR = new DbgLabelRecord(unwrapMAVOp(CI, 0), CI->getDebugLoc()); } else if (Name == "assign") { DR = new DbgVariableRecord( unwrapMAVOp(CI, 0), unwrapMAVOp(CI, 1), unwrapMAVOp(CI, 2), unwrapMAVOp(CI, 3), unwrapMAVOp(CI, 4), unwrapMAVOp(CI, 5), CI->getDebugLoc()); } else if (Name == "declare") { DR = new DbgVariableRecord( unwrapMAVOp(CI, 0), unwrapMAVOp(CI, 1), unwrapMAVOp(CI, 2), CI->getDebugLoc(), DbgVariableRecord::LocationType::Declare); } else if (Name == "addr") { // Upgrade dbg.addr to dbg.value with DW_OP_deref. DIExpression *Expr = unwrapMAVOp(CI, 2); Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); DR = new DbgVariableRecord(unwrapMAVOp(CI, 0), unwrapMAVOp(CI, 1), Expr, CI->getDebugLoc()); } else if (Name == "value") { // An old version of dbg.value had an extra offset argument. unsigned VarOp = 1; unsigned ExprOp = 2; if (CI->arg_size() == 4) { auto *Offset = dyn_cast_or_null(CI->getArgOperand(1)); // Nonzero offset dbg.values get dropped without a replacement. if (!Offset || !Offset->isZeroValue()) return; VarOp = 2; ExprOp = 3; } DR = new DbgVariableRecord( unwrapMAVOp(CI, 0), unwrapMAVOp(CI, VarOp), unwrapMAVOp(CI, ExprOp), CI->getDebugLoc()); } assert(DR && "Unhandled intrinsic kind in upgrade to DbgRecord"); CI->getParent()->insertDbgRecordBefore(DR, CI->getIterator()); } /// Upgrade a call to an old intrinsic. All argument and return casting must be /// provided to seamlessly integrate with existing context. void llvm::UpgradeIntrinsicCall(CallBase *CI, Function *NewFn) { // Note dyn_cast to Function is not quite the same as getCalledFunction, which // checks the callee's function type matches. It's likely we need to handle // type changes here. Function *F = dyn_cast(CI->getCalledOperand()); if (!F) return; LLVMContext &C = CI->getContext(); IRBuilder<> Builder(C); Builder.SetInsertPoint(CI->getParent(), CI->getIterator()); if (!NewFn) { bool FallthroughToDefaultUpgrade = false; // Get the Function's name. StringRef Name = F->getName(); assert(Name.starts_with("llvm.") && "Intrinsic doesn't start with 'llvm.'"); Name = Name.substr(5); bool IsX86 = Name.consume_front("x86."); bool IsNVVM = Name.consume_front("nvvm."); bool IsARM = Name.consume_front("arm."); bool IsAMDGCN = Name.consume_front("amdgcn."); bool IsDbg = Name.consume_front("dbg."); if (IsX86 && Name.starts_with("sse4a.movnt.")) { SmallVector Elts; Elts.push_back( ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1))); MDNode *Node = MDNode::get(C, Elts); Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); // Nontemporal (unaligned) store of the 0'th element of the float/double // vector. Type *SrcEltTy = cast(Arg1->getType())->getElementType(); PointerType *EltPtrTy = PointerType::getUnqual(SrcEltTy); Value *Addr = Builder.CreateBitCast(Arg0, EltPtrTy, "cast"); Value *Extract = Builder.CreateExtractElement(Arg1, (uint64_t)0, "extractelement"); StoreInst *SI = Builder.CreateAlignedStore(Extract, Addr, Align(1)); SI->setMetadata(LLVMContext::MD_nontemporal, Node); // Remove intrinsic. CI->eraseFromParent(); return; } if (IsX86 && (Name.starts_with("avx.movnt.") || Name.starts_with("avx512.storent."))) { SmallVector Elts; Elts.push_back( ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1))); MDNode *Node = MDNode::get(C, Elts); Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Arg1->getType()), "cast"); StoreInst *SI = Builder.CreateAlignedStore( Arg1, BC, Align(Arg1->getType()->getPrimitiveSizeInBits().getFixedValue() / 8)); SI->setMetadata(LLVMContext::MD_nontemporal, Node); // Remove intrinsic. CI->eraseFromParent(); return; } if (IsX86 && Name == "sse2.storel.dq") { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); auto *NewVecTy = FixedVectorType::get(Type::getInt64Ty(C), 2); Value *BC0 = Builder.CreateBitCast(Arg1, NewVecTy, "cast"); Value *Elt = Builder.CreateExtractElement(BC0, (uint64_t)0); Value *BC = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Elt->getType()), "cast"); Builder.CreateAlignedStore(Elt, BC, Align(1)); // Remove intrinsic. CI->eraseFromParent(); return; } if (IsX86 && (Name.starts_with("sse.storeu.") || Name.starts_with("sse2.storeu.") || Name.starts_with("avx.storeu."))) { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); Arg0 = Builder.CreateBitCast(Arg0, PointerType::getUnqual(Arg1->getType()), "cast"); Builder.CreateAlignedStore(Arg1, Arg0, Align(1)); // Remove intrinsic. CI->eraseFromParent(); return; } if (IsX86 && Name == "avx512.mask.store.ss") { Value *Mask = Builder.CreateAnd(CI->getArgOperand(2), Builder.getInt8(1)); upgradeMaskedStore(Builder, CI->getArgOperand(0), CI->getArgOperand(1), Mask, false); // Remove intrinsic. CI->eraseFromParent(); return; } if (IsX86 && Name.starts_with("avx512.mask.store")) { // "avx512.mask.storeu." or "avx512.mask.store." bool Aligned = Name[17] != 'u'; // "avx512.mask.storeu". upgradeMaskedStore(Builder, CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), Aligned); // Remove intrinsic. CI->eraseFromParent(); return; } Value *Rep = nullptr; // Upgrade packed integer vector compare intrinsics to compare instructions. if (IsX86 && (Name.starts_with("sse2.pcmp") || Name.starts_with("avx2.pcmp"))) { // "sse2.pcpmpeq." "sse2.pcmpgt." "avx2.pcmpeq." or "avx2.pcmpgt." bool CmpEq = Name[9] == 'e'; Rep = Builder.CreateICmp(CmpEq ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_SGT, CI->getArgOperand(0), CI->getArgOperand(1)); Rep = Builder.CreateSExt(Rep, CI->getType(), ""); } else if (IsX86 && (Name.starts_with("avx512.broadcastm"))) { Type *ExtTy = Type::getInt32Ty(C); if (CI->getOperand(0)->getType()->isIntegerTy(8)) ExtTy = Type::getInt64Ty(C); unsigned NumElts = CI->getType()->getPrimitiveSizeInBits() / ExtTy->getPrimitiveSizeInBits(); Rep = Builder.CreateZExt(CI->getArgOperand(0), ExtTy); Rep = Builder.CreateVectorSplat(NumElts, Rep); } else if (IsX86 && (Name == "sse.sqrt.ss" || Name == "sse2.sqrt.sd")) { Value *Vec = CI->getArgOperand(0); Value *Elt0 = Builder.CreateExtractElement(Vec, (uint64_t)0); Function *Intr = Intrinsic::getDeclaration(F->getParent(), Intrinsic::sqrt, Elt0->getType()); Elt0 = Builder.CreateCall(Intr, Elt0); Rep = Builder.CreateInsertElement(Vec, Elt0, (uint64_t)0); } else if (IsX86 && (Name.starts_with("avx.sqrt.p") || Name.starts_with("sse2.sqrt.p") || Name.starts_with("sse.sqrt.p"))) { Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), Intrinsic::sqrt, CI->getType()), {CI->getArgOperand(0)}); } else if (IsX86 && (Name.starts_with("avx512.mask.sqrt.p"))) { if (CI->arg_size() == 4 && (!isa(CI->getArgOperand(3)) || cast(CI->getArgOperand(3))->getZExtValue() != 4)) { Intrinsic::ID IID = Name[18] == 's' ? Intrinsic::x86_avx512_sqrt_ps_512 : Intrinsic::x86_avx512_sqrt_pd_512; Value *Args[] = { CI->getArgOperand(0), CI->getArgOperand(3) }; Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), IID), Args); } else { Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), Intrinsic::sqrt, CI->getType()), {CI->getArgOperand(0)}); } Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("avx512.ptestm") || Name.starts_with("avx512.ptestnm"))) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); Value *Mask = CI->getArgOperand(2); Rep = Builder.CreateAnd(Op0, Op1); llvm::Type *Ty = Op0->getType(); Value *Zero = llvm::Constant::getNullValue(Ty); ICmpInst::Predicate Pred = Name.starts_with("avx512.ptestm") ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; Rep = Builder.CreateICmp(Pred, Rep, Zero); Rep = applyX86MaskOn1BitsVec(Builder, Rep, Mask); } else if (IsX86 && (Name.starts_with("avx512.mask.pbroadcast"))){ unsigned NumElts = cast(CI->getArgOperand(1)->getType()) ->getNumElements(); Rep = Builder.CreateVectorSplat(NumElts, CI->getArgOperand(0)); Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("avx512.kunpck"))) { unsigned NumElts = CI->getType()->getScalarSizeInBits(); Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), NumElts); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), NumElts); int Indices[64]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; // First extract half of each vector. This gives better codegen than // doing it in a single shuffle. LHS = Builder.CreateShuffleVector(LHS, LHS, ArrayRef(Indices, NumElts / 2)); RHS = Builder.CreateShuffleVector(RHS, RHS, ArrayRef(Indices, NumElts / 2)); // Concat the vectors. // NOTE: Operands have to be swapped to match intrinsic definition. Rep = Builder.CreateShuffleVector(RHS, LHS, ArrayRef(Indices, NumElts)); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && Name == "avx512.kand.w") { Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), 16); Rep = Builder.CreateAnd(LHS, RHS); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && Name == "avx512.kandn.w") { Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), 16); LHS = Builder.CreateNot(LHS); Rep = Builder.CreateAnd(LHS, RHS); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && Name == "avx512.kor.w") { Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), 16); Rep = Builder.CreateOr(LHS, RHS); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && Name == "avx512.kxor.w") { Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), 16); Rep = Builder.CreateXor(LHS, RHS); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && Name == "avx512.kxnor.w") { Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), 16); LHS = Builder.CreateNot(LHS); Rep = Builder.CreateXor(LHS, RHS); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && Name == "avx512.knot.w") { Rep = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Rep = Builder.CreateNot(Rep); Rep = Builder.CreateBitCast(Rep, CI->getType()); } else if (IsX86 && (Name == "avx512.kortestz.w" || Name == "avx512.kortestc.w")) { Value *LHS = getX86MaskVec(Builder, CI->getArgOperand(0), 16); Value *RHS = getX86MaskVec(Builder, CI->getArgOperand(1), 16); Rep = Builder.CreateOr(LHS, RHS); Rep = Builder.CreateBitCast(Rep, Builder.getInt16Ty()); Value *C; if (Name[14] == 'c') C = ConstantInt::getAllOnesValue(Builder.getInt16Ty()); else C = ConstantInt::getNullValue(Builder.getInt16Ty()); Rep = Builder.CreateICmpEQ(Rep, C); Rep = Builder.CreateZExt(Rep, Builder.getInt32Ty()); } else if (IsX86 && (Name == "sse.add.ss" || Name == "sse2.add.sd" || Name == "sse.sub.ss" || Name == "sse2.sub.sd" || Name == "sse.mul.ss" || Name == "sse2.mul.sd" || Name == "sse.div.ss" || Name == "sse2.div.sd")) { Type *I32Ty = Type::getInt32Ty(C); Value *Elt0 = Builder.CreateExtractElement(CI->getArgOperand(0), ConstantInt::get(I32Ty, 0)); Value *Elt1 = Builder.CreateExtractElement(CI->getArgOperand(1), ConstantInt::get(I32Ty, 0)); Value *EltOp; if (Name.contains(".add.")) EltOp = Builder.CreateFAdd(Elt0, Elt1); else if (Name.contains(".sub.")) EltOp = Builder.CreateFSub(Elt0, Elt1); else if (Name.contains(".mul.")) EltOp = Builder.CreateFMul(Elt0, Elt1); else EltOp = Builder.CreateFDiv(Elt0, Elt1); Rep = Builder.CreateInsertElement(CI->getArgOperand(0), EltOp, ConstantInt::get(I32Ty, 0)); } else if (IsX86 && Name.starts_with("avx512.mask.pcmp")) { // "avx512.mask.pcmpeq." or "avx512.mask.pcmpgt." bool CmpEq = Name[16] == 'e'; Rep = upgradeMaskedCompare(Builder, *CI, CmpEq ? 0 : 6, true); } else if (IsX86 && Name.starts_with("avx512.mask.vpshufbitqmb.")) { Type *OpTy = CI->getArgOperand(0)->getType(); unsigned VecWidth = OpTy->getPrimitiveSizeInBits(); Intrinsic::ID IID; switch (VecWidth) { default: llvm_unreachable("Unexpected intrinsic"); case 128: IID = Intrinsic::x86_avx512_vpshufbitqmb_128; break; case 256: IID = Intrinsic::x86_avx512_vpshufbitqmb_256; break; case 512: IID = Intrinsic::x86_avx512_vpshufbitqmb_512; break; } Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getOperand(0), CI->getArgOperand(1) }); Rep = applyX86MaskOn1BitsVec(Builder, Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.fpclass.p")) { Type *OpTy = CI->getArgOperand(0)->getType(); unsigned VecWidth = OpTy->getPrimitiveSizeInBits(); unsigned EltWidth = OpTy->getScalarSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_avx512_fpclass_ps_128; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx512_fpclass_ps_256; else if (VecWidth == 512 && EltWidth == 32) IID = Intrinsic::x86_avx512_fpclass_ps_512; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_avx512_fpclass_pd_128; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx512_fpclass_pd_256; else if (VecWidth == 512 && EltWidth == 64) IID = Intrinsic::x86_avx512_fpclass_pd_512; else llvm_unreachable("Unexpected intrinsic"); Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getOperand(0), CI->getArgOperand(1) }); Rep = applyX86MaskOn1BitsVec(Builder, Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.cmp.p")) { SmallVector Args(CI->args()); Type *OpTy = Args[0]->getType(); unsigned VecWidth = OpTy->getPrimitiveSizeInBits(); unsigned EltWidth = OpTy->getScalarSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_avx512_mask_cmp_ps_128; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx512_mask_cmp_ps_256; else if (VecWidth == 512 && EltWidth == 32) IID = Intrinsic::x86_avx512_mask_cmp_ps_512; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_avx512_mask_cmp_pd_128; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx512_mask_cmp_pd_256; else if (VecWidth == 512 && EltWidth == 64) IID = Intrinsic::x86_avx512_mask_cmp_pd_512; else llvm_unreachable("Unexpected intrinsic"); Value *Mask = Constant::getAllOnesValue(CI->getType()); if (VecWidth == 512) std::swap(Mask, Args.back()); Args.push_back(Mask); Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), Args); } else if (IsX86 && Name.starts_with("avx512.mask.cmp.")) { // Integer compare intrinsics. unsigned Imm = cast(CI->getArgOperand(2))->getZExtValue(); Rep = upgradeMaskedCompare(Builder, *CI, Imm, true); } else if (IsX86 && Name.starts_with("avx512.mask.ucmp.")) { unsigned Imm = cast(CI->getArgOperand(2))->getZExtValue(); Rep = upgradeMaskedCompare(Builder, *CI, Imm, false); } else if (IsX86 && (Name.starts_with("avx512.cvtb2mask.") || Name.starts_with("avx512.cvtw2mask.") || Name.starts_with("avx512.cvtd2mask.") || Name.starts_with("avx512.cvtq2mask."))) { Value *Op = CI->getArgOperand(0); Value *Zero = llvm::Constant::getNullValue(Op->getType()); Rep = Builder.CreateICmp(ICmpInst::ICMP_SLT, Op, Zero); Rep = applyX86MaskOn1BitsVec(Builder, Rep, nullptr); } else if(IsX86 && (Name == "ssse3.pabs.b.128" || Name == "ssse3.pabs.w.128" || Name == "ssse3.pabs.d.128" || Name.starts_with("avx2.pabs") || Name.starts_with("avx512.mask.pabs"))) { Rep = upgradeAbs(Builder, *CI); } else if (IsX86 && (Name == "sse41.pmaxsb" || Name == "sse2.pmaxs.w" || Name == "sse41.pmaxsd" || Name.starts_with("avx2.pmaxs") || Name.starts_with("avx512.mask.pmaxs"))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::smax); } else if (IsX86 && (Name == "sse2.pmaxu.b" || Name == "sse41.pmaxuw" || Name == "sse41.pmaxud" || Name.starts_with("avx2.pmaxu") || Name.starts_with("avx512.mask.pmaxu"))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::umax); } else if (IsX86 && (Name == "sse41.pminsb" || Name == "sse2.pmins.w" || Name == "sse41.pminsd" || Name.starts_with("avx2.pmins") || Name.starts_with("avx512.mask.pmins"))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::smin); } else if (IsX86 && (Name == "sse2.pminu.b" || Name == "sse41.pminuw" || Name == "sse41.pminud" || Name.starts_with("avx2.pminu") || Name.starts_with("avx512.mask.pminu"))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::umin); } else if (IsX86 && (Name == "sse2.pmulu.dq" || Name == "avx2.pmulu.dq" || Name == "avx512.pmulu.dq.512" || Name.starts_with("avx512.mask.pmulu.dq."))) { Rep = upgradePMULDQ(Builder, *CI, /*Signed*/false); } else if (IsX86 && (Name == "sse41.pmuldq" || Name == "avx2.pmul.dq" || Name == "avx512.pmul.dq.512" || Name.starts_with("avx512.mask.pmul.dq."))) { Rep = upgradePMULDQ(Builder, *CI, /*Signed*/true); } else if (IsX86 && (Name == "sse.cvtsi2ss" || Name == "sse2.cvtsi2sd" || Name == "sse.cvtsi642ss" || Name == "sse2.cvtsi642sd")) { Rep = Builder.CreateSIToFP( CI->getArgOperand(1), cast(CI->getType())->getElementType()); Rep = Builder.CreateInsertElement(CI->getArgOperand(0), Rep, (uint64_t)0); } else if (IsX86 && Name == "avx512.cvtusi2sd") { Rep = Builder.CreateUIToFP( CI->getArgOperand(1), cast(CI->getType())->getElementType()); Rep = Builder.CreateInsertElement(CI->getArgOperand(0), Rep, (uint64_t)0); } else if (IsX86 && Name == "sse2.cvtss2sd") { Rep = Builder.CreateExtractElement(CI->getArgOperand(1), (uint64_t)0); Rep = Builder.CreateFPExt( Rep, cast(CI->getType())->getElementType()); Rep = Builder.CreateInsertElement(CI->getArgOperand(0), Rep, (uint64_t)0); } else if (IsX86 && (Name == "sse2.cvtdq2pd" || Name == "sse2.cvtdq2ps" || Name == "avx.cvtdq2.pd.256" || Name == "avx.cvtdq2.ps.256" || Name.starts_with("avx512.mask.cvtdq2pd.") || Name.starts_with("avx512.mask.cvtudq2pd.") || Name.starts_with("avx512.mask.cvtdq2ps.") || Name.starts_with("avx512.mask.cvtudq2ps.") || Name.starts_with("avx512.mask.cvtqq2pd.") || Name.starts_with("avx512.mask.cvtuqq2pd.") || Name == "avx512.mask.cvtqq2ps.256" || Name == "avx512.mask.cvtqq2ps.512" || Name == "avx512.mask.cvtuqq2ps.256" || Name == "avx512.mask.cvtuqq2ps.512" || Name == "sse2.cvtps2pd" || Name == "avx.cvt.ps2.pd.256" || Name == "avx512.mask.cvtps2pd.128" || Name == "avx512.mask.cvtps2pd.256")) { auto *DstTy = cast(CI->getType()); Rep = CI->getArgOperand(0); auto *SrcTy = cast(Rep->getType()); unsigned NumDstElts = DstTy->getNumElements(); if (NumDstElts < SrcTy->getNumElements()) { assert(NumDstElts == 2 && "Unexpected vector size"); Rep = Builder.CreateShuffleVector(Rep, Rep, ArrayRef{0, 1}); } bool IsPS2PD = SrcTy->getElementType()->isFloatTy(); bool IsUnsigned = Name.contains("cvtu"); if (IsPS2PD) Rep = Builder.CreateFPExt(Rep, DstTy, "cvtps2pd"); else if (CI->arg_size() == 4 && (!isa(CI->getArgOperand(3)) || cast(CI->getArgOperand(3))->getZExtValue() != 4)) { Intrinsic::ID IID = IsUnsigned ? Intrinsic::x86_avx512_uitofp_round : Intrinsic::x86_avx512_sitofp_round; Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, { DstTy, SrcTy }); Rep = Builder.CreateCall(F, { Rep, CI->getArgOperand(3) }); } else { Rep = IsUnsigned ? Builder.CreateUIToFP(Rep, DstTy, "cvt") : Builder.CreateSIToFP(Rep, DstTy, "cvt"); } if (CI->arg_size() >= 3) Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("avx512.mask.vcvtph2ps.") || Name.starts_with("vcvtph2ps."))) { auto *DstTy = cast(CI->getType()); Rep = CI->getArgOperand(0); auto *SrcTy = cast(Rep->getType()); unsigned NumDstElts = DstTy->getNumElements(); if (NumDstElts != SrcTy->getNumElements()) { assert(NumDstElts == 4 && "Unexpected vector size"); Rep = Builder.CreateShuffleVector(Rep, Rep, ArrayRef{0, 1, 2, 3}); } Rep = Builder.CreateBitCast( Rep, FixedVectorType::get(Type::getHalfTy(C), NumDstElts)); Rep = Builder.CreateFPExt(Rep, DstTy, "cvtph2ps"); if (CI->arg_size() >= 3) Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && Name.starts_with("avx512.mask.load")) { // "avx512.mask.loadu." or "avx512.mask.load." bool Aligned = Name[16] != 'u'; // "avx512.mask.loadu". Rep = upgradeMaskedLoad(Builder, CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), Aligned); } else if (IsX86 && Name.starts_with("avx512.mask.expand.load.")) { auto *ResultTy = cast(CI->getType()); Type *PtrTy = ResultTy->getElementType(); // Cast the pointer to element type. Value *Ptr = Builder.CreateBitCast(CI->getOperand(0), llvm::PointerType::getUnqual(PtrTy)); Value *MaskVec = getX86MaskVec(Builder, CI->getArgOperand(2), ResultTy->getNumElements()); Function *ELd = Intrinsic::getDeclaration(F->getParent(), Intrinsic::masked_expandload, ResultTy); Rep = Builder.CreateCall(ELd, { Ptr, MaskVec, CI->getOperand(1) }); } else if (IsX86 && Name.starts_with("avx512.mask.compress.store.")) { auto *ResultTy = cast(CI->getArgOperand(1)->getType()); Type *PtrTy = ResultTy->getElementType(); // Cast the pointer to element type. Value *Ptr = Builder.CreateBitCast(CI->getOperand(0), llvm::PointerType::getUnqual(PtrTy)); Value *MaskVec = getX86MaskVec(Builder, CI->getArgOperand(2), cast(ResultTy)->getNumElements()); Function *CSt = Intrinsic::getDeclaration(F->getParent(), Intrinsic::masked_compressstore, ResultTy); Rep = Builder.CreateCall(CSt, { CI->getArgOperand(1), Ptr, MaskVec }); } else if (IsX86 && (Name.starts_with("avx512.mask.compress.") || Name.starts_with("avx512.mask.expand."))) { auto *ResultTy = cast(CI->getType()); Value *MaskVec = getX86MaskVec(Builder, CI->getArgOperand(2), ResultTy->getNumElements()); bool IsCompress = Name[12] == 'c'; Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress : Intrinsic::x86_avx512_mask_expand; Function *Intr = Intrinsic::getDeclaration(F->getParent(), IID, ResultTy); Rep = Builder.CreateCall(Intr, { CI->getOperand(0), CI->getOperand(1), MaskVec }); } else if (IsX86 && Name.starts_with("xop.vpcom")) { bool IsSigned; if (Name.ends_with("ub") || Name.ends_with("uw") || Name.ends_with("ud") || Name.ends_with("uq")) IsSigned = false; else if (Name.ends_with("b") || Name.ends_with("w") || Name.ends_with("d") || Name.ends_with("q")) IsSigned = true; else llvm_unreachable("Unknown suffix"); unsigned Imm; if (CI->arg_size() == 3) { Imm = cast(CI->getArgOperand(2))->getZExtValue(); } else { Name = Name.substr(9); // strip off "xop.vpcom" if (Name.starts_with("lt")) Imm = 0; else if (Name.starts_with("le")) Imm = 1; else if (Name.starts_with("gt")) Imm = 2; else if (Name.starts_with("ge")) Imm = 3; else if (Name.starts_with("eq")) Imm = 4; else if (Name.starts_with("ne")) Imm = 5; else if (Name.starts_with("false")) Imm = 6; else if (Name.starts_with("true")) Imm = 7; else llvm_unreachable("Unknown condition"); } Rep = upgradeX86vpcom(Builder, *CI, Imm, IsSigned); } else if (IsX86 && Name.starts_with("xop.vpcmov")) { Value *Sel = CI->getArgOperand(2); Value *NotSel = Builder.CreateNot(Sel); Value *Sel0 = Builder.CreateAnd(CI->getArgOperand(0), Sel); Value *Sel1 = Builder.CreateAnd(CI->getArgOperand(1), NotSel); Rep = Builder.CreateOr(Sel0, Sel1); } else if (IsX86 && (Name.starts_with("xop.vprot") || Name.starts_with("avx512.prol") || Name.starts_with("avx512.mask.prol"))) { Rep = upgradeX86Rotate(Builder, *CI, false); } else if (IsX86 && (Name.starts_with("avx512.pror") || Name.starts_with("avx512.mask.pror"))) { Rep = upgradeX86Rotate(Builder, *CI, true); } else if (IsX86 && (Name.starts_with("avx512.vpshld.") || Name.starts_with("avx512.mask.vpshld") || Name.starts_with("avx512.maskz.vpshld"))) { bool ZeroMask = Name[11] == 'z'; Rep = upgradeX86ConcatShift(Builder, *CI, false, ZeroMask); } else if (IsX86 && (Name.starts_with("avx512.vpshrd.") || Name.starts_with("avx512.mask.vpshrd") || Name.starts_with("avx512.maskz.vpshrd"))) { bool ZeroMask = Name[11] == 'z'; Rep = upgradeX86ConcatShift(Builder, *CI, true, ZeroMask); } else if (IsX86 && Name == "sse42.crc32.64.8") { Function *CRC32 = Intrinsic::getDeclaration(F->getParent(), Intrinsic::x86_sse42_crc32_32_8); Value *Trunc0 = Builder.CreateTrunc(CI->getArgOperand(0), Type::getInt32Ty(C)); Rep = Builder.CreateCall(CRC32, {Trunc0, CI->getArgOperand(1)}); Rep = Builder.CreateZExt(Rep, CI->getType(), ""); } else if (IsX86 && (Name.starts_with("avx.vbroadcast.s") || Name.starts_with("avx512.vbroadcast.s"))) { // Replace broadcasts with a series of insertelements. auto *VecTy = cast(CI->getType()); Type *EltTy = VecTy->getElementType(); unsigned EltNum = VecTy->getNumElements(); Value *Load = Builder.CreateLoad(EltTy, CI->getArgOperand(0)); Type *I32Ty = Type::getInt32Ty(C); Rep = PoisonValue::get(VecTy); for (unsigned I = 0; I < EltNum; ++I) Rep = Builder.CreateInsertElement(Rep, Load, ConstantInt::get(I32Ty, I)); } else if (IsX86 && (Name.starts_with("sse41.pmovsx") || Name.starts_with("sse41.pmovzx") || Name.starts_with("avx2.pmovsx") || Name.starts_with("avx2.pmovzx") || Name.starts_with("avx512.mask.pmovsx") || Name.starts_with("avx512.mask.pmovzx"))) { auto *DstTy = cast(CI->getType()); unsigned NumDstElts = DstTy->getNumElements(); // Extract a subvector of the first NumDstElts lanes and sign/zero extend. SmallVector ShuffleMask(NumDstElts); for (unsigned i = 0; i != NumDstElts; ++i) ShuffleMask[i] = i; Value *SV = Builder.CreateShuffleVector(CI->getArgOperand(0), ShuffleMask); bool DoSext = Name.contains("pmovsx"); Rep = DoSext ? Builder.CreateSExt(SV, DstTy) : Builder.CreateZExt(SV, DstTy); // If there are 3 arguments, it's a masked intrinsic so we need a select. if (CI->arg_size() == 3) Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (Name == "avx512.mask.pmov.qd.256" || Name == "avx512.mask.pmov.qd.512" || Name == "avx512.mask.pmov.wb.256" || Name == "avx512.mask.pmov.wb.512") { Type *Ty = CI->getArgOperand(1)->getType(); Rep = Builder.CreateTrunc(CI->getArgOperand(0), Ty); Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("avx.vbroadcastf128") || Name == "avx2.vbroadcasti128")) { // Replace vbroadcastf128/vbroadcasti128 with a vector load+shuffle. Type *EltTy = cast(CI->getType())->getElementType(); unsigned NumSrcElts = 128 / EltTy->getPrimitiveSizeInBits(); auto *VT = FixedVectorType::get(EltTy, NumSrcElts); Value *Op = Builder.CreatePointerCast(CI->getArgOperand(0), PointerType::getUnqual(VT)); Value *Load = Builder.CreateAlignedLoad(VT, Op, Align(1)); if (NumSrcElts == 2) Rep = Builder.CreateShuffleVector(Load, ArrayRef{0, 1, 0, 1}); else Rep = Builder.CreateShuffleVector( Load, ArrayRef{0, 1, 2, 3, 0, 1, 2, 3}); } else if (IsX86 && (Name.starts_with("avx512.mask.shuf.i") || Name.starts_with("avx512.mask.shuf.f"))) { unsigned Imm = cast(CI->getArgOperand(2))->getZExtValue(); Type *VT = CI->getType(); unsigned NumLanes = VT->getPrimitiveSizeInBits() / 128; unsigned NumElementsInLane = 128 / VT->getScalarSizeInBits(); unsigned ControlBitsMask = NumLanes - 1; unsigned NumControlBits = NumLanes / 2; SmallVector ShuffleMask(0); for (unsigned l = 0; l != NumLanes; ++l) { unsigned LaneMask = (Imm >> (l * NumControlBits)) & ControlBitsMask; // We actually need the other source. if (l >= NumLanes / 2) LaneMask += NumLanes; for (unsigned i = 0; i != NumElementsInLane; ++i) ShuffleMask.push_back(LaneMask * NumElementsInLane + i); } Rep = Builder.CreateShuffleVector(CI->getArgOperand(0), CI->getArgOperand(1), ShuffleMask); Rep = emitX86Select(Builder, CI->getArgOperand(4), Rep, CI->getArgOperand(3)); }else if (IsX86 && (Name.starts_with("avx512.mask.broadcastf") || Name.starts_with("avx512.mask.broadcasti"))) { unsigned NumSrcElts = cast(CI->getArgOperand(0)->getType()) ->getNumElements(); unsigned NumDstElts = cast(CI->getType())->getNumElements(); SmallVector ShuffleMask(NumDstElts); for (unsigned i = 0; i != NumDstElts; ++i) ShuffleMask[i] = i % NumSrcElts; Rep = Builder.CreateShuffleVector(CI->getArgOperand(0), CI->getArgOperand(0), ShuffleMask); Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("avx2.pbroadcast") || Name.starts_with("avx2.vbroadcast") || Name.starts_with("avx512.pbroadcast") || Name.starts_with("avx512.mask.broadcast.s"))) { // Replace vp?broadcasts with a vector shuffle. Value *Op = CI->getArgOperand(0); ElementCount EC = cast(CI->getType())->getElementCount(); Type *MaskTy = VectorType::get(Type::getInt32Ty(C), EC); SmallVector M; ShuffleVectorInst::getShuffleMask(Constant::getNullValue(MaskTy), M); Rep = Builder.CreateShuffleVector(Op, M); if (CI->arg_size() == 3) Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("sse2.padds.") || Name.starts_with("avx2.padds.") || Name.starts_with("avx512.padds.") || Name.starts_with("avx512.mask.padds."))