//===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file implements the OpenMPIRBuilder class, which is used as a /// convenient way to create LLVM instructions for OpenMP directives. /// //===----------------------------------------------------------------------===// #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Frontend/Offloading/Utility.h" #include "llvm/Frontend/OpenMP/OMPGridValues.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/PassInstrumentation.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ReplaceConstant.h" #include "llvm/IR/Value.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/CodeExtractor.h" #include "llvm/Transforms/Utils/LoopPeel.h" #include "llvm/Transforms/Utils/UnrollLoop.h" #include #include #define DEBUG_TYPE "openmp-ir-builder" using namespace llvm; using namespace omp; static cl::opt OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden, cl::desc("Use optimistic attributes describing " "'as-if' properties of runtime calls."), cl::init(false)); static cl::opt UnrollThresholdFactor( "openmp-ir-builder-unroll-threshold-factor", cl::Hidden, cl::desc("Factor for the unroll threshold to account for code " "simplifications still taking place"), cl::init(1.5)); #ifndef NDEBUG /// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions /// at position IP1 may change the meaning of IP2 or vice-versa. This is because /// an InsertPoint stores the instruction before something is inserted. For /// instance, if both point to the same instruction, two IRBuilders alternating /// creating instruction will cause the instructions to be interleaved. static bool isConflictIP(IRBuilder<>::InsertPoint IP1, IRBuilder<>::InsertPoint IP2) { if (!IP1.isSet() || !IP2.isSet()) return false; return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint(); } static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) { // Valid ordered/unordered and base algorithm combinations. switch (SchedType & ~OMPScheduleType::MonotonicityMask) { case OMPScheduleType::UnorderedStaticChunked: case OMPScheduleType::UnorderedStatic: case OMPScheduleType::UnorderedDynamicChunked: case OMPScheduleType::UnorderedGuidedChunked: case OMPScheduleType::UnorderedRuntime: case OMPScheduleType::UnorderedAuto: case OMPScheduleType::UnorderedTrapezoidal: case OMPScheduleType::UnorderedGreedy: case OMPScheduleType::UnorderedBalanced: case OMPScheduleType::UnorderedGuidedIterativeChunked: case OMPScheduleType::UnorderedGuidedAnalyticalChunked: case OMPScheduleType::UnorderedSteal: case OMPScheduleType::UnorderedStaticBalancedChunked: case OMPScheduleType::UnorderedGuidedSimd: case OMPScheduleType::UnorderedRuntimeSimd: case OMPScheduleType::OrderedStaticChunked: case OMPScheduleType::OrderedStatic: case OMPScheduleType::OrderedDynamicChunked: case OMPScheduleType::OrderedGuidedChunked: case OMPScheduleType::OrderedRuntime: case OMPScheduleType::OrderedAuto: case OMPScheduleType::OrderdTrapezoidal: case OMPScheduleType::NomergeUnorderedStaticChunked: case OMPScheduleType::NomergeUnorderedStatic: case OMPScheduleType::NomergeUnorderedDynamicChunked: case OMPScheduleType::NomergeUnorderedGuidedChunked: case OMPScheduleType::NomergeUnorderedRuntime: case OMPScheduleType::NomergeUnorderedAuto: case OMPScheduleType::NomergeUnorderedTrapezoidal: case OMPScheduleType::NomergeUnorderedGreedy: case OMPScheduleType::NomergeUnorderedBalanced: case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked: case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked: case OMPScheduleType::NomergeUnorderedSteal: case OMPScheduleType::NomergeOrderedStaticChunked: case OMPScheduleType::NomergeOrderedStatic: case OMPScheduleType::NomergeOrderedDynamicChunked: case OMPScheduleType::NomergeOrderedGuidedChunked: case OMPScheduleType::NomergeOrderedRuntime: case OMPScheduleType::NomergeOrderedAuto: case OMPScheduleType::NomergeOrderedTrapezoidal: break; default: return false; } // Must not set both monotonicity modifiers at the same time. OMPScheduleType MonotonicityFlags = SchedType & OMPScheduleType::MonotonicityMask; if (MonotonicityFlags == OMPScheduleType::MonotonicityMask) return false; return true; } #endif static const omp::GV &getGridValue(const Triple &T, Function *Kernel) { if (T.isAMDGPU()) { StringRef Features = Kernel->getFnAttribute("target-features").getValueAsString(); if (Features.count("+wavefrontsize64")) return omp::getAMDGPUGridValues<64>(); return omp::getAMDGPUGridValues<32>(); } if (T.isNVPTX()) return omp::NVPTXGridValues; if (T.isSPIRV()) return omp::SPIRVGridValues; llvm_unreachable("No grid value available for this architecture!"); } /// Determine which scheduling algorithm to use, determined from schedule clause /// arguments. static OMPScheduleType getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks, bool HasSimdModifier) { // Currently, the default schedule it static. switch (ClauseKind) { case OMP_SCHEDULE_Default: case OMP_SCHEDULE_Static: return HasChunks ? OMPScheduleType::BaseStaticChunked : OMPScheduleType::BaseStatic; case OMP_SCHEDULE_Dynamic: return OMPScheduleType::BaseDynamicChunked; case OMP_SCHEDULE_Guided: return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd : OMPScheduleType::BaseGuidedChunked; case OMP_SCHEDULE_Auto: return llvm::omp::OMPScheduleType::BaseAuto; case OMP_SCHEDULE_Runtime: return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd : OMPScheduleType::BaseRuntime; } llvm_unreachable("unhandled schedule clause argument"); } /// Adds ordering modifier flags to schedule type. static OMPScheduleType getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType, bool HasOrderedClause) { assert((BaseScheduleType & OMPScheduleType::ModifierMask) == OMPScheduleType::None && "Must not have ordering nor monotonicity flags already set"); OMPScheduleType OrderingModifier = HasOrderedClause ? OMPScheduleType::ModifierOrdered : OMPScheduleType::ModifierUnordered; OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier; // Unsupported combinations if (OrderingScheduleType == (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered)) return OMPScheduleType::OrderedGuidedChunked; else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd | OMPScheduleType::ModifierOrdered)) return OMPScheduleType::OrderedRuntime; return OrderingScheduleType; } /// Adds monotonicity modifier flags to schedule type. static OMPScheduleType getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType, bool HasSimdModifier, bool HasMonotonic, bool HasNonmonotonic, bool HasOrderedClause) { assert((ScheduleType & OMPScheduleType::MonotonicityMask) == OMPScheduleType::None && "Must not have monotonicity flags already set"); assert((!HasMonotonic || !HasNonmonotonic) && "Monotonic and Nonmonotonic are contradicting each other"); if (HasMonotonic) { return ScheduleType | OMPScheduleType::ModifierMonotonic; } else if (HasNonmonotonic) { return ScheduleType | OMPScheduleType::ModifierNonmonotonic; } else { // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description. // If the static schedule kind is specified or if the ordered clause is // specified, and if the nonmonotonic modifier is not specified, the // effect is as if the monotonic modifier is specified. Otherwise, unless // the monotonic modifier is specified, the effect is as if the // nonmonotonic modifier is specified. OMPScheduleType BaseScheduleType = ScheduleType & ~OMPScheduleType::ModifierMask; if ((BaseScheduleType == OMPScheduleType::BaseStatic) || (BaseScheduleType == OMPScheduleType::BaseStaticChunked) || HasOrderedClause) { // The monotonic is used by default in openmp runtime library, so no need // to set it. return ScheduleType; } else { return ScheduleType | OMPScheduleType::ModifierNonmonotonic; } } } /// Determine the schedule type using schedule and ordering clause arguments. static OMPScheduleType computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks, bool HasSimdModifier, bool HasMonotonicModifier, bool HasNonmonotonicModifier, bool HasOrderedClause) { OMPScheduleType BaseSchedule = getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier); OMPScheduleType OrderedSchedule = getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause); OMPScheduleType Result = getOpenMPMonotonicityScheduleType( OrderedSchedule, HasSimdModifier, HasMonotonicModifier, HasNonmonotonicModifier, HasOrderedClause); assert(isValidWorkshareLoopScheduleType(Result)); return