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::sadd_sat); } else if (IsX86 && (Name.starts_with("sse2.psubs.") || Name.starts_with("avx2.psubs.") || Name.starts_with("avx512.psubs.") || Name.starts_with("avx512.mask.psubs."))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::ssub_sat); } else if (IsX86 && (Name.starts_with("sse2.paddus.") || Name.starts_with("avx2.paddus.") || Name.starts_with("avx512.mask.paddus."))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::uadd_sat); } else if (IsX86 && (Name.starts_with("sse2.psubus.") || Name.starts_with("avx2.psubus.") || Name.starts_with("avx512.mask.psubus."))) { Rep = upgradeX86BinaryIntrinsics(Builder, *CI, Intrinsic::usub_sat); } else if (IsX86 && Name.starts_with("avx512.mask.palignr.")) { Rep = upgradeX86ALIGNIntrinsics( Builder, CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(3), CI->getArgOperand(4), false); } else if (IsX86 && Name.starts_with("avx512.mask.valign.")) { Rep = upgradeX86ALIGNIntrinsics( Builder, CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(3), CI->getArgOperand(4), true); } else if (IsX86 && (Name == "sse2.psll.dq" || Name == "avx2.psll.dq")) { // 128/256-bit shift left specified in bits. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = upgradeX86PSLLDQIntrinsics(Builder, CI->getArgOperand(0), Shift / 8); // Shift is in bits. } else if (IsX86 && (Name == "sse2.psrl.dq" || Name == "avx2.psrl.dq")) { // 128/256-bit shift right specified in bits. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = upgradeX86PSRLDQIntrinsics(Builder, CI->getArgOperand(0), Shift / 8); // Shift is in bits. } else if (IsX86 && (Name == "sse2.psll.dq.bs" || Name == "avx2.psll.dq.bs" || Name == "avx512.psll.dq.512")) { // 128/256/512-bit shift left specified in bytes. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = upgradeX86PSLLDQIntrinsics(Builder, CI->getArgOperand(0), Shift); } else if (IsX86 && (Name == "sse2.psrl.dq.bs" || Name == "avx2.psrl.dq.bs" || Name == "avx512.psrl.dq.512")) { // 128/256/512-bit shift right specified in bytes. unsigned Shift = cast(CI->getArgOperand(1))->getZExtValue(); Rep = upgradeX86PSRLDQIntrinsics(Builder, CI->getArgOperand(0), Shift); } else if (IsX86 && (Name == "sse41.pblendw" || Name.starts_with("sse41.blendp") || Name.starts_with("avx.blend.p") || Name == "avx2.pblendw" || Name.starts_with("avx2.pblendd."))) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast (CI->getArgOperand(2))->getZExtValue(); auto *VecTy = cast(CI->getType()); unsigned NumElts = VecTy->getNumElements(); SmallVector Idxs(NumElts); for (unsigned i = 0; i != NumElts; ++i) Idxs[i] = ((Imm >> (i%8)) & 1) ? i + NumElts : i; Rep = Builder.CreateShuffleVector(Op0, Op1, Idxs); } else if (IsX86 && (Name.starts_with("avx.vinsertf128.") || Name == "avx2.vinserti128" || Name.starts_with("avx512.mask.insert"))) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast(CI->getArgOperand(2))->getZExtValue(); unsigned DstNumElts = cast(CI->getType())->getNumElements(); unsigned SrcNumElts = cast(Op1->getType())->getNumElements(); unsigned Scale = DstNumElts / SrcNumElts; // Mask off the high bits of the immediate value; hardware ignores those. Imm = Imm % Scale; // Extend the second operand into a vector the size of the destination. SmallVector Idxs(DstNumElts); for (unsigned i = 0; i != SrcNumElts; ++i) Idxs[i] = i; for (unsigned i = SrcNumElts; i != DstNumElts; ++i) Idxs[i] = SrcNumElts; Rep = Builder.CreateShuffleVector(Op1, Idxs); // Insert the second operand into the first operand. // Note that there is no guarantee that instruction lowering will actually // produce a vinsertf128 instruction for the created shuffles. In // particular, the 0 immediate case involves no lane changes, so it can // be handled as a blend. // Example of shuffle mask for 32-bit elements: // Imm = 1 // Imm = 0 // First fill with identify mask. for (unsigned i = 0; i != DstNumElts; ++i) Idxs[i] = i; // Then replace the elements where we need to insert. for (unsigned i = 0; i != SrcNumElts; ++i) Idxs[i + Imm * SrcNumElts] = i + DstNumElts; Rep = Builder.CreateShuffleVector(Op0, Rep, Idxs); // If the intrinsic has a mask operand, handle that. if (CI->arg_size() == 5) Rep = emitX86Select(Builder, CI->getArgOperand(4), Rep, CI->getArgOperand(3)); } else if (IsX86 && (Name.starts_with("avx.vextractf128.") || Name == "avx2.vextracti128" || Name.starts_with("avx512.mask.vextract"))) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); unsigned DstNumElts = cast(CI->getType())->getNumElements(); unsigned SrcNumElts = cast(Op0->getType())->getNumElements(); unsigned Scale = SrcNumElts / DstNumElts; // Mask off the high bits of the immediate value; hardware ignores those. Imm = Imm % Scale; // Get indexes for the subvector of the input vector. SmallVector Idxs(DstNumElts); for (unsigned i = 0; i != DstNumElts; ++i) { Idxs[i] = i + (Imm * DstNumElts); } Rep = Builder.CreateShuffleVector(Op0, Op0, Idxs); // If the intrinsic has a mask operand, handle that. if (CI->arg_size() == 4) Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (!IsX86 && Name == "stackprotectorcheck") { Rep = nullptr; } else if (IsX86 && (Name.starts_with("avx512.mask.perm.df.") || Name.starts_with("avx512.mask.perm.di."))) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); auto *VecTy = cast(CI->getType()); unsigned NumElts = VecTy->getNumElements(); SmallVector Idxs(NumElts); for (unsigned i = 0; i != NumElts; ++i) Idxs[i] = (i & ~0x3) + ((Imm >> (2 * (i & 0x3))) & 3); Rep = Builder.CreateShuffleVector(Op0, Op0, Idxs); if (CI->arg_size() == 4) Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx.vperm2f128.") || Name == "avx2.vperm2i128")) { // The immediate permute control byte looks like this: // [1:0] - select 128 bits from sources for low half of destination // [2] - ignore // [3] - zero low half of destination // [5:4] - select 128 bits from sources for high half of destination // [6] - ignore // [7] - zero high half of destination uint8_t Imm = cast(CI->getArgOperand(2))->getZExtValue(); unsigned NumElts = cast(CI->getType())->getNumElements(); unsigned HalfSize = NumElts / 2; SmallVector ShuffleMask(NumElts); // Determine which operand(s) are actually in use for this instruction. Value *V0 = (Imm & 0x02) ? CI->getArgOperand(1) : CI->getArgOperand(0); Value *V1 = (Imm & 0x20) ? CI->getArgOperand(1) : CI->getArgOperand(0); // If needed, replace operands based on zero mask. V0 = (Imm & 0x08) ? ConstantAggregateZero::get(CI->getType()) : V0; V1 = (Imm & 0x80) ? ConstantAggregateZero::get(CI->getType()) : V1; // Permute low half of result. unsigned StartIndex = (Imm & 0x01) ? HalfSize : 0; for (unsigned i = 0; i < HalfSize; ++i) ShuffleMask[i] = StartIndex + i; // Permute high half of result. StartIndex = (Imm & 0x10) ? HalfSize : 0; for (unsigned i = 0; i < HalfSize; ++i) ShuffleMask[i + HalfSize] = NumElts + StartIndex + i; Rep = Builder.CreateShuffleVector(V0, V1, ShuffleMask); } else if (IsX86 && (Name.starts_with("avx.vpermil.") || Name == "sse2.pshuf.d" || Name.starts_with("avx512.mask.vpermil.p") || Name.starts_with("avx512.mask.pshuf.d."))) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); auto *VecTy = cast(CI->getType()); unsigned NumElts = VecTy->getNumElements(); // Calculate the size of each index in the immediate. unsigned IdxSize = 64 / VecTy->getScalarSizeInBits(); unsigned IdxMask = ((1 << IdxSize) - 1); SmallVector Idxs(NumElts); // Lookup the bits for this element, wrapping around the immediate every // 8-bits. Elements are grouped into sets of 2 or 4 elements so we need // to offset by the first index of each group. for (unsigned i = 0; i != NumElts; ++i) Idxs[i] = ((Imm >> ((i * IdxSize) % 8)) & IdxMask) | (i & ~IdxMask); Rep = Builder.CreateShuffleVector(Op0, Op0, Idxs); if (CI->arg_size() == 4) Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name == "sse2.pshufl.w" || Name.starts_with("avx512.mask.pshufl.w."))) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); unsigned NumElts = cast(CI->getType())->getNumElements(); SmallVector Idxs(NumElts); for (unsigned l = 0; l != NumElts; l += 8) { for (unsigned i = 0; i != 4; ++i) Idxs[i + l] = ((Imm >> (2 * i)) & 0x3) + l; for (unsigned i = 4; i != 8; ++i) Idxs[i + l] = i + l; } Rep = Builder.CreateShuffleVector(Op0, Op0, Idxs); if (CI->arg_size() == 4) Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name == "sse2.pshufh.w" || Name.starts_with("avx512.mask.pshufh.w."))) { Value *Op0 = CI->getArgOperand(0); unsigned Imm = cast(CI->getArgOperand(1))->getZExtValue(); unsigned NumElts = cast(CI->getType())->getNumElements(); SmallVector Idxs(NumElts); for (unsigned l = 0; l != NumElts; l += 8) { for (unsigned i = 0; i != 4; ++i) Idxs[i + l] = i + l; for (unsigned i = 0; i != 4; ++i) Idxs[i + l + 4] = ((Imm >> (2 * i)) & 0x3) + 4 + l; } Rep = Builder.CreateShuffleVector(Op0, Op0, Idxs); if (CI->arg_size() == 4) Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.shuf.p")) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); unsigned Imm = cast(CI->getArgOperand(2))->getZExtValue(); unsigned NumElts = cast(CI->getType())->getNumElements(); unsigned NumLaneElts = 128/CI->getType()->getScalarSizeInBits(); unsigned HalfLaneElts = NumLaneElts / 2; SmallVector Idxs(NumElts); for (unsigned i = 0; i != NumElts; ++i) { // Base index is the starting element of the lane. Idxs[i] = i - (i % NumLaneElts); // If we are half way through the lane switch to the other source. if ((i % NumLaneElts) >= HalfLaneElts) Idxs[i] += NumElts; // Now select the specific element. By adding HalfLaneElts bits from // the immediate. Wrapping around the immediate every 8-bits. Idxs[i] += (Imm >> ((i * HalfLaneElts) % 8)) & ((1 << HalfLaneElts) - 1); } Rep = Builder.CreateShuffleVector(Op0, Op1, Idxs); Rep = emitX86Select(Builder, CI->getArgOperand(4), Rep, CI->getArgOperand(3)); } else if (IsX86 && (Name.starts_with("avx512.mask.movddup") || Name.starts_with("avx512.mask.movshdup") || Name.starts_with("avx512.mask.movsldup"))) { Value *Op0 = CI->getArgOperand(0); unsigned NumElts = cast(CI->getType())->getNumElements(); unsigned NumLaneElts = 128/CI->getType()->getScalarSizeInBits(); unsigned Offset = 0; if (Name.starts_with("avx512.mask.movshdup.")) Offset = 1; SmallVector Idxs(NumElts); for (unsigned l = 0; l != NumElts; l += NumLaneElts) for (unsigned i = 0; i != NumLaneElts; i += 2) { Idxs[i + l + 0] = i + l + Offset; Idxs[i + l + 1] = i + l + Offset; } Rep = Builder.CreateShuffleVector(Op0, Op0, Idxs); Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && (Name.starts_with("avx512.mask.punpckl") || Name.starts_with("avx512.mask.unpckl."))) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); int NumElts = cast(CI->getType())->getNumElements(); int NumLaneElts = 128/CI->getType()->getScalarSizeInBits(); SmallVector Idxs(NumElts); for (int l = 0; l != NumElts; l += NumLaneElts) for (int i = 0; i != NumLaneElts; ++i) Idxs[i + l] = l + (i / 2) + NumElts * (i % 2); Rep = Builder.CreateShuffleVector(Op0, Op1, Idxs); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx512.mask.punpckh") || Name.starts_with("avx512.mask.unpckh."))) { Value *Op0 = CI->getArgOperand(0); Value *Op1 = CI->getArgOperand(1); int NumElts = cast(CI->getType())->getNumElements(); int NumLaneElts = 128/CI->getType()->getScalarSizeInBits(); SmallVector Idxs(NumElts); for (int l = 0; l != NumElts; l += NumLaneElts) for (int i = 0; i != NumLaneElts; ++i) Idxs[i + l] = (NumLaneElts / 2) + l + (i / 2) + NumElts * (i % 2); Rep = Builder.CreateShuffleVector(Op0, Op1, Idxs); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx512.mask.and.") || Name.starts_with("avx512.mask.pand."))) { VectorType *FTy = cast(CI->getType()); VectorType *ITy = VectorType::getInteger(FTy); Rep = Builder.CreateAnd(Builder.CreateBitCast(CI->getArgOperand(0), ITy), Builder.CreateBitCast(CI->getArgOperand(1), ITy)); Rep = Builder.CreateBitCast(Rep, FTy); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx512.mask.andn.") || Name.starts_with("avx512.mask.pandn."))) { VectorType *FTy = cast(CI->getType()); VectorType *ITy = VectorType::getInteger(FTy); Rep = Builder.CreateNot(Builder.CreateBitCast(CI->getArgOperand(0), ITy)); Rep = Builder.CreateAnd(Rep, Builder.CreateBitCast(CI->getArgOperand(1), ITy)); Rep = Builder.CreateBitCast(Rep, FTy); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx512.mask.or.") || Name.starts_with("avx512.mask.por."))) { VectorType *FTy = cast(CI->getType()); VectorType *ITy = VectorType::getInteger(FTy); Rep = Builder.CreateOr(Builder.CreateBitCast(CI->getArgOperand(0), ITy), Builder.CreateBitCast(CI->getArgOperand(1), ITy)); Rep = Builder.CreateBitCast(Rep, FTy); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx512.mask.xor.") || Name.starts_with("avx512.mask.pxor."))) { VectorType *FTy = cast(CI->getType()); VectorType *ITy = VectorType::getInteger(FTy); Rep = Builder.CreateXor(Builder.CreateBitCast(CI->getArgOperand(0), ITy), Builder.CreateBitCast(CI->getArgOperand(1), ITy)); Rep = Builder.CreateBitCast(Rep, FTy); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.padd.")) { Rep = Builder.CreateAdd(CI->getArgOperand(0), CI->getArgOperand(1)); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.psub.")) { Rep = Builder.CreateSub(CI->getArgOperand(0), CI->getArgOperand(1)); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.pmull.")) { Rep = Builder.CreateMul(CI->getArgOperand(0), CI->getArgOperand(1)); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.add.p")) { if (Name.ends_with(".512")) { Intrinsic::ID IID; if (Name[17] == 's') IID = Intrinsic::x86_avx512_add_ps_512; else IID = Intrinsic::x86_avx512_add_pd_512; Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(4) }); } else { Rep = Builder.CreateFAdd(CI->getArgOperand(0), CI->getArgOperand(1)); } Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.div.p")) { if (Name.ends_with(".512")) { Intrinsic::ID IID; if (Name[17] == 's') IID = Intrinsic::x86_avx512_div_ps_512; else IID = Intrinsic::x86_avx512_div_pd_512; Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(4) }); } else { Rep = Builder.CreateFDiv(CI->getArgOperand(0), CI->getArgOperand(1)); } Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.mul.p")) { if (Name.ends_with(".512")) { Intrinsic::ID IID; if (Name[17] == 's') IID = Intrinsic::x86_avx512_mul_ps_512; else IID = Intrinsic::x86_avx512_mul_pd_512; Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(4) }); } else { Rep = Builder.CreateFMul(CI->getArgOperand(0), CI->getArgOperand(1)); } Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.sub.p")) { if (Name.ends_with(".512")) { Intrinsic::ID IID; if (Name[17] == 's') IID = Intrinsic::x86_avx512_sub_ps_512; else IID = Intrinsic::x86_avx512_sub_pd_512; Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(4) }); } else { Rep = Builder.CreateFSub(CI->getArgOperand(0), CI->getArgOperand(1)); } Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && (Name.starts_with("avx512.mask.max.p") || Name.starts_with("avx512.mask.min.p")) && Name.drop_front(18) == ".512") { bool IsDouble = Name[17] == 'd'; bool IsMin = Name[13] == 'i'; static const Intrinsic::ID MinMaxTbl[2][2] = { { Intrinsic::x86_avx512_max_ps_512, Intrinsic::x86_avx512_max_pd_512 }, { Intrinsic::x86_avx512_min_ps_512, Intrinsic::x86_avx512_min_pd_512 } }; Intrinsic::ID IID = MinMaxTbl[IsMin][IsDouble]; Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(4) }); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, CI->getArgOperand(2)); } else if (IsX86 && Name.starts_with("avx512.mask.lzcnt.")) { Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, CI->getType()), { CI->getArgOperand(0), Builder.getInt1(false) }); Rep = emitX86Select(Builder, CI->getArgOperand(2), Rep, CI->getArgOperand(1)); } else if (IsX86 && Name.starts_with("avx512.mask.psll")) { bool IsImmediate = Name[16] == 'i' || (Name.size() > 18 && Name[18] == 'i'); bool IsVariable = Name[16] == 'v'; char Size = Name[16] == '.' ? Name[17] : Name[17] == '.' ? Name[18] : Name[18] == '.' ? Name[19] : Name[20]; Intrinsic::ID IID; if (IsVariable && Name[17] != '.') { if (Size == 'd' && Name[17] == '2') // avx512.mask.psllv2.di IID = Intrinsic::x86_avx2_psllv_q; else if (Size == 'd' && Name[17] == '4') // avx512.mask.psllv4.di IID = Intrinsic::x86_avx2_psllv_q_256; else if (Size == 's' && Name[17] == '4') // avx512.mask.psllv4.si IID = Intrinsic::x86_avx2_psllv_d; else if (Size == 's' && Name[17] == '8') // avx512.mask.psllv8.si IID = Intrinsic::x86_avx2_psllv_d_256; else if (Size == 'h' && Name[17] == '8') // avx512.mask.psllv8.hi IID = Intrinsic::x86_avx512_psllv_w_128; else if (Size == 'h' && Name[17] == '1') // avx512.mask.psllv16.hi IID = Intrinsic::x86_avx512_psllv_w_256; else if (Name[17] == '3' && Name[18] == '2') // avx512.mask.psllv32hi IID = Intrinsic::x86_avx512_psllv_w_512; else llvm_unreachable("Unexpected size"); } else if (Name.ends_with(".128")) { if (Size == 'd') // avx512.mask.psll.d.128, avx512.mask.psll.di.128 IID = IsImmediate ? Intrinsic::x86_sse2_pslli_d : Intrinsic::x86_sse2_psll_d; else if (Size == 'q') // avx512.mask.psll.q.128, avx512.mask.psll.qi.128 IID = IsImmediate ? Intrinsic::x86_sse2_pslli_q : Intrinsic::x86_sse2_psll_q; else if (Size == 'w') // avx512.mask.psll.w.128, avx512.mask.psll.wi.128 IID = IsImmediate ? Intrinsic::x86_sse2_pslli_w : Intrinsic::x86_sse2_psll_w; else llvm_unreachable("Unexpected size"); } else if (Name.ends_with(".256")) { if (Size == 'd') // avx512.mask.psll.d.256, avx512.mask.psll.di.256 IID = IsImmediate ? Intrinsic::x86_avx2_pslli_d : Intrinsic::x86_avx2_psll_d; else if (Size == 'q') // avx512.mask.psll.q.256, avx512.mask.psll.qi.256 IID = IsImmediate ? Intrinsic::x86_avx2_pslli_q : Intrinsic::x86_avx2_psll_q; else if (Size == 'w') // avx512.mask.psll.w.256, avx512.mask.psll.wi.256 IID = IsImmediate ? Intrinsic::x86_avx2_pslli_w : Intrinsic::x86_avx2_psll_w; else llvm_unreachable("Unexpected size"); } else { if (Size == 'd') // psll.di.512, pslli.d, psll.d, psllv.d.512 IID = IsImmediate ? Intrinsic::x86_avx512_pslli_d_512 : IsVariable ? Intrinsic::x86_avx512_psllv_d_512 : Intrinsic::x86_avx512_psll_d_512; else if (Size == 'q') // psll.qi.512, pslli.q, psll.q, psllv.q.512 IID = IsImmediate ? Intrinsic::x86_avx512_pslli_q_512 : IsVariable ? Intrinsic::x86_avx512_psllv_q_512 : Intrinsic::x86_avx512_psll_q_512; else if (Size == 'w') // psll.wi.512, pslli.w, psll.w IID = IsImmediate ? Intrinsic::x86_avx512_pslli_w_512 : Intrinsic::x86_avx512_psll_w_512; else llvm_unreachable("Unexpected size"); } Rep = upgradeX86MaskedShift(Builder, *CI, IID); } else if (IsX86 && Name.starts_with("avx512.mask.psrl")) { bool IsImmediate = Name[16] == 'i' || (Name.size() > 18 && Name[18] == 'i'); bool IsVariable = Name[16] == 'v'; char Size = Name[16] == '.' ? Name[17] : Name[17] == '.' ? Name[18] : Name[18] == '.' ? Name[19] : Name[20]; Intrinsic::ID IID; if (IsVariable && Name[17] != '.') { if (Size == 'd' && Name[17] == '2') // avx512.mask.psrlv2.di IID = Intrinsic::x86_avx2_psrlv_q; else if (Size == 'd' && Name[17] == '4') // avx512.mask.psrlv4.di IID = Intrinsic::x86_avx2_psrlv_q_256; else if (Size == 's' && Name[17] == '4') // avx512.mask.psrlv4.si IID = Intrinsic::x86_avx2_psrlv_d; else if (Size == 's' && Name[17] == '8') // avx512.mask.psrlv8.si IID = Intrinsic::x86_avx2_psrlv_d_256; else if (Size == 'h' && Name[17] == '8') // avx512.mask.psrlv8.hi IID = Intrinsic::x86_avx512_psrlv_w_128; else if (Size == 'h' && Name[17] == '1') // avx512.mask.psrlv16.hi IID = Intrinsic::x86_avx512_psrlv_w_256; else if (Name[17] == '3' && Name[18] == '2') // avx512.mask.psrlv32hi IID = Intrinsic::x86_avx512_psrlv_w_512; else llvm_unreachable("Unexpected size"); } else if (Name.ends_with(".128")) { if (Size == 'd') // avx512.mask.psrl.d.128, avx512.mask.psrl.di.128 IID = IsImmediate ? Intrinsic::x86_sse2_psrli_d : Intrinsic::x86_sse2_psrl_d; else if (Size == 'q') // avx512.mask.psrl.q.128, avx512.mask.psrl.qi.128 IID = IsImmediate ? Intrinsic::x86_sse2_psrli_q : Intrinsic::x86_sse2_psrl_q; else if (Size == 'w') // avx512.mask.psrl.w.128, avx512.mask.psrl.wi.128 IID = IsImmediate ? Intrinsic::x86_sse2_psrli_w : Intrinsic::x86_sse2_psrl_w; else llvm_unreachable("Unexpected size"); } else if (Name.ends_with(".256")) { if (Size == 'd') // avx512.mask.psrl.d.256, avx512.mask.psrl.di.256 IID = IsImmediate ? Intrinsic::x86_avx2_psrli_d : Intrinsic::x86_avx2_psrl_d; else if (Size == 'q') // avx512.mask.psrl.q.256, avx512.mask.psrl.qi.256 IID = IsImmediate ? Intrinsic::x86_avx2_psrli_q : Intrinsic::x86_avx2_psrl_q; else if (Size == 'w') // avx512.mask.psrl.w.256, avx512.mask.psrl.wi.256 IID = IsImmediate ? Intrinsic::x86_avx2_psrli_w : Intrinsic::x86_avx2_psrl_w; else llvm_unreachable("Unexpected size"); } else { if (Size == 'd') // psrl.di.512, psrli.d, psrl.d, psrl.d.512 IID = IsImmediate ? Intrinsic::x86_avx512_psrli_d_512 : IsVariable ? Intrinsic::x86_avx512_psrlv_d_512 : Intrinsic::x86_avx512_psrl_d_512; else if (Size == 'q') // psrl.qi.512, psrli.q, psrl.q, psrl.q.512 IID = IsImmediate ? Intrinsic::x86_avx512_psrli_q_512 : IsVariable ? Intrinsic::x86_avx512_psrlv_q_512 : Intrinsic::x86_avx512_psrl_q_512; else if (Size == 'w') // psrl.wi.512, psrli.w, psrl.w) IID = IsImmediate ? Intrinsic::x86_avx512_psrli_w_512 : Intrinsic::x86_avx512_psrl_w_512; else llvm_unreachable("Unexpected size"); } Rep = upgradeX86MaskedShift(Builder, *CI, IID); } else if (IsX86 && Name.starts_with("avx512.mask.psra")) { bool IsImmediate = Name[16] == 'i' || (Name.size() > 18 && Name[18] == 'i'); bool IsVariable = Name[16] == 'v'; char Size = Name[16] == '.' ? Name[17] : Name[17] == '.' ? Name[18] : Name[18] == '.' ? Name[19] : Name[20]; Intrinsic::ID IID; if (IsVariable && Name[17] != '.') { if (Size == 's' && Name[17] == '4') // avx512.mask.psrav4.si IID = Intrinsic::x86_avx2_psrav_d; else if (Size == 's' && Name[17] == '8') // avx512.mask.psrav8.si IID = Intrinsic::x86_avx2_psrav_d_256; else if (Size == 'h' && Name[17] == '8') // avx512.mask.psrav8.hi IID = Intrinsic::x86_avx512_psrav_w_128; else if (Size == 'h' && Name[17] == '1') // avx512.mask.psrav16.hi IID = Intrinsic::x86_avx512_psrav_w_256; else if (Name[17] == '3' && Name[18] == '2') // avx512.mask.psrav32hi IID = Intrinsic::x86_avx512_psrav_w_512; else llvm_unreachable("Unexpected size"); } else if (Name.ends_with(".128")) { if (Size == 'd') // avx512.mask.psra.d.128, avx512.mask.psra.di.128 IID = IsImmediate ? Intrinsic::x86_sse2_psrai_d : Intrinsic::x86_sse2_psra_d; else if (Size == 'q') // avx512.mask.psra.q.128, avx512.mask.psra.qi.128 IID = IsImmediate ? Intrinsic::x86_avx512_psrai_q_128 : IsVariable ? Intrinsic::x86_avx512_psrav_q_128 : Intrinsic::x86_avx512_psra_q_128; else if (Size == 'w') // avx512.mask.psra.w.128, avx512.mask.psra.wi.128 IID = IsImmediate ? Intrinsic::x86_sse2_psrai_w : Intrinsic::x86_sse2_psra_w; else llvm_unreachable("Unexpected size"); } else if (Name.ends_with(".256")) { if (Size == 'd') // avx512.mask.psra.d.256, avx512.mask.psra.di.256 IID = IsImmediate ? Intrinsic::x86_avx2_psrai_d : Intrinsic::x86_avx2_psra_d; else if (Size == 'q') // avx512.mask.psra.q.256, avx512.mask.psra.qi.256 IID = IsImmediate ? Intrinsic::x86_avx512_psrai_q_256 : IsVariable ? Intrinsic::x86_avx512_psrav_q_256 : Intrinsic::x86_avx512_psra_q_256; else if (Size == 'w') // avx512.mask.psra.w.256, avx512.mask.psra.wi.256 IID = IsImmediate ? Intrinsic::x86_avx2_psrai_w : Intrinsic::x86_avx2_psra_w; else llvm_unreachable("Unexpected size"); } else { if (Size == 'd') // psra.di.512, psrai.d, psra.d, psrav.d.512 IID = IsImmediate ? Intrinsic::x86_avx512_psrai_d_512 : IsVariable ? Intrinsic::x86_avx512_psrav_d_512 : Intrinsic::x86_avx512_psra_d_512; else if (Size == 'q') // psra.qi.512, psrai.q, psra.q IID = IsImmediate ? Intrinsic::x86_avx512_psrai_q_512 : IsVariable ? Intrinsic::x86_avx512_psrav_q_512 : Intrinsic::x86_avx512_psra_q_512; else if (Size == 'w') // psra.wi.512, psrai.w, psra.w IID = IsImmediate ? Intrinsic::x86_avx512_psrai_w_512 : Intrinsic::x86_avx512_psra_w_512; else llvm_unreachable("Unexpected size"); } Rep = upgradeX86MaskedShift(Builder, *CI, IID); } else if (IsX86 && Name.starts_with("avx512.mask.move.s")) { Rep = upgradeMaskedMove(Builder, *CI); } else if (IsX86 && Name.starts_with("avx512.cvtmask2")) { Rep = upgradeMaskToInt(Builder, *CI); } else if (IsX86 && Name.ends_with(".movntdqa")) { MDNode *Node = MDNode::get( C, ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(C), 1))); Value *Ptr = CI->getArgOperand(0); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast( Ptr, PointerType::getUnqual(CI->getType()), "cast"); LoadInst *LI = Builder.CreateAlignedLoad( CI->getType(), BC, Align(CI->getType()->getPrimitiveSizeInBits().getFixedValue() / 8)); LI->setMetadata(LLVMContext::MD_nontemporal, Node); Rep = LI; } else if (IsX86 && (Name.starts_with("fma.vfmadd.") || Name.starts_with("fma.vfmsub.") || Name.starts_with("fma.vfnmadd.") || Name.starts_with("fma.vfnmsub."))) { bool NegMul = Name[6] == 'n'; bool NegAcc = NegMul ? Name[8] == 's' : Name[7] == 's'; bool IsScalar = NegMul ? Name[12] == 's' : Name[11] == 's'; Value *Ops[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2) }; if (IsScalar) { Ops[0] = Builder.CreateExtractElement(Ops[0], (uint64_t)0); Ops[1] = Builder.CreateExtractElement(Ops[1], (uint64_t)0); Ops[2] = Builder.CreateExtractElement(Ops[2], (uint64_t)0); } if (NegMul && !IsScalar) Ops[0] = Builder.CreateFNeg(Ops[0]); if (NegMul && IsScalar) Ops[1] = Builder.CreateFNeg(Ops[1]); if (NegAcc) Ops[2] = Builder.CreateFNeg(Ops[2]); Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), Intrinsic::fma, Ops[0]->getType()), Ops); if (IsScalar) Rep = Builder.CreateInsertElement(CI->getArgOperand(0), Rep, (uint64_t)0); } else if (IsX86 && Name.starts_with("fma4.vfmadd.s")) { Value *Ops[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2) }; Ops[0] = Builder.CreateExtractElement(Ops[0], (uint64_t)0); Ops[1] = Builder.CreateExtractElement(Ops[1], (uint64_t)0); Ops[2] = Builder.CreateExtractElement(Ops[2], (uint64_t)0); Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), Intrinsic::fma, Ops[0]->getType()), Ops); Rep = Builder.CreateInsertElement(Constant::getNullValue(CI->getType()), Rep, (uint64_t)0); } else if (IsX86 && (Name.starts_with("avx512.mask.vfmadd.s") || Name.starts_with("avx512.maskz.vfmadd.s") || Name.starts_with("avx512.mask3.vfmadd.s") || Name.starts_with("avx512.mask3.vfmsub.s") || Name.starts_with("avx512.mask3.vfnmsub.s"))) { bool IsMask3 = Name[11] == '3'; bool IsMaskZ = Name[11] == 'z'; // Drop the "avx512.mask." to make it easier. Name = Name.drop_front(IsMask3 || IsMaskZ ? 13 : 12); bool NegMul = Name[2] == 'n'; bool NegAcc = NegMul ? Name[4] == 's' : Name[3] == 's'; Value *A = CI->getArgOperand(0); Value *B = CI->getArgOperand(1); Value *C = CI->getArgOperand(2); if (NegMul && (IsMask3 || IsMaskZ)) A = Builder.CreateFNeg(A); if (NegMul && !(IsMask3 || IsMaskZ)) B = Builder.CreateFNeg(B); if (NegAcc) C = Builder.CreateFNeg(C); A = Builder.CreateExtractElement(A, (uint64_t)0); B = Builder.CreateExtractElement(B, (uint64_t)0); C = Builder.CreateExtractElement(C, (uint64_t)0); if (!isa(CI->getArgOperand(4)) || cast(CI->getArgOperand(4))->getZExtValue() != 4) { Value *Ops[] = { A, B, C, CI->getArgOperand(4) }; Intrinsic::ID IID; if (Name.back() == 'd') IID = Intrinsic::x86_avx512_vfmadd_f64; else IID = Intrinsic::x86_avx512_vfmadd_f32; Function *FMA = Intrinsic::getDeclaration(CI->getModule(), IID); Rep = Builder.CreateCall(FMA, Ops); } else { Function *FMA = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::fma, A->getType()); Rep = Builder.CreateCall(FMA, { A, B, C }); } Value *PassThru = IsMaskZ ? Constant::getNullValue(Rep->getType()) : IsMask3 ? C : A; // For Mask3 with NegAcc, we need to create a new extractelement that // avoids the negation above. if (NegAcc && IsMask3) PassThru = Builder.CreateExtractElement(CI->getArgOperand(2), (uint64_t)0); Rep = emitX86ScalarSelect(Builder, CI->getArgOperand(3), Rep, PassThru); Rep = Builder.CreateInsertElement(CI->getArgOperand(IsMask3 ? 2 : 0), Rep, (uint64_t)0); } else if (IsX86 && (Name.starts_with("avx512.mask.vfmadd.p") || Name.starts_with("avx512.mask.vfnmadd.p") || Name.starts_with("avx512.mask.vfnmsub.p") || Name.starts_with("avx512.mask3.vfmadd.p") || Name.starts_with("avx512.mask3.vfmsub.p") || Name.starts_with("avx512.mask3.vfnmsub.p") || Name.starts_with("avx512.maskz.vfmadd.p"))) { bool IsMask3 = Name[11] == '3'; bool IsMaskZ = Name[11] == 'z'; // Drop the "avx512.mask." to make it easier. Name = Name.drop_front(IsMask3 || IsMaskZ ? 13 : 12); bool NegMul = Name[2] == 'n'; bool NegAcc = NegMul ? Name[4] == 's' : Name[3] == 's'; Value *A = CI->getArgOperand(0); Value *B = CI->getArgOperand(1); Value *C = CI->getArgOperand(2); if (NegMul && (IsMask3 || IsMaskZ)) A = Builder.CreateFNeg(A); if (NegMul && !(IsMask3 || IsMaskZ)) B = Builder.CreateFNeg(B); if (NegAcc) C = Builder.CreateFNeg(C); if (CI->arg_size() == 5 && (!isa(CI->getArgOperand(4)) || cast(CI->getArgOperand(4))->getZExtValue() != 4)) { Intrinsic::ID IID; // Check the character before ".512" in string. if (Name[Name.size()-5] == 's') IID = Intrinsic::x86_avx512_vfmadd_ps_512; else IID = Intrinsic::x86_avx512_vfmadd_pd_512; Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), { A, B, C, CI->getArgOperand(4) }); } else { Function *FMA = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::fma, A->getType()); Rep = Builder.CreateCall(FMA, { A, B, C }); } Value *PassThru = IsMaskZ ? llvm::Constant::getNullValue(CI->getType()) : IsMask3 ? CI->getArgOperand(2) : CI->getArgOperand(0); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, PassThru); } else if (IsX86 && Name.starts_with("fma.vfmsubadd.p")) { unsigned VecWidth = CI->getType()->getPrimitiveSizeInBits(); unsigned EltWidth = CI->getType()->getScalarSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_fma_vfmaddsub_ps; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_fma_vfmaddsub_ps_256; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_fma_vfmaddsub_pd; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_fma_vfmaddsub_pd_256; else llvm_unreachable("Unexpected intrinsic"); Value *Ops[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2) }; Ops[2] = Builder.CreateFNeg(Ops[2]); Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), Ops); } else if (IsX86 && (Name.starts_with("avx512.mask.vfmaddsub.p") || Name.starts_with("avx512.mask3.vfmaddsub.p") || Name.starts_with("avx512.maskz.vfmaddsub.p") || Name.starts_with("avx512.mask3.vfmsubadd.p"))) { bool IsMask3 = Name[11] == '3'; bool IsMaskZ = Name[11] == 'z'; // Drop the "avx512.mask." to make it easier. Name = Name.drop_front(IsMask3 || IsMaskZ ? 13 : 12); bool IsSubAdd = Name[3] == 's'; if (CI->arg_size() == 5) { Intrinsic::ID IID; // Check the character before ".512" in string. if (Name[Name.size()-5] == 's') IID = Intrinsic::x86_avx512_vfmaddsub_ps_512; else IID = Intrinsic::x86_avx512_vfmaddsub_pd_512; Value *Ops[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(4) }; if (IsSubAdd) Ops[2] = Builder.CreateFNeg(Ops[2]); Rep = Builder.CreateCall(Intrinsic::getDeclaration(F->getParent(), IID), Ops); } else { int NumElts = cast(CI->getType())->getNumElements(); Value *Ops[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2) }; Function *FMA = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::fma, Ops[0]->getType()); Value *Odd = Builder.CreateCall(FMA, Ops); Ops[2] = Builder.CreateFNeg(Ops[2]); Value *Even = Builder.CreateCall(FMA, Ops); if (IsSubAdd) std::swap(Even, Odd); SmallVector Idxs(NumElts); for (int i = 0; i != NumElts; ++i) Idxs[i] = i + (i % 2) * NumElts; Rep = Builder.CreateShuffleVector(Even, Odd, Idxs); } Value *PassThru = IsMaskZ ? llvm::Constant::getNullValue(CI->getType()) : IsMask3 ? CI->getArgOperand(2) : CI->getArgOperand(0); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, PassThru); } else if (IsX86 && (Name.starts_with("avx512.mask.pternlog.") || Name.starts_with("avx512.maskz.pternlog."))) { bool ZeroMask = Name[11] == 'z'; unsigned VecWidth = CI->getType()->getPrimitiveSizeInBits(); unsigned EltWidth = CI->getType()->getScalarSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_avx512_pternlog_d_128; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx512_pternlog_d_256; else if (VecWidth == 512 && EltWidth == 32) IID = Intrinsic::x86_avx512_pternlog_d_512; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_avx512_pternlog_q_128; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx512_pternlog_q_256; else if (VecWidth == 512 && EltWidth == 64) IID = Intrinsic::x86_avx512_pternlog_q_512; else llvm_unreachable("Unexpected intrinsic"); Value *Args[] = { CI->getArgOperand(0) , CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(3) }; Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), IID), Args); Value *PassThru = ZeroMask ? ConstantAggregateZero::get(CI->getType()) : CI->getArgOperand(0); Rep = emitX86Select(Builder, CI->getArgOperand(4), Rep, PassThru); } else if (IsX86 && (Name.starts_with("avx512.mask.vpmadd52") || Name.starts_with("avx512.maskz.vpmadd52"))) { bool ZeroMask = Name[11] == 'z'; bool High = Name[20] == 'h' || Name[21] == 'h'; unsigned VecWidth = CI->getType()->getPrimitiveSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && !High) IID = Intrinsic::x86_avx512_vpmadd52l_uq_128; else if (VecWidth == 256 && !High) IID = Intrinsic::x86_avx512_vpmadd52l_uq_256; else if (VecWidth == 512 && !High) IID = Intrinsic::x86_avx512_vpmadd52l_uq_512; else if (VecWidth == 128 && High) IID = Intrinsic::x86_avx512_vpmadd52h_uq_128; else if (VecWidth == 256 && High) IID = Intrinsic::x86_avx512_vpmadd52h_uq_256; else if (VecWidth == 512 && High) IID = Intrinsic::x86_avx512_vpmadd52h_uq_512; else llvm_unreachable("Unexpected intrinsic"); Value *Args[] = { CI->getArgOperand(0) , CI->getArgOperand(1), CI->getArgOperand(2) }; Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), IID), Args); Value *PassThru = ZeroMask ? ConstantAggregateZero::get(CI->getType()) : CI->getArgOperand(0); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, PassThru); } else if (IsX86 && (Name.starts_with("avx512.mask.vpermi2var.") || Name.starts_with("avx512.mask.vpermt2var.") || Name.starts_with("avx512.maskz.vpermt2var."))) { bool ZeroMask = Name[11] == 'z'; bool IndexForm = Name[17] == 'i'; Rep = upgradeX86VPERMT2Intrinsics(Builder, *CI, ZeroMask, IndexForm); } else if (IsX86 && (Name.starts_with("avx512.mask.vpdpbusd.") || Name.starts_with("avx512.maskz.vpdpbusd.") || Name.starts_with("avx512.mask.vpdpbusds.") || Name.starts_with("avx512.maskz.vpdpbusds."))) { bool ZeroMask = Name[11] == 'z'; bool IsSaturating = Name[ZeroMask ? 21 : 20] == 's'; unsigned VecWidth = CI->getType()->getPrimitiveSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && !IsSaturating) IID = Intrinsic::x86_avx512_vpdpbusd_128; else if (VecWidth == 256 && !IsSaturating) IID = Intrinsic::x86_avx512_vpdpbusd_256; else if (VecWidth == 512 && !IsSaturating) IID = Intrinsic::x86_avx512_vpdpbusd_512; else if (VecWidth == 128 && IsSaturating) IID = Intrinsic::x86_avx512_vpdpbusds_128; else if (VecWidth == 256 && IsSaturating) IID = Intrinsic::x86_avx512_vpdpbusds_256; else if (VecWidth == 512 && IsSaturating) IID = Intrinsic::x86_avx512_vpdpbusds_512; else llvm_unreachable("Unexpected intrinsic"); Value *Args[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2) }; Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), IID), Args); Value *PassThru = ZeroMask ? ConstantAggregateZero::get(CI->getType()) : CI->getArgOperand(0); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, PassThru); } else if (IsX86 && (Name.starts_with("avx512.mask.vpdpwssd.") || Name.starts_with("avx512.maskz.vpdpwssd.") || Name.starts_with("avx512.mask.vpdpwssds.") || Name.starts_with("avx512.maskz.vpdpwssds."))) { bool ZeroMask = Name[11] == 'z'; bool IsSaturating = Name[ZeroMask ? 21 : 20] == 's'; unsigned VecWidth = CI->getType()->getPrimitiveSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && !IsSaturating) IID = Intrinsic::x86_avx512_vpdpwssd_128; else if (VecWidth == 256 && !IsSaturating) IID = Intrinsic::x86_avx512_vpdpwssd_256; else if (VecWidth == 512 && !IsSaturating) IID = Intrinsic::x86_avx512_vpdpwssd_512; else if (VecWidth == 128 && IsSaturating) IID = Intrinsic::x86_avx512_vpdpwssds_128; else if (VecWidth == 256 && IsSaturating) IID = Intrinsic::x86_avx512_vpdpwssds_256; else if (VecWidth == 512 && IsSaturating) IID = Intrinsic::x86_avx512_vpdpwssds_512; else llvm_unreachable("Unexpected intrinsic"); Value *Args[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2) }; Rep = Builder.CreateCall(Intrinsic::getDeclaration(CI->getModule(), IID), Args); Value *PassThru = ZeroMask ? ConstantAggregateZero::get(CI->getType()) : CI->getArgOperand(0); Rep = emitX86Select(Builder, CI->getArgOperand(3), Rep, PassThru); } else if (IsX86 && (Name == "addcarryx.u32" || Name == "addcarryx.u64" || Name == "addcarry.u32" || Name == "addcarry.u64" || Name == "subborrow.u32" || Name == "subborrow.u64")) { Intrinsic::ID IID; if (Name[0] == 'a' && Name.back() == '2') IID = Intrinsic::x86_addcarry_32; else if (Name[0] == 'a' && Name.back() == '4') IID = Intrinsic::x86_addcarry_64; else if (Name[0] == 's' && Name.back() == '2') IID = Intrinsic::x86_subborrow_32; else if (Name[0] == 's' && Name.back() == '4') IID = Intrinsic::x86_subborrow_64; else llvm_unreachable("Unexpected intrinsic"); // Make a call with 3 operands. Value *Args[] = { CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2)}; Value *NewCall = Builder.CreateCall( Intrinsic::getDeclaration(CI->getModule(), IID), Args); // Extract the second result and store it. Value *Data = Builder.CreateExtractValue(NewCall, 1); // Cast the pointer to the right type. Value *Ptr = Builder.CreateBitCast(CI->getArgOperand(3), llvm::PointerType::getUnqual(Data->getType())); Builder.CreateAlignedStore(Data, Ptr, Align(1)); // Replace the original call result with the first result of the new call. Value *CF = Builder.CreateExtractValue(NewCall, 0); CI->replaceAllUsesWith(CF); Rep = nullptr; } else if (IsX86 && Name.starts_with("avx512.mask.") && upgradeAVX512MaskToSelect(Name, Builder, *CI, Rep)) { // Rep will be updated by the call in the condition. } else if (IsNVVM && (Name == "abs.i" || Name == "abs.ll")) { Value *Arg = CI->getArgOperand(0); Value *Neg = Builder.CreateNeg(Arg, "neg"); Value *Cmp = Builder.CreateICmpSGE( Arg, llvm::Constant::getNullValue(Arg->getType()), "abs.cond"); Rep = Builder.CreateSelect(Cmp, Arg, Neg, "abs"); } else if (IsNVVM && (Name.starts_with("atomic.load.add.f32.p") || Name.starts_with("atomic.load.add.f64.p"))) { Value *Ptr = CI->getArgOperand(0); Value *Val = CI->getArgOperand(1); Rep = Builder.CreateAtomicRMW(AtomicRMWInst::FAdd, Ptr, Val, MaybeAlign(), AtomicOrdering::SequentiallyConsistent); } else if (IsNVVM && Name.consume_front("max.") && (Name == "s" || Name == "i" || Name == "ll" || Name == "us" || Name == "ui" || Name == "ull")) { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); Value *Cmp = Name.starts_with("u") ? Builder.CreateICmpUGE(Arg0, Arg1, "max.cond") : Builder.CreateICmpSGE(Arg0, Arg1, "max.cond"); Rep = Builder.CreateSelect(Cmp, Arg0, Arg1, "max"); } else if (IsNVVM && Name.consume_front("min.") && (Name == "s" || Name == "i" || Name == "ll" || Name == "us" || Name == "ui" || Name == "ull")) { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); Value *Cmp = Name.starts_with("u") ? Builder.CreateICmpULE(Arg0, Arg1, "min.cond") : Builder.CreateICmpSLE(Arg0, Arg1, "min.cond"); Rep = Builder.CreateSelect(Cmp, Arg0, Arg1, "min"); } else if (IsNVVM && Name == "clz.ll") { // llvm.nvvm.clz.ll returns an i32, but llvm.ctlz.i64 returns an i64. Value *Arg = CI->getArgOperand(0); Value *Ctlz = Builder.CreateCall( Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz, {Arg->getType()}), {Arg, Builder.getFalse()}, "ctlz"); Rep = Builder.CreateTrunc(Ctlz, Builder.getInt32Ty(), "ctlz.trunc"); } else if (IsNVVM && Name == "popc.ll") { // llvm.nvvm.popc.ll returns an i32, but llvm.ctpop.i64 returns an // i64. Value *Arg = CI->getArgOperand(0); Value *Popc = Builder.CreateCall( Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctpop, {Arg->getType()}), Arg, "ctpop"); Rep = Builder.CreateTrunc(Popc, Builder.getInt32Ty(), "ctpop.trunc"); } else if (IsNVVM) { if (Name == "h2f") { Rep = Builder.CreateCall(Intrinsic::getDeclaration( F->getParent(), Intrinsic::convert_from_fp16, {Builder.getFloatTy()}), CI->getArgOperand(0), "h2f"); } else { Intrinsic::ID IID = shouldUpgradeNVPTXBF16Intrinsic(Name); if (IID != Intrinsic::not_intrinsic && !F->getReturnType()->getScalarType()->isBFloatTy()) { rename(F); NewFn = Intrinsic::getDeclaration(F->getParent(), IID); SmallVector Args; for (size_t I = 0; I < NewFn->arg_size(); ++I) { Value *Arg = CI->getArgOperand(I); Type *OldType = Arg->getType(); Type *NewType = NewFn->getArg(I)->getType(); Args.push_back((OldType->isIntegerTy() && NewType->getScalarType()->isBFloatTy()) ? Builder.CreateBitCast(Arg, NewType) : Arg); } Rep = Builder.CreateCall(NewFn, Args); if (F->getReturnType()->isIntegerTy()) Rep = Builder.CreateBitCast(Rep, F->getReturnType()); } } } else if (IsARM) { Rep = upgradeARMIntrinsicCall(Name, CI, F, Builder); } else if (IsAMDGCN) { Rep = upgradeAMDGCNIntrinsicCall(Name, CI, F, Builder); } else if (IsDbg) { // We might have decided we don't want the new format after all between // first requesting the upgrade and now; skip the conversion if that is // the case, and check here to see if the intrinsic needs to be upgraded // normally. if (!CI->getModule()->IsNewDbgInfoFormat) { bool NeedsUpgrade = upgradeIntrinsicFunction1(CI->getCalledFunction(), NewFn, false); if (!NeedsUpgrade) return; FallthroughToDefaultUpgrade = true; } else { upgradeDbgIntrinsicToDbgRecord(Name, CI); } } else { llvm_unreachable("Unknown function for CallBase upgrade."); } if (!FallthroughToDefaultUpgrade) { if (Rep) CI->replaceAllUsesWith(Rep); CI->eraseFromParent(); return; } } const auto &DefaultCase = [&]() -> void { if (CI->getFunctionType() == NewFn->getFunctionType()) { // Handle generic mangling change. assert( (CI->getCalledFunction()->getName() != NewFn->getName()) && "Unknown function for CallBase upgrade and isn't just a name change"); CI->setCalledFunction(NewFn); return; } // This must be an upgrade from a named to a literal struct. if (auto *OldST = dyn_cast(CI->getType())) { assert(OldST != NewFn->getReturnType() && "Return type must have changed"); assert(OldST->getNumElements() == cast(NewFn->getReturnType())->getNumElements() && "Must have same number of elements"); SmallVector Args(CI->args()); Value *NewCI = Builder.CreateCall(NewFn, Args); Value *Res = PoisonValue::get(OldST); for (unsigned Idx = 0; Idx < OldST->getNumElements(); ++Idx) { Value *Elem = Builder.CreateExtractValue(NewCI, Idx); Res = Builder.CreateInsertValue(Res, Elem, Idx); } CI->replaceAllUsesWith(Res); CI->eraseFromParent(); return; } // We're probably about to produce something invalid. Let the verifier catch // it instead of dying here. CI->setCalledOperand( ConstantExpr::getPointerCast(NewFn, CI->getCalledOperand()->getType())); return; }; CallInst *NewCall = nullptr; switch (NewFn->getIntrinsicID()) { default: { DefaultCase(); return; } case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { SmallVector Args(CI->args()); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::aarch64_sve_bfmlalb_lane_v2: case Intrinsic::aarch64_sve_bfmlalt_lane_v2: case Intrinsic::aarch64_sve_bfdot_lane_v2: { LLVMContext &Ctx = F->getParent()->getContext(); SmallVector Args(CI->args()); Args[3] = ConstantInt::get(Type::getInt32Ty(Ctx), cast(Args[3])->getZExtValue()); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::aarch64_sve_ld3_sret: case Intrinsic::aarch64_sve_ld4_sret: case Intrinsic::aarch64_sve_ld2_sret: { StringRef Name = F->getName(); Name = Name.substr(5); unsigned N = StringSwitch(Name) .StartsWith("aarch64.sve.ld2", 2) .StartsWith("aarch64.sve.ld3", 3) .StartsWith("aarch64.sve.ld4", 4) .Default(0); ScalableVectorType *RetTy = dyn_cast(F->getReturnType()); unsigned MinElts = RetTy->getMinNumElements() / N; SmallVector Args(CI->args()); Value *NewLdCall = Builder.CreateCall(NewFn, Args); Value *Ret = llvm::PoisonValue::get(RetTy); for (unsigned I = 0; I < N; I++) { Value *Idx = ConstantInt::get(Type::getInt64Ty(C), I * MinElts); Value *SRet = Builder.CreateExtractValue(NewLdCall, I); Ret = Builder.CreateInsertVector(RetTy, Ret, SRet, Idx); } NewCall = dyn_cast(Ret); break; } case Intrinsic::coro_end: { SmallVector Args(CI->args()); Args.push_back(ConstantTokenNone::get(CI->getContext())); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::vector_extract: { StringRef Name = F->getName(); Name = Name.substr(5); // Strip llvm if (!Name.starts_with("aarch64.sve.tuple.get")) { DefaultCase(); return; } ScalableVectorType *RetTy = dyn_cast(F->getReturnType()); unsigned MinElts = RetTy->getMinNumElements(); unsigned I = cast(CI->getArgOperand(1))->getZExtValue(); Value *NewIdx = ConstantInt::get(Type::getInt64Ty(C), I * MinElts); NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0), NewIdx}); break; } case Intrinsic::vector_insert: { StringRef Name = F->getName(); Name = Name.substr(5); if (!Name.starts_with("aarch64.sve.tuple")) { DefaultCase(); return; } if (Name.starts_with("aarch64.sve.tuple.set")) { unsigned I = dyn_cast(CI->getArgOperand(1))->getZExtValue(); ScalableVectorType *Ty = dyn_cast(CI->getArgOperand(2)->getType()); Value *NewIdx = ConstantInt::get(Type::getInt64Ty(C), I * Ty->getMinNumElements()); NewCall = Builder.CreateCall( NewFn, {CI->getArgOperand(0), CI->getArgOperand(2), NewIdx}); break; } if (Name.starts_with("aarch64.sve.tuple.create")) { unsigned N = StringSwitch(Name) .StartsWith("aarch64.sve.tuple.create2", 2) .StartsWith("aarch64.sve.tuple.create3", 3) .StartsWith("aarch64.sve.tuple.create4", 4) .Default(0); assert(N > 1 && "Create is expected to be between 2-4"); ScalableVectorType *RetTy = dyn_cast(F->getReturnType()); Value *Ret = llvm::PoisonValue::get(RetTy); unsigned MinElts = RetTy->getMinNumElements() / N; for (unsigned I = 0; I < N; I++) { Value *Idx = ConstantInt::get(Type::getInt64Ty(C), I * MinElts); Value *V = CI->getArgOperand(I); Ret = Builder.CreateInsertVector(RetTy, Ret, V, Idx); } NewCall = dyn_cast(Ret); } break; } case Intrinsic::arm_neon_bfdot: case Intrinsic::arm_neon_bfmmla: case Intrinsic::arm_neon_bfmlalb: case Intrinsic::arm_neon_bfmlalt: case Intrinsic::aarch64_neon_bfdot: case Intrinsic::aarch64_neon_bfmmla: case Intrinsic::aarch64_neon_bfmlalb: case Intrinsic::aarch64_neon_bfmlalt: { SmallVector Args; assert(CI->arg_size() == 3 && "Mismatch between function args and call args"); size_t OperandWidth = CI->getArgOperand(1)->getType()->getPrimitiveSizeInBits(); assert((OperandWidth == 64 || OperandWidth == 128) && "Unexpected operand width"); Type *NewTy = FixedVectorType::get(Type::getBFloatTy(C), OperandWidth / 16); auto Iter = CI->args().begin(); Args.push_back(*Iter++); Args.push_back(Builder.CreateBitCast(*Iter++, NewTy)); Args.push_back(Builder.CreateBitCast(*Iter++, NewTy)); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::bitreverse: NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0)}); break; case Intrinsic::ctlz: case Intrinsic::cttz: assert(CI->arg_size() == 1 && "Mismatch between function args and call args"); NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0), Builder.getFalse()}); break; case Intrinsic::objectsize: { Value *NullIsUnknownSize = CI->arg_size() == 2 ? Builder.getFalse() : CI->getArgOperand(2); Value *Dynamic = CI->arg_size() < 4 ? Builder.getFalse() : CI->getArgOperand(3); NewCall = Builder.CreateCall( NewFn, {CI->getArgOperand(0), CI->getArgOperand(1), NullIsUnknownSize, Dynamic}); break; } case Intrinsic::ctpop: NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0)}); break; case Intrinsic::convert_from_fp16: NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0)}); break; case Intrinsic::dbg_value: { StringRef Name = F->getName(); Name = Name.substr(5); // Strip llvm. // Upgrade `dbg.addr` to `dbg.value` with `DW_OP_deref`. if (Name.starts_with("dbg.addr")) { DIExpression *Expr = cast( cast(CI->getArgOperand(2))->getMetadata()); Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0), CI->getArgOperand(1), MetadataAsValue::get(C, Expr)}); break; } // Upgrade from the old version that had an extra offset argument. assert(CI->arg_size() == 4); // Drop nonzero offsets instead of attempting to upgrade them. if (auto *Offset = dyn_cast_or_null(CI->getArgOperand(1))) if (Offset->isZeroValue()) { NewCall = Builder.CreateCall( NewFn, {CI->getArgOperand(0), CI->getArgOperand(2), CI->getArgOperand(3)}); break; } CI->eraseFromParent(); return; } case Intrinsic::ptr_annotation: // Upgrade from versions that lacked the annotation attribute argument. if (CI->arg_size() != 4) { DefaultCase(); return; } // Create a new call with an added null annotation attribute argument. NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(3), Constant::getNullValue(Builder.getPtrTy())}); NewCall->takeName(CI); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; case Intrinsic::var_annotation: // Upgrade from versions that lacked the annotation attribute argument. if (CI->arg_size() != 4) { DefaultCase(); return; } // Create a new call with an added null annotation attribute argument. NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(3), Constant::getNullValue(Builder.getPtrTy())}); NewCall->takeName(CI); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); return; case Intrinsic::riscv_aes32dsi: case Intrinsic::riscv_aes32dsmi: case Intrinsic::riscv_aes32esi: case Intrinsic::riscv_aes32esmi: case Intrinsic::riscv_sm4ks: case Intrinsic::riscv_sm4ed: { // The last argument to these intrinsics used to be i8 and changed to i32. // The type overload for sm4ks and sm4ed was removed. Value *Arg2 = CI->getArgOperand(2); if (Arg2->getType()->isIntegerTy(32) && !CI->getType()->isIntegerTy(64)) return; Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); if (CI->getType()->isIntegerTy(64)) { Arg0 = Builder.CreateTrunc(Arg0, Builder.getInt32Ty()); Arg1 = Builder.CreateTrunc(Arg1, Builder.getInt32Ty()); } Arg2 = ConstantInt::get(Type::getInt32Ty(C), cast(Arg2)->getZExtValue()); NewCall = Builder.CreateCall(NewFn, {Arg0, Arg1, Arg2}); Value *Res = NewCall; if (Res->getType() != CI->getType()) Res = Builder.CreateIntCast(NewCall, CI->getType(), /*isSigned*/ true); NewCall->takeName(CI); CI->replaceAllUsesWith(Res); CI->eraseFromParent(); return; } case Intrinsic::riscv_sha256sig0: case Intrinsic::riscv_sha256sig1: case Intrinsic::riscv_sha256sum0: case Intrinsic::riscv_sha256sum1: case Intrinsic::riscv_sm3p0: case Intrinsic::riscv_sm3p1: { // The last argument to these intrinsics used to be i8 and changed to i32. // The type overload for sm4ks and sm4ed was removed. if (!CI->getType()->isIntegerTy(64)) return; Value *Arg = Builder.CreateTrunc(CI->getArgOperand(0), Builder.getInt32Ty()); NewCall = Builder.CreateCall(NewFn, Arg); Value *Res = Builder.CreateIntCast(NewCall, CI->getType(), /*isSigned*/ true); NewCall->takeName(CI); CI->replaceAllUsesWith(Res); CI->eraseFromParent(); return; } case Intrinsic::x86_xop_vfrcz_ss: case Intrinsic::x86_xop_vfrcz_sd: NewCall = Builder.CreateCall(NewFn, {CI->getArgOperand(1)}); break; case Intrinsic::x86_xop_vpermil2pd: case Intrinsic::x86_xop_vpermil2ps: case Intrinsic::x86_xop_vpermil2pd_256: case Intrinsic::x86_xop_vpermil2ps_256: { SmallVector Args(CI->args()); VectorType *FltIdxTy = cast(Args[2]->getType()); VectorType *IntIdxTy = VectorType::getInteger(FltIdxTy); Args[2] = Builder.CreateBitCast(Args[2], IntIdxTy); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::x86_sse41_ptestc: case Intrinsic::x86_sse41_ptestz: case Intrinsic::x86_sse41_ptestnzc: { // The arguments for these intrinsics used to be v4f32, and changed // to v2i64. This is purely a nop, since those are bitwise intrinsics. // So, the only thing required is a bitcast for both arguments. // First, check the arguments have the old type. Value *Arg0 = CI->getArgOperand(0); if (Arg0->getType() != FixedVectorType::get(Type::getFloatTy(C), 4)) return; // Old intrinsic, add bitcasts Value *Arg1 = CI->getArgOperand(1); auto *NewVecTy = FixedVectorType::get(Type::getInt64Ty(C), 2); Value *BC0 = Builder.CreateBitCast(Arg0, NewVecTy, "cast"); Value *BC1 = Builder.CreateBitCast(Arg1, NewVecTy, "cast"); NewCall = Builder.CreateCall(NewFn, {BC0, BC1}); break; } case Intrinsic::x86_rdtscp: { // This used to take 1 arguments. If we have no arguments, it is