Result; } /// Make \p Source branch to \p Target. /// /// Handles two situations: /// * \p Source already has an unconditional branch. /// * \p Source is a degenerate block (no terminator because the BB is /// the current head of the IR construction). static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) { if (Instruction *Term = Source->getTerminator()) { auto *Br = cast(Term); assert(!Br->isConditional() && "BB's terminator must be an unconditional branch (or degenerate)"); BasicBlock *Succ = Br->getSuccessor(0); Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true); Br->setSuccessor(0, Target); return; } auto *NewBr = BranchInst::Create(Target, Source); NewBr->setDebugLoc(DL); } void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New, bool CreateBranch, DebugLoc DL) { assert(New->getFirstInsertionPt() == New->begin() && "Target BB must not have PHI nodes"); // Move instructions to new block. BasicBlock *Old = IP.getBlock(); New->splice(New->begin(), Old, IP.getPoint(), Old->end()); if (CreateBranch) { auto *NewBr = BranchInst::Create(New, Old); NewBr->setDebugLoc(DL); } } void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) { DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); BasicBlock *Old = Builder.GetInsertBlock(); spliceBB(Builder.saveIP(), New, CreateBranch, DebugLoc); if (CreateBranch) Builder.SetInsertPoint(Old->getTerminator()); else Builder.SetInsertPoint(Old); // SetInsertPoint also updates the Builder's debug location, but we want to // keep the one the Builder was configured to use. Builder.SetCurrentDebugLocation(DebugLoc); } BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch, DebugLoc DL, llvm::Twine Name) { BasicBlock *Old = IP.getBlock(); BasicBlock *New = BasicBlock::Create( Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name, Old->getParent(), Old->getNextNode()); spliceBB(IP, New, CreateBranch, DL); New->replaceSuccessorsPhiUsesWith(Old, New); return New; } BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch, llvm::Twine Name) { DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, DebugLoc, Name); if (CreateBranch) Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); else Builder.SetInsertPoint(Builder.GetInsertBlock()); // SetInsertPoint also updates the Builder's debug location, but we want to // keep the one the Builder was configured to use. Builder.SetCurrentDebugLocation(DebugLoc); return New; } BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch, llvm::Twine Name) { DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, DebugLoc, Name); if (CreateBranch) Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); else Builder.SetInsertPoint(Builder.GetInsertBlock()); // SetInsertPoint also updates the Builder's debug location, but we want to // keep the one the Builder was configured to use. Builder.SetCurrentDebugLocation(DebugLoc); return New; } BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch, llvm::Twine Suffix) { BasicBlock *Old = Builder.GetInsertBlock(); return splitBB(Builder, CreateBranch, Old->getName() + Suffix); } // This function creates a fake integer value and a fake use for the integer // value. It returns the fake value created. This is useful in modeling the // extra arguments to the outlined functions. Value *createFakeIntVal(IRBuilderBase &Builder, OpenMPIRBuilder::InsertPointTy OuterAllocaIP, llvm::SmallVectorImpl &ToBeDeleted, OpenMPIRBuilder::InsertPointTy InnerAllocaIP, const Twine &Name = "", bool AsPtr = true) { Builder.restoreIP(OuterAllocaIP); Instruction *FakeVal; AllocaInst *FakeValAddr = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, Name + ".addr"); ToBeDeleted.push_back(FakeValAddr); if (AsPtr) { FakeVal = FakeValAddr; } else { FakeVal = Builder.CreateLoad(Builder.getInt32Ty(), FakeValAddr, Name + ".val"); ToBeDeleted.push_back(FakeVal); } // Generate a fake use of this value Builder.restoreIP(InnerAllocaIP); Instruction *UseFakeVal; if (AsPtr) { UseFakeVal = Builder.CreateLoad(Builder.getInt32Ty(), FakeVal, Name + ".use"); } else { UseFakeVal = cast(Builder.CreateAdd(FakeVal, Builder.getInt32(10))); } ToBeDeleted.push_back(UseFakeVal); return FakeVal; } //===----------------------------------------------------------------------===// // OpenMPIRBuilderConfig //===----------------------------------------------------------------------===// namespace { LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); /// Values for bit flags for marking which requires clauses have been used. enum OpenMPOffloadingRequiresDirFlags { /// flag undefined. OMP_REQ_UNDEFINED = 0x000, /// no requires directive present. OMP_REQ_NONE = 0x001, /// reverse_offload clause. OMP_REQ_REVERSE_OFFLOAD = 0x002, /// unified_address clause. OMP_REQ_UNIFIED_ADDRESS = 0x004, /// unified_shared_memory clause. OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008, /// dynamic_allocators clause. OMP_REQ_DYNAMIC_ALLOCATORS = 0x010, LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS) }; } // anonymous namespace OpenMPIRBuilderConfig::OpenMPIRBuilderConfig() : RequiresFlags(OMP_REQ_UNDEFINED) {} OpenMPIRBuilderConfig::OpenMPIRBuilderConfig( bool IsTargetDevice, bool IsGPU, bool OpenMPOffloadMandatory, bool HasRequiresReverseOffload, bool HasRequiresUnifiedAddress, bool HasRequiresUnifiedSharedMemory, bool HasRequiresDynamicAllocators) : IsTargetDevice(IsTargetDevice), IsGPU(IsGPU), OpenMPOffloadMandatory(OpenMPOffloadMandatory), RequiresFlags(OMP_REQ_UNDEFINED) { if (HasRequiresReverseOffload) RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD; if (HasRequiresUnifiedAddress) RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS; if (HasRequiresUnifiedSharedMemory) RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY; if (HasRequiresDynamicAllocators) RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS; } bool OpenMPIRBuilderConfig::hasRequiresReverseOffload() const { return RequiresFlags & OMP_REQ_REVERSE_OFFLOAD; } bool OpenMPIRBuilderConfig::hasRequiresUnifiedAddress() const { return RequiresFlags & OMP_REQ_UNIFIED_ADDRESS; } bool OpenMPIRBuilderConfig::hasRequiresUnifiedSharedMemory() const { return RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY; } bool OpenMPIRBuilderConfig::hasRequiresDynamicAllocators() const { return RequiresFlags & OMP_REQ_DYNAMIC_ALLOCATORS; } int64_t OpenMPIRBuilderConfig::getRequiresFlags() const { return hasRequiresFlags() ? RequiresFlags : static_cast(OMP_REQ_NONE); } void OpenMPIRBuilderConfig::setHasRequiresReverseOffload(bool Value) { if (Value) RequiresFlags |= OMP_REQ_REVERSE_OFFLOAD; else RequiresFlags &= ~OMP_REQ_REVERSE_OFFLOAD; } void OpenMPIRBuilderConfig::setHasRequiresUnifiedAddress(bool Value) { if (Value) RequiresFlags |= OMP_REQ_UNIFIED_ADDRESS; else RequiresFlags &= ~OMP_REQ_UNIFIED_ADDRESS; } void OpenMPIRBuilderConfig::setHasRequiresUnifiedSharedMemory(bool Value) { if (Value) RequiresFlags |= OMP_REQ_UNIFIED_SHARED_MEMORY; else RequiresFlags &= ~OMP_REQ_UNIFIED_SHARED_MEMORY; } void OpenMPIRBuilderConfig::setHasRequiresDynamicAllocators(bool Value) { if (Value) RequiresFlags |= OMP_REQ_DYNAMIC_ALLOCATORS; else RequiresFlags &= ~OMP_REQ_DYNAMIC_ALLOCATORS; } //===----------------------------------------------------------------------===// // OpenMPIRBuilder //===----------------------------------------------------------------------===// void OpenMPIRBuilder::getKernelArgsVector(TargetKernelArgs &KernelArgs, IRBuilderBase &Builder, SmallVector &ArgsVector) { Value *Version = Builder.getInt32(OMP_KERNEL_ARG_VERSION); Value *PointerNum = Builder.getInt32(KernelArgs.NumTargetItems); auto Int32Ty = Type::getInt32Ty(Builder.getContext()); constexpr const size_t MaxDim = 3; Value *ZeroArray = Constant::getNullValue(ArrayType::get(Int32Ty, MaxDim)); Value *Flags = Builder.getInt64(KernelArgs.HasNoWait); assert(!KernelArgs.NumTeams.empty() && !KernelArgs.NumThreads.empty()); Value *NumTeams3D = Builder.CreateInsertValue(ZeroArray, KernelArgs.NumTeams[0], {0}); Value *NumThreads3D = Builder.CreateInsertValue(ZeroArray, KernelArgs.NumThreads[0], {0}); for (unsigned I : seq(1, std::min(KernelArgs.NumTeams.size(), MaxDim))) NumTeams3D = Builder.CreateInsertValue(NumTeams3D, KernelArgs.NumTeams[I], {I}); for (unsigned I : seq(1, std::min(KernelArgs.NumThreads.size(), MaxDim))) NumThreads3D = Builder.CreateInsertValue(NumThreads3D, KernelArgs.NumThreads[I], {I}); ArgsVector = {Version, PointerNum, KernelArgs.RTArgs.BasePointersArray, KernelArgs.RTArgs.PointersArray, KernelArgs.RTArgs.SizesArray, KernelArgs.RTArgs.MapTypesArray, KernelArgs.RTArgs.MapNamesArray, KernelArgs.RTArgs.MappersArray, KernelArgs.NumIterations, Flags, NumTeams3D, NumThreads3D, KernelArgs.DynCGGroupMem}; } void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) { LLVMContext &Ctx = Fn.getContext(); // Get the function's current attributes. auto Attrs = Fn.getAttributes(); auto FnAttrs = Attrs.getFnAttrs(); auto RetAttrs = Attrs.getRetAttrs(); SmallVector ArgAttrs; for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo) ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo)); // Add AS to FnAS while taking special care with integer extensions. auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS, bool Param = true) -> void { bool HasSignExt = AS.hasAttribute(Attribute::SExt); bool HasZeroExt = AS.hasAttribute(Attribute::ZExt); if (HasSignExt || HasZeroExt) { assert(AS.getNumAttributes() == 1 && "Currently not handling extension attr combined with others."); if (Param) { if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt)) FnAS = FnAS.addAttribute(Ctx, AK); } else if (auto AK = TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt)) FnAS = FnAS.addAttribute(Ctx, AK); } else { FnAS = FnAS.addAttributes(Ctx, AS); } }; #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet; #include "llvm/Frontend/OpenMP/OMPKinds.def" // Add attributes to the function declaration. switch (FnID) { #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \ case Enum: \ FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \ addAttrSet(RetAttrs, RetAttrSet, /*Param*/ false); \ for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \ addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \ Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" default: // Attributes are optional. break; } } FunctionCallee OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) { FunctionType *FnTy = nullptr; Function *Fn = nullptr; // Try to find the declation in the module first. switch (FnID) { #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \ case Enum: \ FnTy = FunctionType::get(ReturnType, ArrayRef{__VA_ARGS__}, \ IsVarArg); \ Fn = M.getFunction(Str); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" } if (!Fn) { // Create a new declaration if we need one. switch (FnID) { #define OMP_RTL(Enum, Str, ...) \ case Enum: \ Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" } // Add information if the runtime function takes a callback function if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) { if (!Fn->hasMetadata(LLVMContext::MD_callback)) { LLVMContext &Ctx = Fn->getContext(); MDBuilder MDB(Ctx); // Annotate the callback behavior of the runtime function: // - The callback callee is argument number 2 (microtask). // - The first two arguments of the callback callee are unknown (-1). // - All variadic arguments to the runtime function are passed to the // callback callee. Fn->addMetadata( LLVMContext::MD_callback, *MDNode::get(Ctx, {MDB.createCallbackEncoding( 2, {-1, -1}, /* VarArgsArePassed */ true)})); } } LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName() << " with type " << *Fn->getFunctionType() << "\n"); addAttributes(FnID, *Fn); } else { LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName() << " with type " << *Fn->getFunctionType() << "\n"); } assert(Fn && "Failed to create OpenMP runtime function"); return {FnTy, Fn}; } Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) { FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID); auto *Fn = dyn_cast(RTLFn.getCallee()); assert(Fn && "Failed to create OpenMP runtime function pointer"); return Fn; } void OpenMPIRBuilder::initialize() { initializeTypes(M); } static void raiseUserConstantDataAllocasToEntryBlock(IRBuilderBase &Builder, Function *Function) { BasicBlock &EntryBlock = Function->getEntryBlock(); BasicBlock::iterator MoveLocInst = EntryBlock.getFirstNonPHIIt(); // Loop over blocks looking for constant allocas, skipping the entry block // as any allocas there are already in the desired location. for (auto Block = std::next(Function->begin(), 1); Block != Function->end(); Block++) { for (auto Inst = Block->getReverseIterator()->begin(); Inst != Block->getReverseIterator()->end();) { if (auto *AllocaInst = dyn_cast_if_present(Inst)) { Inst++; if (!isa(AllocaInst->getArraySize())) continue; AllocaInst->moveBeforePreserving(MoveLocInst); } else { Inst++; } } } } void OpenMPIRBuilder::finalize(Function *Fn) { SmallPtrSet ParallelRegionBlockSet; SmallVector Blocks; SmallVector DeferredOutlines; for (OutlineInfo &OI : OutlineInfos) { // Skip functions that have not finalized yet; may happen with nested // function generation. if (Fn && OI.getFunction() != Fn) { DeferredOutlines.push_back(OI); continue; } ParallelRegionBlockSet.clear(); Blocks.clear(); OI.collectBlocks(ParallelRegionBlockSet, Blocks); Function *OuterFn = OI.getFunction(); CodeExtractorAnalysisCache CEAC(*OuterFn); // If we generate code for the target device, we need to allocate // struct for aggregate params in the device default alloca address space. // OpenMP runtime requires that the params of the extracted functions are // passed as zero address space pointers. This flag ensures that // CodeExtractor generates correct code for extracted functions // which are used by OpenMP runtime. bool ArgsInZeroAddressSpace = Config.isTargetDevice(); CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, /* AggregateArgs */ true, /* BlockFrequencyInfo */ nullptr, /* BranchProbabilityInfo */ nullptr, /* AssumptionCache */ nullptr, /* AllowVarArgs */ true, /* AllowAlloca */ true, /* AllocaBlock*/ OI.OuterAllocaBB, /* Suffix */ ".omp_par", ArgsInZeroAddressSpace); LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n"); LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName() << " Exit: " << OI.ExitBB->getName() << "\n"); assert(Extractor.isEligible() && "Expected OpenMP outlining to be possible!"); for (auto *V : OI.ExcludeArgsFromAggregate) Extractor.excludeArgFromAggregate(V); Function *OutlinedFn = Extractor.extractCodeRegion(CEAC); // Forward target-cpu, target-features attributes to the outlined function. auto TargetCpuAttr = OuterFn->getFnAttribute("target-cpu"); if (TargetCpuAttr.isStringAttribute()) OutlinedFn->addFnAttr(TargetCpuAttr); auto TargetFeaturesAttr = OuterFn->getFnAttribute("target-features"); if (TargetFeaturesAttr.isStringAttribute()) OutlinedFn->addFnAttr(TargetFeaturesAttr); LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n"); LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n"); assert(OutlinedFn->getReturnType()->isVoidTy() && "OpenMP outlined functions should not return a value!"); // For compability with the clang CG we move the outlined function after the // one with the parallel region. OutlinedFn->removeFromParent(); M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn); // Remove the artificial entry introduced by the extractor right away, we // made our own entry block after all. { BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock(); assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB); assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry); // Move instructions from the to-be-deleted ArtificialEntry to the entry // basic block of the parallel region. CodeExtractor generates // instructions to unwrap the aggregate argument and may sink // allocas/bitcasts for values that are solely used in the outlined region // and do not escape. assert(!ArtificialEntry.empty() && "Expected instructions to add in the outlined region entry"); for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(), End = ArtificialEntry.rend(); It != End;) { Instruction &I = *It; It++; if (I.isTerminator()) { // Absorb any debug value that terminator may have if (OI.EntryBB->getTerminator()) OI.EntryBB->getTerminator()->adoptDbgRecords( &ArtificialEntry, I.getIterator(), false); continue; } I.moveBeforePreserving(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt()); } OI.EntryBB->moveBefore(&ArtificialEntry); ArtificialEntry.eraseFromParent(); } assert(&OutlinedFn->getEntryBlock() == OI.EntryBB); assert(OutlinedFn && OutlinedFn->hasNUses(1)); // Run a user callback, e.g. to add attributes. if (OI.PostOutlineCB) OI.PostOutlineCB(*OutlinedFn); } // Remove work items that have been completed. OutlineInfos = std::move(DeferredOutlines); // The createTarget functions embeds user written code into // the target region which may inject allocas which need to // be moved to the entry block of our target or risk malformed // optimisations by later passes, this is only relevant for // the device pass which appears to be a little more delicate // when it comes to optimisations (however, we do not block on // that here, it's up to the inserter to the list to do so). // This notbaly has to occur after the OutlinedInfo candidates // have been extracted so we have an end product that will not // be implicitly adversely affected by any raises unless // intentionally appended to the list. // NOTE: This only does so for ConstantData, it could be extended // to ConstantExpr's with further effort, however, they should // largely be folded when they get here. Extending it to runtime // defined/read+writeable allocation sizes would be non-trivial // (need to factor in movement of any stores to variables the // allocation size depends on, as well as the usual loads, // otherwise it'll yield the wrong result after movement) and // likely be more suitable as an LLVM optimisation pass. for (Function *F : ConstantAllocaRaiseCandidates) raiseUserConstantDataAllocasToEntryBlock(Builder, F); EmitMetadataErrorReportFunctionTy &&ErrorReportFn = [](EmitMetadataErrorKind Kind, const TargetRegionEntryInfo &EntryInfo) -> void { errs() << "Error of kind: " << Kind << " when emitting offload entries and metadata during " "OMPIRBuilder finalization \n"; }; if (!OffloadInfoManager.empty()) createOffloadEntriesAndInfoMetadata(ErrorReportFn); if (Config.EmitLLVMUsedMetaInfo.value_or(false)) { std::vector LLVMCompilerUsed = { M.getGlobalVariable("__openmp_nvptx_data_transfer_temporary_storage")}; emitUsed("llvm.compiler.used", LLVMCompilerUsed); } IsFinalized = true; } bool OpenMPIRBuilder::isFinalized() { return IsFinalized; } OpenMPIRBuilder::~OpenMPIRBuilder() { assert(OutlineInfos.empty() && "There must be no outstanding outlinings"); } GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) { IntegerType *I32Ty = Type::getInt32Ty(M.getContext()); auto *GV = new GlobalVariable(M, I32Ty, /* isConstant = */ true, GlobalValue::WeakODRLinkage, ConstantInt::get(I32Ty, Value), Name); GV->setVisibility(GlobalValue::HiddenVisibility); return GV; } void OpenMPIRBuilder::emitUsed(StringRef Name, ArrayRef List) { if (List.empty()) return; // Convert List to what ConstantArray needs. SmallVector UsedArray; UsedArray.resize(List.size()); for (unsigned I = 0, E = List.size(); I != E; ++I) UsedArray[I] = ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(&*List[I]), Builder.getPtrTy()); if (UsedArray.empty()) return; ArrayType *ATy = ArrayType::get(Builder.getPtrTy(), UsedArray.size()); auto *GV = new GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage, ConstantArray::get(ATy, UsedArray), Name); GV->setSection("llvm.metadata"); } GlobalVariable * OpenMPIRBuilder::emitKernelExecutionMode(StringRef KernelName, OMPTgtExecModeFlags Mode) { auto *Int8Ty = Builder.getInt8Ty(); auto *GVMode = new GlobalVariable( M, Int8Ty, /*isConstant=*/true, GlobalValue::WeakAnyLinkage, ConstantInt::get(Int8Ty, Mode), Twine(KernelName, "_exec_mode")); GVMode->setVisibility(GlobalVariable::ProtectedVisibility); return GVMode; } Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr, uint32_t SrcLocStrSize, IdentFlag LocFlags, unsigned Reserve2Flags) { // Enable "C-mode". LocFlags |= OMP_IDENT_FLAG_KMPC; Constant *&Ident = IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}]; if (!Ident) { Constant *I32Null = ConstantInt::getNullValue(Int32); Constant *IdentData[] = {I32Null, ConstantInt::get(Int32, uint32_t(LocFlags)), ConstantInt::get(Int32, Reserve2Flags), ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr}; Constant *Initializer = ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData); // Look for existing encoding of the location + flags, not needed but // minimizes the difference to the existing solution while we transition. for (GlobalVariable &GV : M.globals()) if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer()) if (GV.getInitializer() == Initializer) Ident = &GV; if (!Ident) { auto *GV = new GlobalVariable( M, OpenMPIRBuilder::Ident, /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "", nullptr, GlobalValue::NotThreadLocal, M.getDataLayout().getDefaultGlobalsAddressSpace()); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); GV->setAlignment(Align(8)); Ident = GV; } } return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr); } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr, uint32_t &SrcLocStrSize) { SrcLocStrSize = LocStr.size(); Constant *&SrcLocStr = SrcLocStrMap[LocStr]; if (!SrcLocStr) { Constant *Initializer = ConstantDataArray::getString(M.getContext(), LocStr); // Look for existing encoding of the location, not needed but minimizes the // difference to the existing solution while we transition. for (GlobalVariable &GV : M.globals()) if (GV.isConstant() && GV.hasInitializer() && GV.getInitializer() == Initializer) return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr); SrcLocStr = Builder.CreateGlobalString(LocStr, /* Name */ "", /* AddressSpace */ 0, &M); } return SrcLocStr; } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName, StringRef FileName, unsigned Line, unsigned Column, uint32_t &SrcLocStrSize) { SmallString<128> Buffer; Buffer.push_back(';'); Buffer.append(FileName); Buffer.push_back(';'); Buffer.append(FunctionName); Buffer.push_back(';'); Buffer.append(std::to_string(Line)); Buffer.push_back(';'); Buffer.append(std::to_string(Column)); Buffer.push_back(';'); Buffer.push_back(';'); return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize); } Constant * OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) { StringRef UnknownLoc = ";unknown;unknown;0;0;;"; return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize); } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL, uint32_t &SrcLocStrSize, Function *F) { DILocation *DIL = DL.get(); if (!DIL) return getOrCreateDefaultSrcLocStr(SrcLocStrSize); StringRef FileName = M.getName(); if (DIFile *DIF = DIL->getFile()) if (std::optional Source = DIF->getSource()) FileName = *Source; StringRef Function = DIL->getScope()->getSubprogram()->getName(); if (Function.empty() && F) Function = F->getName(); return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(), DIL->getColumn(), SrcLocStrSize); } Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc, uint32_t &SrcLocStrSize) { return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize, Loc.IP.getBlock()->getParent()); } Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) { return Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident, "omp_global_thread_num"); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive Kind, bool ForceSimpleCall, bool CheckCancelFlag) { if (!updateToLocation(Loc)) return Loc.IP; // Build call __kmpc_cancel_barrier(loc, thread_id) or // __kmpc_barrier(loc, thread_id); IdentFlag BarrierLocFlags; switch (Kind) { case OMPD_for: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR; break; case OMPD_sections: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS; break; case OMPD_single: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE; break; case OMPD_barrier: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL; break; default: BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL; break; } uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Args[] = { getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags), getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))}; // If we are in a cancellable parallel region, barriers are cancellation // points. // TODO: Check why we would force simple calls or to ignore the cancel flag. bool UseCancelBarrier = !