already // upgraded. if (CI->getNumOperands() == 0) return; NewCall = Builder.CreateCall(NewFn); // Extract the second result and store it. Value *Data = Builder.CreateExtractValue(NewCall, 1); // Cast the pointer to the right type. Value *Ptr = Builder.CreateBitCast(CI->getArgOperand(0), llvm::PointerType::getUnqual(Data->getType())); Builder.CreateAlignedStore(Data, Ptr, Align(1)); // Replace the original call result with the first result of the new call. Value *TSC = Builder.CreateExtractValue(NewCall, 0); NewCall->takeName(CI); CI->replaceAllUsesWith(TSC); CI->eraseFromParent(); return; } case Intrinsic::x86_sse41_insertps: case Intrinsic::x86_sse41_dppd: case Intrinsic::x86_sse41_dpps: case Intrinsic::x86_sse41_mpsadbw: case Intrinsic::x86_avx_dp_ps_256: case Intrinsic::x86_avx2_mpsadbw: { // Need to truncate the last argument from i32 to i8 -- this argument models // an inherently 8-bit immediate operand to these x86 instructions. SmallVector Args(CI->args()); // Replace the last argument with a trunc. Args.back() = Builder.CreateTrunc(Args.back(), Type::getInt8Ty(C), "trunc"); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::x86_avx512_mask_cmp_pd_128: case Intrinsic::x86_avx512_mask_cmp_pd_256: case Intrinsic::x86_avx512_mask_cmp_pd_512: case Intrinsic::x86_avx512_mask_cmp_ps_128: case Intrinsic::x86_avx512_mask_cmp_ps_256: case Intrinsic::x86_avx512_mask_cmp_ps_512: { SmallVector Args(CI->args()); unsigned NumElts = cast(Args[0]->getType())->getNumElements(); Args[3] = getX86MaskVec(Builder, Args[3], NumElts); NewCall = Builder.CreateCall(NewFn, Args); Value *Res = applyX86MaskOn1BitsVec(Builder, NewCall, nullptr); NewCall->takeName(CI); CI->replaceAllUsesWith(Res); CI->eraseFromParent(); return; } case Intrinsic::x86_avx512bf16_cvtne2ps2bf16_128: case Intrinsic::x86_avx512bf16_cvtne2ps2bf16_256: case Intrinsic::x86_avx512bf16_cvtne2ps2bf16_512: case Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128: case Intrinsic::x86_avx512bf16_cvtneps2bf16_256: case Intrinsic::x86_avx512bf16_cvtneps2bf16_512: { SmallVector Args(CI->args()); unsigned NumElts = cast(CI->getType())->getNumElements(); if (NewFn->getIntrinsicID() == Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128) Args[1] = Builder.CreateBitCast( Args[1], FixedVectorType::get(Builder.getBFloatTy(), NumElts)); NewCall = Builder.CreateCall(NewFn, Args); Value *Res = Builder.CreateBitCast( NewCall, FixedVectorType::get(Builder.getInt16Ty(), NumElts)); NewCall->takeName(CI); CI->replaceAllUsesWith(Res); CI->eraseFromParent(); return; } case Intrinsic::x86_avx512bf16_dpbf16ps_128: case Intrinsic::x86_avx512bf16_dpbf16ps_256: case Intrinsic::x86_avx512bf16_dpbf16ps_512:{ SmallVector Args(CI->args()); unsigned NumElts = cast(CI->getType())->getNumElements() * 2; Args[1] = Builder.CreateBitCast( Args[1], FixedVectorType::get(Builder.getBFloatTy(), NumElts)); Args[2] = Builder.CreateBitCast( Args[2], FixedVectorType::get(Builder.getBFloatTy(), NumElts)); NewCall = Builder.CreateCall(NewFn, Args); break; } case Intrinsic::thread_pointer: { NewCall = Builder.CreateCall(NewFn, {}); break; } case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: { // We have to make sure that the call signature is what we're expecting. // We only want to change the old signatures by removing the alignment arg: // @llvm.mem[cpy|move]...(i8*, i8*, i[32|i64], i32, i1) // -> @llvm.mem[cpy|move]...(i8*, i8*, i[32|i64], i1) // @llvm.memset...(i8*, i8, i[32|64], i32, i1) // -> @llvm.memset...(i8*, i8, i[32|64], i1) // Note: i8*'s in the above can be any pointer type if (CI->arg_size() != 5) { DefaultCase(); return; } // Remove alignment argument (3), and add alignment attributes to the // dest/src pointers. Value *Args[4] = {CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), CI->getArgOperand(4)}; NewCall = Builder.CreateCall(NewFn, Args); AttributeList OldAttrs = CI->getAttributes(); AttributeList NewAttrs = AttributeList::get( C, OldAttrs.getFnAttrs(), OldAttrs.getRetAttrs(), {OldAttrs.getParamAttrs(0), OldAttrs.getParamAttrs(1), OldAttrs.getParamAttrs(2), OldAttrs.getParamAttrs(4)}); NewCall->setAttributes(NewAttrs); auto *MemCI = cast(NewCall); // All mem intrinsics support dest alignment. const ConstantInt *Align = cast(CI->getArgOperand(3)); MemCI->setDestAlignment(Align->getMaybeAlignValue()); // Memcpy/Memmove also support source alignment. if (auto *MTI = dyn_cast(MemCI)) MTI->setSourceAlignment(Align->getMaybeAlignValue()); break; } } assert(NewCall && "Should have either set this variable or returned through " "the default case"); NewCall->takeName(CI); CI->replaceAllUsesWith(NewCall); CI->eraseFromParent(); } void llvm::UpgradeCallsToIntrinsic(Function *F) { assert(F && "Illegal attempt to upgrade a non-existent intrinsic."); // Check if this function should be upgraded and get the replacement function // if there is one. Function *NewFn; if (UpgradeIntrinsicFunction(F, NewFn)) { // Replace all users of the old function with the new function or new // instructions. This is not a range loop because the call is deleted. for (User *U : make_early_inc_range(F->users())) if (CallBase *CB = dyn_cast(U)) UpgradeIntrinsicCall(CB, NewFn); // Remove old function, no longer used, from the module. F->eraseFromParent(); } } MDNode *llvm::UpgradeTBAANode(MDNode &MD) { const unsigned NumOperands = MD.getNumOperands(); if (NumOperands == 0) return &MD; // Invalid, punt to a verifier error. // Check if the tag uses struct-path aware TBAA format. if (isa(MD.getOperand(0)) && NumOperands >= 3) return &MD; auto &Context = MD.getContext(); if (NumOperands == 3) { Metadata *Elts[] = {MD.getOperand(0), MD.getOperand(1)}; MDNode *ScalarType = MDNode::get(Context, Elts); // Create a MDNode Metadata *Elts2[] = {ScalarType, ScalarType, ConstantAsMetadata::get( Constant::getNullValue(Type::getInt64Ty(Context))), MD.getOperand(2)}; return MDNode::get(Context, Elts2); } // Create a MDNode Metadata *Elts[] = {&MD, &MD, ConstantAsMetadata::get(Constant::getNullValue( Type::getInt64Ty(Context)))}; return MDNode::get(Context, Elts); } Instruction *llvm::UpgradeBitCastInst(unsigned Opc, Value *V, Type *DestTy, Instruction *&Temp) { if (Opc != Instruction::BitCast) return nullptr; Temp = nullptr; Type *SrcTy = V->getType(); if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() && SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) { LLVMContext &Context = V->getContext(); // We have no information about target data layout, so we assume that // the maximum pointer size is 64bit. Type *MidTy = Type::getInt64Ty(Context); Temp = CastInst::Create(Instruction::PtrToInt, V, MidTy); return CastInst::Create(Instruction::IntToPtr, Temp, DestTy); } return nullptr; } Constant *llvm::UpgradeBitCastExpr(unsigned Opc, Constant *C, Type *DestTy) { if (Opc != Instruction::BitCast) return nullptr; Type *SrcTy = C->getType(); if (SrcTy->isPtrOrPtrVectorTy() && DestTy->isPtrOrPtrVectorTy() && SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace()) { LLVMContext &Context = C->getContext(); // We have no information about target data layout, so we assume that // the maximum pointer size is 64bit. Type *MidTy = Type::getInt64Ty(Context); return ConstantExpr::getIntToPtr(ConstantExpr::getPtrToInt(C, MidTy), DestTy); } return nullptr; } /// Check the debug info version number, if it is out-dated, drop the debug /// info. Return true if module is modified. bool llvm::UpgradeDebugInfo(Module &M) { if (DisableAutoUpgradeDebugInfo) return false; unsigned Version = getDebugMetadataVersionFromModule(M); if (Version == DEBUG_METADATA_VERSION) { bool BrokenDebugInfo = false; if (verifyModule(M, &llvm::errs(), &BrokenDebugInfo)) report_fatal_error("Broken module found, compilation aborted!"); if (!BrokenDebugInfo) // Everything is ok. return false; else { // Diagnose malformed debug info. DiagnosticInfoIgnoringInvalidDebugMetadata Diag(M); M.getContext().diagnose(Diag); } } bool Modified = StripDebugInfo(M); if (Modified && Version != DEBUG_METADATA_VERSION) { // Diagnose a version mismatch. DiagnosticInfoDebugMetadataVersion DiagVersion(M, Version); M.getContext().diagnose(DiagVersion); } return Modified; } /// This checks for objc retain release marker which should be upgraded. It /// returns true if module is modified. static bool upgradeRetainReleaseMarker(Module &M) { bool Changed = false; const char *MarkerKey = "clang.arc.retainAutoreleasedReturnValueMarker"; NamedMDNode *ModRetainReleaseMarker = M.getNamedMetadata(MarkerKey); if (ModRetainReleaseMarker) { MDNode *Op = ModRetainReleaseMarker->getOperand(0); if (Op) { MDString *ID = dyn_cast_or_null(Op->getOperand(0)); if (ID) { SmallVector ValueComp; ID->getString().split(ValueComp, "#"); if (ValueComp.size() == 2) { std::string NewValue = ValueComp[0].str() + ";" + ValueComp[1].str(); ID = MDString::get(M.getContext(), NewValue); } M.addModuleFlag(Module::Error, MarkerKey, ID); M.eraseNamedMetadata(ModRetainReleaseMarker); Changed = true; } } } return Changed; } void llvm::UpgradeARCRuntime(Module &M) { // This lambda converts normal function calls to ARC runtime functions to // intrinsic calls. auto UpgradeToIntrinsic = [&](const char *OldFunc, llvm::Intrinsic::ID IntrinsicFunc) { Function *Fn = M.getFunction(OldFunc); if (!Fn) return; Function *NewFn = llvm::Intrinsic::getDeclaration(&M, IntrinsicFunc); for (User *U : make_early_inc_range(Fn->users())) { CallInst *CI = dyn_cast(U); if (!CI || CI->getCalledFunction() != Fn) continue; IRBuilder<> Builder(CI->getParent(), CI->getIterator()); FunctionType *NewFuncTy = NewFn->getFunctionType(); SmallVector Args; // Don't upgrade the intrinsic if it's not valid to bitcast the return // value to the return type of the old function. if (NewFuncTy->getReturnType() != CI->getType() && !CastInst::castIsValid(Instruction::BitCast, CI, NewFuncTy->getReturnType())) continue; bool InvalidCast = false; for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) { Value *Arg = CI->getArgOperand(I); // Bitcast argument to the parameter type of the new function if it's // not a variadic argument. if (I < NewFuncTy->getNumParams()) { // Don't upgrade the intrinsic if it's not valid to bitcast the argument // to the parameter type of the new function. if (!CastInst::castIsValid(Instruction::BitCast, Arg, NewFuncTy->getParamType(I))) { InvalidCast = true; break; } Arg = Builder.CreateBitCast(Arg, NewFuncTy->getParamType(I)); } Args.push_back(Arg); } if (InvalidCast) continue; // Create a call instruction that calls the new function. CallInst *NewCall = Builder.CreateCall(NewFuncTy, NewFn, Args); NewCall->setTailCallKind(cast(CI)->getTailCallKind()); NewCall->takeName(CI); // Bitcast the return value back to the type of the old call. Value *NewRetVal = Builder.CreateBitCast(NewCall, CI->getType()); if (!CI->use_empty()) CI->replaceAllUsesWith(NewRetVal); CI->eraseFromParent(); } if (Fn->use_empty()) Fn->eraseFromParent(); }; // Unconditionally convert a call to "clang.arc.use" to a call to // "llvm.objc.clang.arc.use". UpgradeToIntrinsic("clang.arc.use", llvm::Intrinsic::objc_clang_arc_use); // Upgrade the retain release marker. If there is no need to upgrade // the marker, that means either the module is already new enough to contain // new intrinsics or it is not ARC. There is no need to upgrade runtime call. if (!upgradeRetainReleaseMarker(M)) return; std::pair RuntimeFuncs[] = { {"objc_autorelease", llvm::Intrinsic::objc_autorelease}, {"objc_autoreleasePoolPop", llvm::Intrinsic::objc_autoreleasePoolPop}, {"objc_autoreleasePoolPush", llvm::Intrinsic::objc_autoreleasePoolPush}, {"objc_autoreleaseReturnValue", llvm::Intrinsic::objc_autoreleaseReturnValue}, {"objc_copyWeak", llvm::Intrinsic::objc_copyWeak}, {"objc_destroyWeak", llvm::Intrinsic::objc_destroyWeak}, {"objc_initWeak", llvm::Intrinsic::objc_initWeak}, {"objc_loadWeak", llvm::Intrinsic::objc_loadWeak}, {"objc_loadWeakRetained", llvm::Intrinsic::objc_loadWeakRetained}, {"objc_moveWeak", llvm::Intrinsic::objc_moveWeak}, {"objc_release", llvm::Intrinsic::objc_release}, {"objc_retain", llvm::Intrinsic::objc_retain}, {"objc_retainAutorelease", llvm::Intrinsic::objc_retainAutorelease}, {"objc_retainAutoreleaseReturnValue", llvm::Intrinsic::objc_retainAutoreleaseReturnValue}, {"objc_retainAutoreleasedReturnValue", llvm::Intrinsic::objc_retainAutoreleasedReturnValue}, {"objc_retainBlock", llvm::Intrinsic::objc_retainBlock}, {"objc_storeStrong", llvm::Intrinsic::objc_storeStrong}, {"objc_storeWeak", llvm::Intrinsic::objc_storeWeak}, {"objc_unsafeClaimAutoreleasedReturnValue", llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue}, {"objc_retainedObject", llvm::Intrinsic::objc_retainedObject}, {"objc_unretainedObject", llvm::Intrinsic::objc_unretainedObject}, {"objc_unretainedPointer", llvm::Intrinsic::objc_unretainedPointer}, {"objc_retain_autorelease", llvm::Intrinsic::objc_retain_autorelease}, {"objc_sync_enter", llvm::Intrinsic::objc_sync_enter}, {"objc_sync_exit", llvm::Intrinsic::objc_sync_exit}, {"objc_arc_annotation_topdown_bbstart", llvm::Intrinsic::objc_arc_annotation_topdown_bbstart}, {"objc_arc_annotation_topdown_bbend", llvm::Intrinsic::objc_arc_annotation_topdown_bbend}, {"objc_arc_annotation_bottomup_bbstart", llvm::Intrinsic::objc_arc_annotation_bottomup_bbstart}, {"objc_arc_annotation_bottomup_bbend", llvm::Intrinsic::objc_arc_annotation_bottomup_bbend}}; for (auto &I : RuntimeFuncs) UpgradeToIntrinsic(I.first, I.second); } bool llvm::UpgradeModuleFlags(Module &M) { NamedMDNode *ModFlags = M.getModuleFlagsMetadata(); if (!ModFlags) return false; bool HasObjCFlag = false, HasClassProperties = false, Changed = false; bool HasSwiftVersionFlag = false; uint8_t SwiftMajorVersion, SwiftMinorVersion; uint32_t SwiftABIVersion; auto Int8Ty = Type::getInt8Ty(M.getContext()); auto Int32Ty = Type::getInt32Ty(M.getContext()); for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) { MDNode *Op = ModFlags->getOperand(I); if (Op->getNumOperands() != 3) continue; MDString *ID = dyn_cast_or_null(Op->getOperand(1)); if (!ID) continue; auto SetBehavior = [&](Module::ModFlagBehavior B) { Metadata *Ops[3] = {ConstantAsMetadata::get(ConstantInt::get( Type::getInt32Ty(M.getContext()), B)), MDString::get(M.getContext(), ID->getString()), Op->getOperand(2)}; ModFlags->setOperand(I, MDNode::get(M.getContext(), Ops)); Changed = true; }; if (ID->getString() == "Objective-C Image Info Version") HasObjCFlag = true; if (ID->getString() == "Objective-C Class Properties") HasClassProperties = true; // Upgrade PIC from Error/Max to Min. if (ID->getString() == "PIC Level") { if (auto *Behavior = mdconst::dyn_extract_or_null(Op->getOperand(0))) { uint64_t V = Behavior->getLimitedValue(); if (V == Module::Error || V == Module::Max) SetBehavior(Module::Min); } } // Upgrade "PIE Level" from Error to Max. if (ID->getString() == "PIE Level") if (auto *Behavior = mdconst::dyn_extract_or_null(Op->getOperand(0))) if (Behavior->getLimitedValue() == Module::Error) SetBehavior(Module::Max); // Upgrade branch protection and return address signing module flags. The // module flag behavior for these fields were Error and now they are Min. if (ID->getString() == "branch-target-enforcement" || ID->getString().starts_with("sign-return-address")) { if (auto *Behavior = mdconst::dyn_extract_or_null(Op->getOperand(0))) { if (Behavior->getLimitedValue() == Module::Error) { Type *Int32Ty = Type::getInt32Ty(M.getContext()); Metadata *Ops[3] = { ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Module::Min)), Op->getOperand(1), Op->getOperand(2)}; ModFlags->setOperand(I, MDNode::get(M.getContext(), Ops)); Changed = true; } } } // Upgrade Objective-C Image Info Section. Removed the whitespce in the // section name so that llvm-lto will not complain about mismatching // module flags that is functionally the same. if (ID->getString() == "Objective-C Image Info Section") { if (auto *Value = dyn_cast_or_null(Op->getOperand(2))) { SmallVector ValueComp; Value->getString().split(ValueComp, " "); if (ValueComp.size() != 1) { std::string NewValue; for (auto &S : ValueComp) NewValue += S.str(); Metadata *Ops[3] = {Op->getOperand(0), Op->getOperand(1), MDString::get(M.getContext(), NewValue)}; ModFlags->setOperand(I, MDNode::get(M.getContext(), Ops)); Changed = true; } } } // IRUpgrader turns a i32 type "Objective-C Garbage Collection" into i8 value. // If the higher bits are set, it adds new module flag for swift info. if (ID->getString() == "Objective-C Garbage Collection") { auto Md = dyn_cast(Op->getOperand(2)); if (Md) { assert(Md->getValue() && "Expected non-empty metadata"); auto Type = Md->getValue()->getType(); if (Type == Int8Ty) continue; unsigned Val = Md->getValue()->getUniqueInteger().getZExtValue(); if ((Val & 0xff) != Val) { HasSwiftVersionFlag = true; SwiftABIVersion = (Val & 0xff00) >> 8; SwiftMajorVersion = (Val & 0xff000000) >> 24; SwiftMinorVersion = (Val & 0xff0000) >> 16; } Metadata *Ops[3] = { ConstantAsMetadata::get(ConstantInt::get(Int32Ty,Module::Error)), Op->getOperand(1), ConstantAsMetadata::get(ConstantInt::get(Int8Ty,Val & 0xff))}; ModFlags->setOperand(I, MDNode::get(M.getContext(), Ops)); Changed = true; } } if (ID->getString() == "amdgpu_code_object_version") { Metadata *Ops[3] = { Op->getOperand(0), MDString::get(M.getContext(), "amdhsa_code_object_version"), Op->getOperand(2)}; ModFlags->setOperand(I, MDNode::get(M.getContext(), Ops)); Changed = true; } } // "Objective-C Class Properties" is recently added for Objective-C. We // upgrade ObjC bitcodes to contain a "Objective-C Class Properties" module // flag of value 0, so we can correclty downgrade this flag when trying to // link an ObjC bitcode without this module flag with an ObjC bitcode with // this module flag. if (HasObjCFlag && !HasClassProperties) { M.addModuleFlag(llvm::Module::Override, "Objective-C Class Properties", (uint32_t)0); Changed = true; } if (HasSwiftVersionFlag) { M.addModuleFlag(Module::Error, "Swift ABI Version", SwiftABIVersion); M.addModuleFlag(Module::Error, "Swift Major Version", ConstantInt::get(Int8Ty, SwiftMajorVersion)); M.addModuleFlag(Module::Error, "Swift Minor Version", ConstantInt::get(Int8Ty, SwiftMinorVersion)); Changed = true; } return Changed; } void llvm::UpgradeSectionAttributes(Module &M) { auto TrimSpaces = [](StringRef Section) -> std::string { SmallVector Components; Section.split(Components, ','); SmallString<32> Buffer; raw_svector_ostream OS(Buffer); for (auto Component : Components) OS << ',' << Component.trim(); return std::string(OS.str().substr(1)); }; for (auto &GV : M.globals()) { if (!GV.hasSection()) continue; StringRef Section = GV.getSection(); if (!Section.starts_with("__DATA, __objc_catlist")) continue; // __DATA, __objc_catlist, regular, no_dead_strip // __DATA,__objc_catlist,regular,no_dead_strip GV.setSection(TrimSpaces(Section)); } } namespace { // Prior to LLVM 10.0, the strictfp attribute could be used on individual // callsites within a function that did not also have the strictfp attribute. // Since 10.0, if strict FP semantics are needed within a function, the // function must have the strictfp attribute and all calls within the function // must also have the strictfp attribute. This latter restriction is // necessary to prevent unwanted libcall simplification when a function is // being cloned (such as for inlining). // // The "dangling" strictfp attribute usage was only used to prevent constant // folding and other libcall simplification. The nobuiltin attribute on the // callsite has the same effect. struct StrictFPUpgradeVisitor : public InstVisitor { StrictFPUpgradeVisitor() = default; void visitCallBase(CallBase &Call) { if (!Call.isStrictFP()) return; if (isa(&Call)) return; // If we get here, the caller doesn't have the strictfp attribute // but this callsite does. Replace the strictfp attribute with nobuiltin. Call.removeFnAttr(Attribute::StrictFP); Call.addFnAttr(Attribute::NoBuiltin); } }; } // namespace void llvm::UpgradeFunctionAttributes(Function &F) { // If a function definition doesn't have the strictfp attribute, // convert any callsite strictfp attributes to nobuiltin. if (!F.isDeclaration() && !F.hasFnAttribute(Attribute::StrictFP)) { StrictFPUpgradeVisitor SFPV; SFPV.visit(F); } // Remove all incompatibile attributes from function. F.removeRetAttrs(AttributeFuncs::typeIncompatible(F.getReturnType())); for (auto &Arg : F.args()) Arg.removeAttrs(AttributeFuncs::typeIncompatible(Arg.getType())); // Older versions of LLVM treated an "implicit-section-name" attribute // similarly to directly setting the section on a Function. if (Attribute A = F.getFnAttribute("implicit-section-name"); A.isValid() && A.isStringAttribute()) { F.setSection(A.getValueAsString()); F.removeFnAttr("implicit-section-name"); } } static bool isOldLoopArgument(Metadata *MD) { auto *T = dyn_cast_or_null(MD); if (!T) return false; if (T->getNumOperands() < 1) return false; auto *S = dyn_cast_or_null(T->getOperand(0)); if (!S) return false; return S->getString().starts_with("llvm.vectorizer."); } static MDString *upgradeLoopTag(LLVMContext &C, StringRef OldTag) { StringRef OldPrefix = "llvm.vectorizer."; assert(OldTag.starts_with(OldPrefix) && "Expected old prefix"); if (OldTag == "llvm.vectorizer.unroll") return MDString::get(C, "llvm.loop.interleave.count"); return MDString::get( C, (Twine("llvm.loop.vectorize.") + OldTag.drop_front(OldPrefix.size())) .str()); } static Metadata *upgradeLoopArgument(Metadata *MD) { auto *T = dyn_cast_or_null(MD); if (!T) return MD; if (T->getNumOperands() < 1) return MD; auto *OldTag = dyn_cast_or_null(T->getOperand(0)); if (!OldTag) return MD; if (!OldTag->getString().starts_with("llvm.vectorizer.")) return MD; // This has an old tag. Upgrade it. SmallVector Ops; Ops.reserve(T->getNumOperands()); Ops.push_back(upgradeLoopTag(T->getContext(), OldTag->getString())); for (unsigned I = 1, E = T->getNumOperands(); I != E; ++I) Ops.push_back(T->getOperand(I)); return MDTuple::get(T->getContext(), Ops); } MDNode *llvm::upgradeInstructionLoopAttachment(MDNode &N) { auto *T = dyn_cast(&N); if (!T) return &N; if (none_of(T->operands(), isOldLoopArgument)) return &N; SmallVector Ops; Ops.reserve(T->getNumOperands()); for (Metadata *MD : T->operands()) Ops.push_back(upgradeLoopArgument(MD)); return MDTuple::get(T->getContext(), Ops); } std::string llvm::UpgradeDataLayoutString(StringRef DL, StringRef TT) { Triple T(TT); // The only data layout upgrades needed for pre-GCN, SPIR or SPIRV are setting // the address space of globals to 1. This does not apply to SPIRV Logical. if (((T.isAMDGPU() && !T.isAMDGCN()) || (T.isSPIR() || (T.isSPIRV() && !T.isSPIRVLogical()))) && !DL.contains("-G") && !DL.starts_with("G")) { return DL.empty() ? std::string("G1") : (DL + "-G1").str(); } if (T.isRISCV64()) { // Make i32 a native type for 64-bit RISC-V. auto I = DL.find("-n64-"); if (I != StringRef::npos) return (DL.take_front(I) + "-n32:64-" + DL.drop_front(I + 5)).str(); return DL.str(); } std::string Res = DL.str(); // AMDGCN data layout upgrades. if (T.isAMDGCN()) { // Define address spaces for constants. if (!DL.contains("-G") && !DL.starts_with("G")) Res.append(Res.empty() ? "G1" : "-G1"); // Add missing non-integral declarations. // This goes before adding new address spaces to prevent incoherent string // values. if (!DL.contains("-ni") && !DL.starts_with("ni")) Res.append("-ni:7:8:9"); // Update ni:7 to ni:7:8:9. if (DL.ends_with("ni:7")) Res.append(":8:9"); if (DL.ends_with("ni:7:8")) Res.append(":9"); // Add sizing for address spaces 7 and 8 (fat raw buffers and buffer // resources) An empty data layout has already been upgraded to G1 by now. if (!DL.contains("-p7") && !DL.starts_with("p7")) Res.append("-p7:160:256:256:32"); if (!DL.contains("-p8") && !DL.starts_with("p8")) Res.append("-p8:128:128"); if (!DL.contains("-p9") && !DL.starts_with("p9")) Res.append("-p9:192:256:256:32"); return Res; } if (!T.isX86()) return Res; // If the datalayout matches the expected format, add pointer size address // spaces to the datalayout. std::string AddrSpaces = "-p270:32:32-p271:32:32-p272:64:64"; if (StringRef Ref = Res; !Ref.contains(AddrSpaces)) { SmallVector Groups; Regex R("(e-m:[a-z](-p:32:32)?)(-[if]64:.*$)"); if (R.match(Res, &Groups)) Res = (Groups[1] + AddrSpaces + Groups[3]).str(); } // i128 values need to be 16-byte-aligned. LLVM already called into libgcc // for i128 operations prior to this being reflected in the data layout, and // clang mostly produced LLVM IR that already aligned i128 to 16 byte // boundaries, so although this is a breaking change, the upgrade is expected // to fix more IR than it breaks. // Intel MCU is an exception and uses 4-byte-alignment. if (!T.isOSIAMCU()) { std::string I128 = "-i128:128"; if (StringRef Ref = Res; !Ref.contains(I128)) { SmallVector Groups; Regex R("^(e(-[mpi][^-]*)*)((-[^mpi][^-]*)*)$"); if (R.match(Res, &Groups)) Res = (Groups[1] + I128 + Groups[3]).str(); } } // For 32-bit MSVC targets, raise the alignment of f80 values to 16 bytes. // Raising the alignment is safe because Clang did not produce f80 values in // the MSVC environment before this upgrade was added. if (T.isWindowsMSVCEnvironment() && !T.isArch64Bit()) { StringRef Ref = Res; auto I = Ref.find("-f80:32-"); if (I != StringRef::npos) Res = (Ref.take_front(I) + "-f80:128-" + Ref.drop_front(I + 8)).str(); } return Res; } void llvm::UpgradeAttributes(AttrBuilder &B) { StringRef FramePointer; Attribute A = B.getAttribute("no-frame-pointer-elim"); if (A.isValid()) { // The value can be "true" or "false". FramePointer = A.getValueAsString() == "true" ? "all" : "none"; B.removeAttribute("no-frame-pointer-elim"); } if (B.contains("no-frame-pointer-elim-non-leaf")) { // The value is ignored. "no-frame-pointer-elim"="true" takes priority. if (FramePointer != "all") FramePointer = "non-leaf"; B.removeAttribute("no-frame-pointer-elim-non-leaf"); } if (!FramePointer.empty()) B.addAttribute("frame-pointer", FramePointer); A = B.getAttribute("null-pointer-is-valid"); if (A.isValid()) { // The value can be "true" or "false". bool NullPointerIsValid = A.getValueAsString() == "true"; B.removeAttribute("null-pointer-is-valid"); if (NullPointerIsValid) B.addAttribute(Attribute::NullPointerIsValid); } } void llvm::UpgradeOperandBundles(std::vector &Bundles) { // clang.arc.attachedcall bundles are now required to have an operand. // If they don't, it's okay to drop them entirely: when there is an operand, // the "attachedcall" is meaningful and required, but without an operand, // it's just a marker NOP. Dropping it merely prevents an optimization. erase_if(Bundles, [&](OperandBundleDef &OBD) { return OBD.getTag() == "clang.arc.attachedcall" && OBD.inputs().empty(); }); }