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel); Value *Result = Builder.CreateCall(getOrCreateRuntimeFunctionPtr( UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier : OMPRTL___kmpc_barrier), Args); if (UseCancelBarrier && CheckCancelFlag) if (Error Err = emitCancelationCheckImpl(Result, OMPD_parallel)) return Err; return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createCancel(const LocationDescription &Loc, Value *IfCondition, omp::Directive CanceledDirective) { if (!updateToLocation(Loc)) return Loc.IP; // LLVM utilities like blocks with terminators. auto *UI = Builder.CreateUnreachable(); Instruction *ThenTI = UI, *ElseTI = nullptr; if (IfCondition) SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); Builder.SetInsertPoint(ThenTI); Value *CancelKind = nullptr; switch (CanceledDirective) { #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \ case DirectiveEnum: \ CancelKind = Builder.getInt32(Value); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" default: llvm_unreachable("Unknown cancel kind!"); } uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind}; Value *Result = Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args); auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) -> Error { if (CanceledDirective == OMPD_parallel) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); return createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false) .takeError(); } return Error::success(); }; // The actual cancel logic is shared with others, e.g., cancel_barriers. if (Error Err = emitCancelationCheckImpl(Result, CanceledDirective, ExitCB)) return Err; // Update the insertion point and remove the terminator we introduced. Builder.SetInsertPoint(UI->getParent()); UI->eraseFromParent(); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createCancellationPoint(const LocationDescription &Loc, omp::Directive CanceledDirective) { if (!updateToLocation(Loc)) return Loc.IP; // LLVM utilities like blocks with terminators. auto *UI = Builder.CreateUnreachable(); Builder.SetInsertPoint(UI); Value *CancelKind = nullptr; switch (CanceledDirective) { #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \ case DirectiveEnum: \ CancelKind = Builder.getInt32(Value); \ break; #include "llvm/Frontend/OpenMP/OMPKinds.def" default: llvm_unreachable("Unknown cancel kind!"); } uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind}; Value *Result = Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancellationpoint), Args); auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) -> Error { if (CanceledDirective == OMPD_parallel) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); return createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false) .takeError(); } return Error::success(); }; // The actual cancel logic is shared with others, e.g., cancel_barriers. if (Error Err = emitCancelationCheckImpl(Result, CanceledDirective, ExitCB)) return Err; // Update the insertion point and remove the terminator we introduced. Builder.SetInsertPoint(UI->getParent()); UI->eraseFromParent(); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel( const LocationDescription &Loc, InsertPointTy AllocaIP, Value *&Return, Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads, Value *HostPtr, ArrayRef KernelArgs) { if (!updateToLocation(Loc)) return Loc.IP; Builder.restoreIP(AllocaIP); auto *KernelArgsPtr = Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args"); Builder.restoreIP(Loc.IP); for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) { llvm::Value *Arg = Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I); Builder.CreateAlignedStore( KernelArgs[I], Arg, M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType())); } SmallVector OffloadingArgs{Ident, DeviceID, NumTeams, NumThreads, HostPtr, KernelArgsPtr}; Return = Builder.CreateCall( getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel), OffloadingArgs); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::emitKernelLaunch( const LocationDescription &Loc, Value *OutlinedFnID, EmitFallbackCallbackTy EmitTargetCallFallbackCB, TargetKernelArgs &Args, Value *DeviceID, Value *RTLoc, InsertPointTy AllocaIP) { if (!updateToLocation(Loc)) return Loc.IP; Builder.restoreIP(Loc.IP); // On top of the arrays that were filled up, the target offloading call // takes as arguments the device id as well as the host pointer. The host // pointer is used by the runtime library to identify the current target // region, so it only has to be unique and not necessarily point to // anything. It could be the pointer to the outlined function that // implements the target region, but we aren't using that so that the // compiler doesn't need to keep that, and could therefore inline the host // function if proven worthwhile during optimization. // From this point on, we need to have an ID of the target region defined. assert(OutlinedFnID && "Invalid outlined function ID!"); (void)OutlinedFnID; // Return value of the runtime offloading call. Value *Return = nullptr; // Arguments for the target kernel. SmallVector ArgsVector; getKernelArgsVector(Args, Builder, ArgsVector); // The target region is an outlined function launched by the runtime // via calls to __tgt_target_kernel(). // // Note that on the host and CPU targets, the runtime implementation of // these calls simply call the outlined function without forking threads. // The outlined functions themselves have runtime calls to // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by // the compiler in emitTeamsCall() and emitParallelCall(). // // In contrast, on the NVPTX target, the implementation of // __tgt_target_teams() launches a GPU kernel with the requested number // of teams and threads so no additional calls to the runtime are required. // Check the error code and execute the host version if required. Builder.restoreIP(emitTargetKernel( Builder, AllocaIP, Return, RTLoc, DeviceID, Args.NumTeams.front(), Args.NumThreads.front(), OutlinedFnID, ArgsVector)); BasicBlock *OffloadFailedBlock = BasicBlock::Create(Builder.getContext(), "omp_offload.failed"); BasicBlock *OffloadContBlock = BasicBlock::Create(Builder.getContext(), "omp_offload.cont"); Value *Failed = Builder.CreateIsNotNull(Return); Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); auto CurFn = Builder.GetInsertBlock()->getParent(); emitBlock(OffloadFailedBlock, CurFn); InsertPointOrErrorTy AfterIP = EmitTargetCallFallbackCB(Builder.saveIP()); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); emitBranch(OffloadContBlock); emitBlock(OffloadContBlock, CurFn, /*IsFinished=*/true); return Builder.saveIP(); } Error OpenMPIRBuilder::emitCancelationCheckImpl( Value *CancelFlag, omp::Directive CanceledDirective, FinalizeCallbackTy ExitCB) { assert(isLastFinalizationInfoCancellable(CanceledDirective) && "Unexpected cancellation!"); // For a cancel barrier we create two new blocks. BasicBlock *BB = Builder.GetInsertBlock(); BasicBlock *NonCancellationBlock; if (Builder.GetInsertPoint() == BB->end()) { // TODO: This branch will not be needed once we moved to the // OpenMPIRBuilder codegen completely. NonCancellationBlock = BasicBlock::Create( BB->getContext(), BB->getName() + ".cont", BB->getParent()); } else { NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint()); BB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(BB); } BasicBlock *CancellationBlock = BasicBlock::Create( BB->getContext(), BB->getName() + ".cncl", BB->getParent()); // Jump to them based on the return value. Value *Cmp = Builder.CreateIsNull(CancelFlag); Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock, /* TODO weight */ nullptr, nullptr); // From the cancellation block we finalize all variables and go to the // post finalization block that is known to the FiniCB callback. Builder.SetInsertPoint(CancellationBlock); if (ExitCB) if (Error Err = ExitCB(Builder.saveIP())) return Err; auto &FI = FinalizationStack.back(); if (Error Err = FI.FiniCB(Builder.saveIP())) return Err; // The continuation block is where code generation continues. Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin()); return Error::success(); } // Callback used to create OpenMP runtime calls to support // omp parallel clause for the device. // We need to use this callback to replace call to the OutlinedFn in OuterFn // by the call to the OpenMP DeviceRTL runtime function (kmpc_parallel_51) static void targetParallelCallback( OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn, Function *OuterFn, BasicBlock *OuterAllocaBB, Value *Ident, Value *IfCondition, Value *NumThreads, Instruction *PrivTID, AllocaInst *PrivTIDAddr, Value *ThreadID, const SmallVector &ToBeDeleted) { // Add some known attributes. IRBuilder<> &Builder = OMPIRBuilder->Builder; OutlinedFn.addParamAttr(0, Attribute::NoAlias); OutlinedFn.addParamAttr(1, Attribute::NoAlias); OutlinedFn.addParamAttr(0, Attribute::NoUndef); OutlinedFn.addParamAttr(1, Attribute::NoUndef); OutlinedFn.addFnAttr(Attribute::NoUnwind); assert(OutlinedFn.arg_size() >= 2 && "Expected at least tid and bounded tid as arguments"); unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2; CallInst *CI = cast(OutlinedFn.user_back()); assert(CI && "Expected call instruction to outlined function"); CI->getParent()->setName("omp_parallel"); Builder.SetInsertPoint(CI); Type *PtrTy = OMPIRBuilder->VoidPtr; Value *NullPtrValue = Constant::getNullValue(PtrTy); // Add alloca for kernel args OpenMPIRBuilder ::InsertPointTy CurrentIP = Builder.saveIP(); Builder.SetInsertPoint(OuterAllocaBB, OuterAllocaBB->getFirstInsertionPt()); AllocaInst *ArgsAlloca = Builder.CreateAlloca(ArrayType::get(PtrTy, NumCapturedVars)); Value *Args = ArgsAlloca; // Add address space cast if array for storing arguments is not allocated // in address space 0 if (ArgsAlloca->getAddressSpace()) Args = Builder.CreatePointerCast(ArgsAlloca, PtrTy); Builder.restoreIP(CurrentIP); // Store captured vars which are used by kmpc_parallel_51 for (unsigned Idx = 0; Idx < NumCapturedVars; Idx++) { Value *V = *(CI->arg_begin() + 2 + Idx); Value *StoreAddress = Builder.CreateConstInBoundsGEP2_64( ArrayType::get(PtrTy, NumCapturedVars), Args, 0, Idx); Builder.CreateStore(V, StoreAddress); } Value *Cond = IfCondition ? Builder.CreateSExtOrTrunc(IfCondition, OMPIRBuilder->Int32) : Builder.getInt32(1); // Build kmpc_parallel_51 call Value *Parallel51CallArgs[] = { /* identifier*/ Ident, /* global thread num*/ ThreadID, /* if expression */ Cond, /* number of threads */ NumThreads ? NumThreads : Builder.getInt32(-1), /* Proc bind */ Builder.getInt32(-1), /* outlined function */ &OutlinedFn, /* wrapper function */ NullPtrValue, /* arguments of the outlined funciton*/ Args, /* number of arguments */ Builder.getInt64(NumCapturedVars)}; FunctionCallee RTLFn = OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_parallel_51); Builder.CreateCall(RTLFn, Parallel51CallArgs); LLVM_DEBUG(dbgs() << "With kmpc_parallel_51 placed: " << *Builder.GetInsertBlock()->getParent() << "\n"); // Initialize the local TID stack location with the argument value. Builder.SetInsertPoint(PrivTID); Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin(); Builder.CreateStore(Builder.CreateLoad(OMPIRBuilder->Int32, OutlinedAI), PrivTIDAddr); // Remove redundant call to the outlined function. CI->eraseFromParent(); for (Instruction *I : ToBeDeleted) { I->eraseFromParent(); } } // Callback used to create OpenMP runtime calls to support // omp parallel clause for the host. // We need to use this callback to replace call to the OutlinedFn in OuterFn // by the call to the OpenMP host runtime function ( __kmpc_fork_call[_if]) static void hostParallelCallback(OpenMPIRBuilder *OMPIRBuilder, Function &OutlinedFn, Function *OuterFn, Value *Ident, Value *IfCondition, Instruction *PrivTID, AllocaInst *PrivTIDAddr, const SmallVector &ToBeDeleted) { IRBuilder<> &Builder = OMPIRBuilder->Builder; FunctionCallee RTLFn; if (IfCondition) { RTLFn = OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if); } else { RTLFn = OMPIRBuilder->getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call); } if (auto *F = dyn_cast(RTLFn.getCallee())) { if (!F->hasMetadata(LLVMContext::MD_callback)) { LLVMContext &Ctx = F->getContext(); MDBuilder MDB(Ctx); // Annotate the callback behavior of the __kmpc_fork_call: // - The callback callee is argument number 2 (microtask). // - The first two arguments of the callback callee are unknown (-1). // - All variadic arguments to the __kmpc_fork_call are passed to the // callback callee. F->addMetadata(LLVMContext::MD_callback, *MDNode::get(Ctx, {MDB.createCallbackEncoding( 2, {-1, -1}, /* VarArgsArePassed */ true)})); } } // Add some known attributes. OutlinedFn.addParamAttr(0, Attribute::NoAlias); OutlinedFn.addParamAttr(1, Attribute::NoAlias); OutlinedFn.addFnAttr(Attribute::NoUnwind); assert(OutlinedFn.arg_size() >= 2 && "Expected at least tid and bounded tid as arguments"); unsigned NumCapturedVars = OutlinedFn.arg_size() - /* tid & bounded tid */ 2; CallInst *CI = cast(OutlinedFn.user_back()); CI->getParent()->setName("omp_parallel"); Builder.SetInsertPoint(CI); // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn); Value *ForkCallArgs[] = {Ident, Builder.getInt32(NumCapturedVars), &OutlinedFn}; SmallVector RealArgs; RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs)); if (IfCondition) { Value *Cond = Builder.CreateSExtOrTrunc(IfCondition, OMPIRBuilder->Int32); RealArgs.push_back(Cond); } RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end()); // __kmpc_fork_call_if always expects a void ptr as the last argument // If there are no arguments, pass a null pointer. auto PtrTy = OMPIRBuilder->VoidPtr; if (IfCondition && NumCapturedVars == 0) { Value *NullPtrValue = Constant::getNullValue(PtrTy); RealArgs.push_back(NullPtrValue); } Builder.CreateCall(RTLFn, RealArgs); LLVM_DEBUG(dbgs() << "With fork_call placed: " << *Builder.GetInsertBlock()->getParent() << "\n"); // Initialize the local TID stack location with the argument value. Builder.SetInsertPoint(PrivTID); Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin(); Builder.CreateStore(Builder.CreateLoad(OMPIRBuilder->Int32, OutlinedAI), PrivTIDAddr); // Remove redundant call to the outlined function. CI->eraseFromParent(); for (Instruction *I : ToBeDeleted) { I->eraseFromParent(); } } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createParallel( const LocationDescription &Loc, InsertPointTy OuterAllocaIP, BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB, FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads, omp::ProcBindKind ProcBind, bool IsCancellable) { assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous"); if (!updateToLocation(Loc)) return Loc.IP; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadID = getOrCreateThreadID(Ident); // If we generate code for the target device, we need to allocate // struct for aggregate params in the device default alloca address space. // OpenMP runtime requires that the params of the extracted functions are // passed as zero address space pointers. This flag ensures that extracted // function arguments are declared in zero address space bool ArgsInZeroAddressSpace = Config.isTargetDevice(); // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads) // only if we compile for host side. if (NumThreads && !Config.isTargetDevice()) { Value *Args[] = { Ident, ThreadID, Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)}; Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args); } if (ProcBind != OMP_PROC_BIND_default) { // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind) Value *Args[] = { Ident, ThreadID, ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)}; Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args); } BasicBlock *InsertBB = Builder.GetInsertBlock(); Function *OuterFn = InsertBB->getParent(); // Save the outer alloca block because the insertion iterator may get // invalidated and we still need this later. BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock(); // Vector to remember instructions we used only during the modeling but which // we want to delete at the end. SmallVector ToBeDeleted; // Change the location to the outer alloca insertion point to create and // initialize the allocas we pass into the parallel region. InsertPointTy NewOuter(OuterAllocaBlock, OuterAllocaBlock->begin()); Builder.restoreIP(NewOuter); AllocaInst *TIDAddrAlloca = Builder.CreateAlloca(Int32, nullptr, "tid.addr"); AllocaInst *ZeroAddrAlloca = Builder.CreateAlloca(Int32, nullptr, "zero.addr"); Instruction *TIDAddr = TIDAddrAlloca; Instruction *ZeroAddr = ZeroAddrAlloca; if (ArgsInZeroAddressSpace && M.getDataLayout().getAllocaAddrSpace() != 0) { // Add additional casts to enforce pointers in zero address space TIDAddr = new AddrSpaceCastInst( TIDAddrAlloca, PointerType ::get(M.getContext(), 0), "tid.addr.ascast"); TIDAddr->insertAfter(TIDAddrAlloca->getIterator()); ToBeDeleted.push_back(TIDAddr); ZeroAddr = new AddrSpaceCastInst(ZeroAddrAlloca, PointerType ::get(M.getContext(), 0), "zero.addr.ascast"); ZeroAddr->insertAfter(ZeroAddrAlloca->getIterator()); ToBeDeleted.push_back(ZeroAddr); } // We only need TIDAddr and ZeroAddr for modeling purposes to get the // associated arguments in the outlined function, so we delete them later. ToBeDeleted.push_back(TIDAddrAlloca); ToBeDeleted.push_back(ZeroAddrAlloca); // Create an artificial insertion point that will also ensure the blocks we // are about to split are not degenerated. auto *UI = new UnreachableInst(Builder.getContext(), InsertBB); BasicBlock *EntryBB = UI->getParent(); BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry"); BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region"); BasicBlock *PRegPreFiniBB = PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize"); BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit"); auto FiniCBWrapper = [&](InsertPointTy IP) { // Hide "open-ended" blocks from the given FiniCB by setting the right jump // target to the region exit block. if (IP.getBlock()->end() == IP.getPoint()) { IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); Instruction *I = Builder.CreateBr(PRegExitBB); IP = InsertPointTy(I->getParent(), I->getIterator()); } assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && "Unexpected insertion point for finalization call!"); return FiniCB(IP); }; FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable}); // Generate the privatization allocas in the block that will become the entry // of the outlined function. Builder.SetInsertPoint(PRegEntryBB->getTerminator()); InsertPointTy InnerAllocaIP = Builder.saveIP(); AllocaInst *PrivTIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr.local"); Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid"); // Add some fake uses for OpenMP provided arguments. ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use")); Instruction *ZeroAddrUse = Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use"); ToBeDeleted.push_back(ZeroAddrUse); // EntryBB // | // V // PRegionEntryBB <- Privatization allocas are placed here. // | // V // PRegionBodyBB <- BodeGen is invoked here. // | // V // PRegPreFiniBB <- The block we will start finalization from. // | // V // PRegionExitBB <- A common exit to simplify block collection. // LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n"); // Let the caller create the body. assert(BodyGenCB && "Expected body generation callback!"); InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin()); if (Error Err = BodyGenCB(InnerAllocaIP, CodeGenIP)) return Err; LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n"); OutlineInfo OI; if (Config.isTargetDevice()) { // Generate OpenMP target specific runtime call OI.PostOutlineCB = [=, ToBeDeletedVec = std::move(ToBeDeleted)](Function &OutlinedFn) { targetParallelCallback(this, OutlinedFn, OuterFn, OuterAllocaBlock, Ident, IfCondition, NumThreads, PrivTID, PrivTIDAddr, ThreadID, ToBeDeletedVec); }; } else { // Generate OpenMP host runtime call OI.PostOutlineCB = [=, ToBeDeletedVec = std::move(ToBeDeleted)](Function &OutlinedFn) { hostParallelCallback(this, OutlinedFn, OuterFn, Ident, IfCondition, PrivTID, PrivTIDAddr, ToBeDeletedVec); }; } OI.OuterAllocaBB = OuterAllocaBlock; OI.EntryBB = PRegEntryBB; OI.ExitBB = PRegExitBB; SmallPtrSet ParallelRegionBlockSet; SmallVector Blocks; OI.collectBlocks(ParallelRegionBlockSet, Blocks); CodeExtractorAnalysisCache CEAC(*OuterFn); CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, /* AggregateArgs */ false, /* BlockFrequencyInfo */ nullptr, /* BranchProbabilityInfo */ nullptr, /* AssumptionCache */ nullptr, /* AllowVarArgs */ true, /* AllowAlloca */ true, /* AllocationBlock */ OuterAllocaBlock, /* Suffix */ ".omp_par", ArgsInZeroAddressSpace); // Find inputs to, outputs from the code region. BasicBlock *CommonExit = nullptr; SetVector Inputs, Outputs, SinkingCands, HoistingCands; Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands, /*CollectGlobalInputs=*/true); Inputs.remove_if([&](Value *I) { if (auto *GV = dyn_cast_if_present(I)) return GV->getValueType() == OpenMPIRBuilder::Ident; return false; }); LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n"); FunctionCallee TIDRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num); auto PrivHelper = [&](Value &V) -> Error { if (&V == TIDAddr || &V == ZeroAddr) { OI.ExcludeArgsFromAggregate.push_back(&V); return Error::success(); } SetVector Uses; for (Use &U : V.uses()) if (auto *UserI = dyn_cast(U.getUser())) if (ParallelRegionBlockSet.count(UserI->getParent())) Uses.insert(&U); // __kmpc_fork_call expects extra arguments as pointers. If the input // already has a pointer type, everything is fine. Otherwise, store the // value onto stack and load it back inside the to-be-outlined region. This // will ensure only the pointer will be passed to the function. // FIXME: if there are more than 15 trailing arguments, they must be // additionally packed in a struct. Value *Inner = &V; if (!V.getType()->isPointerTy()) { IRBuilder<>::InsertPointGuard Guard(Builder); LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n"); Builder.restoreIP(OuterAllocaIP); Value *Ptr = Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded"); // Store to stack at end of the block that currently branches to the entry // block of the to-be-outlined region. Builder.SetInsertPoint(InsertBB, InsertBB->getTerminator()->getIterator()); Builder.CreateStore(&V, Ptr); // Load back next to allocations in the to-be-outlined region. Builder.restoreIP(InnerAllocaIP); Inner = Builder.CreateLoad(V.getType(), Ptr); } Value *ReplacementValue = nullptr; CallInst *CI = dyn_cast(&V); if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) { ReplacementValue = PrivTID; } else { InsertPointOrErrorTy AfterIP = PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); InnerAllocaIP = { InnerAllocaIP.getBlock(), InnerAllocaIP.getBlock()->getTerminator()->getIterator()}; assert(ReplacementValue && "Expected copy/create callback to set replacement value!"); if (ReplacementValue == &V) return Error::success(); } for (Use *UPtr : Uses) UPtr->set(ReplacementValue); return Error::success(); }; // Reset the inner alloca insertion as it will be used for loading the values // wrapped into pointers before passing them into the to-be-outlined region. // Configure it to insert immediately after the fake use of zero address so // that they are available in the generated body and so that the // OpenMP-related values (thread ID and zero address pointers) remain leading // in the argument list. InnerAllocaIP = IRBuilder<>::InsertPoint( ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator()); // Reset the outer alloca insertion point to the entry of the relevant block // in case it was invalidated. OuterAllocaIP = IRBuilder<>::InsertPoint( OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt()); for (Value *Input : Inputs) { LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n"); if (Error Err = PrivHelper(*Input)) return Err; } LLVM_DEBUG({ for (Value *Output : Outputs) LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n"); }); assert(Outputs.empty() && "OpenMP outlining should not produce live-out values!"); LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n"); LLVM_DEBUG({ for (auto *BB : Blocks) dbgs() << " PBR: " << BB->getName() << "\n"; }); // Adjust the finalization stack, verify the adjustment, and call the // finalize function a last time to finalize values between the pre-fini // block and the exit block if we left the parallel "the normal way". auto FiniInfo = FinalizationStack.pop_back_val(); (void)FiniInfo; assert(FiniInfo.DK == OMPD_parallel && "Unexpected finalization stack state!"); Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator(); InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator()); if (Error Err = FiniCB(PreFiniIP)) return Err; // Register the outlined info. addOutlineInfo(std::move(OI)); InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end()); UI->eraseFromParent(); return AfterIP; } void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) { // Build call void __kmpc_flush(ident_t *loc) uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)}; Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args); } void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) { if (!updateToLocation(Loc)) return; emitFlush(Loc); } void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) { // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 // global_tid); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *Args[] = {Ident, getOrCreateThreadID(Ident)}; // Ignore return result until untied tasks are supported. Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait), Args); } void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) { if (!updateToLocation(Loc)) return; emitTaskwaitImpl(Loc); } void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) { // Build call __kmpc_omp_taskyield(loc, thread_id, 0); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Constant *I32Null = ConstantInt::getNullValue(Int32); Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null}; Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield), Args); } void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) { if (!updateToLocation(Loc)) return; emitTaskyieldImpl(Loc); } // Processes the dependencies in Dependencies and does the following // - Allocates space on the stack of an array of DependInfo objects // - Populates each DependInfo object with relevant information of // the corresponding dependence. // - All code is inserted in the entry block of the current function. static Value *emitTaskDependencies( OpenMPIRBuilder &OMPBuilder, const SmallVectorImpl &Dependencies) { // Early return if we have no dependencies to process if (Dependencies.empty()) return nullptr; // Given a vector of DependData objects, in this function we create an // array on the stack that holds kmp_dep_info objects corresponding // to each dependency. This is then passed to the OpenMP runtime. // For example, if there are 'n' dependencies then the following psedo // code is generated. Assume the first dependence is on a variable 'a' // // \code{c} // DepArray = alloc(n x sizeof(kmp_depend_info); // idx = 0; // DepArray[idx].base_addr = ptrtoint(&a); // DepArray[idx].len = 8; // DepArray[idx].flags = Dep.DepKind; /*(See OMPContants.h for DepKind)*/ // ++idx; // DepArray[idx].base_addr = ...; // \endcode IRBuilderBase &Builder = OMPBuilder.Builder; Type *DependInfo = OMPBuilder.DependInfo; Module &M = OMPBuilder.M; Value *DepArray = nullptr; OpenMPIRBuilder::InsertPointTy OldIP = Builder.saveIP(); Builder.SetInsertPoint( OldIP.getBlock()->getParent()->getEntryBlock().getTerminator()); Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size()); DepArray = Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr"); Builder.restoreIP(OldIP); for (const auto &[DepIdx, Dep] : enumerate(Dependencies)) { Value *Base = Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, DepIdx); // Store the pointer to the variable Value *Addr = Builder.CreateStructGEP( DependInfo, Base, static_cast(RTLDependInfoFields::BaseAddr)); Value *DepValPtr = Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty()); Builder.CreateStore(DepValPtr, Addr); // Store the size of the variable Value *Size = Builder.CreateStructGEP( DependInfo, Base, static_cast(RTLDependInfoFields::Len)); Builder.CreateStore( Builder.getInt64(M.getDataLayout().getTypeStoreSize(Dep.DepValueType)), Size); // Store the dependency kind Value *Flags = Builder.CreateStructGEP( DependInfo, Base, static_cast(RTLDependInfoFields::Flags)); Builder.CreateStore( ConstantInt::get(Builder.getInt8Ty(), static_cast(Dep.DepKind)), Flags); } return DepArray; } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createTask( const LocationDescription &Loc, InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB, bool Tied, Value *Final, Value *IfCondition, SmallVector Dependencies, bool Mergeable, Value *EventHandle, Value *Priority) { if (!updateToLocation(Loc)) return InsertPointTy(); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // The current basic block is split into four basic blocks. After outlining, // they will be mapped as follows: // ``` // def current_fn() { // current_basic_block: // br label %task.exit // task.exit: // ; instructions after task // } // def outlined_fn() { // task.alloca: // br label %task.body // task.body: // ret void // } // ``` BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit"); BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body"); BasicBlock *TaskAllocaBB = splitBB(Builder, /*CreateBranch=*/true, "task.alloca"); InsertPointTy TaskAllocaIP = InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin()); InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin()); if (Error Err = BodyGenCB(TaskAllocaIP, TaskBodyIP)) return Err; OutlineInfo OI; OI.EntryBB = TaskAllocaBB; OI.OuterAllocaBB = AllocaIP.getBlock(); OI.ExitBB = TaskExitBB; // Add the thread ID argument. SmallVector ToBeDeleted; OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal( Builder, AllocaIP, ToBeDeleted, TaskAllocaIP, "global.tid", false)); OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition, Dependencies, Mergeable, Priority, EventHandle, TaskAllocaBB, ToBeDeleted](Function &OutlinedFn) mutable { // Replace the Stale CI by appropriate RTL function call. assert(OutlinedFn.hasOneUse() && "there must be a single user for the outlined function"); CallInst *StaleCI = cast(OutlinedFn.user_back()); // HasShareds is true if any variables are captured in the outlined region, // false otherwise. bool HasShareds = StaleCI->arg_size() > 1; Builder.SetInsertPoint(StaleCI); // Gather the arguments for emitting the runtime call for // @__kmpc_omp_task_alloc Function *TaskAllocFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc); // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID) // call. Value *ThreadID = getOrCreateThreadID(Ident); // Argument - `flags` // Task is tied iff (Flags & 1) == 1. // Task is untied iff (Flags & 1) == 0. // Task is final iff (Flags & 2) == 2. // Task is not final iff (Flags & 2) == 0. // Task is mergeable iff (Flags & 4) == 4. // Task is not mergeable iff (Flags & 4) == 0. // Task is priority iff (Flags & 32) == 32. // Task is not priority iff (Flags & 32) == 0. // TODO: Handle the other flags. Value *Flags = Builder.getInt32(Tied); if (Final) { Value *FinalFlag = Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0)); Flags = Builder.CreateOr(FinalFlag, Flags); } if (Mergeable) Flags = Builder.CreateOr(Builder.getInt32(4), Flags); if (Priority) Flags = Builder.CreateOr(Builder.getInt32(32), Flags); // Argument - `sizeof_kmp_task_t` (TaskSize) // Tasksize refers to the size in bytes of kmp_task_t data structure // including private vars accessed in task. // TODO: add kmp_task_t_with_privates (privates) Value *TaskSize = Builder.getInt64( divideCeil(M.getDataLayout().getTypeSizeInBits(Task), 8)); // Argument - `sizeof_shareds` (SharedsSize) // SharedsSize refers to the shareds array size in the kmp_task_t data // structure. Value *SharedsSize = Builder.getInt64(0); if (HasShareds) { AllocaInst *ArgStructAlloca = dyn_cast(StaleCI->getArgOperand(1)); assert(ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments " "for extracted function"); StructType *ArgStructType = dyn_cast(ArgStructAlloca->getAllocatedType()); assert(ArgStructType && "Unable to find struct type corresponding to " "arguments for extracted function"); SharedsSize = Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType)); } // Emit the @__kmpc_omp_task_alloc runtime call // The runtime call returns a pointer to an area where the task captured // variables must be copied before the task is run (TaskData) CallInst *TaskData = Builder.CreateCall( TaskAllocFn, {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags, /*sizeof_task=*/TaskSize, /*sizeof_shared=*/SharedsSize, /*task_func=*/&OutlinedFn}); // Emit detach clause initialization. // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid, // task_descriptor); if (EventHandle) { Function *TaskDetachFn = getOrCreateRuntimeFunctionPtr( OMPRTL___kmpc_task_allow_completion_event); llvm::Value *EventVal = Builder.CreateCall(TaskDetachFn, {Ident, ThreadID, TaskData}); llvm::Value *EventHandleAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(EventHandle, Builder.getPtrTy(0)); EventVal = Builder.CreatePtrToInt(EventVal, Builder.getInt64Ty()); Builder.CreateStore(EventVal, EventHandleAddr); } // Copy the arguments for outlined function if (HasShareds) { Value *Shareds = StaleCI->getArgOperand(1); Align Alignment = TaskData->getPointerAlignment(M.getDataLayout()); Value *TaskShareds = Builder.CreateLoad(VoidPtr, TaskData); Builder.CreateMemCpy(TaskShareds, Alignment, Shareds, Alignment, SharedsSize); } if (Priority) { // // The return type of "__kmpc_omp_task_alloc" is "kmp_task_t *", // we populate the priority information into the "kmp_task_t" here // // The struct "kmp_task_t" definition is available in kmp.h // kmp_task_t = { shareds, routine, part_id, data1, data2 } // data2 is used for priority // Type *Int32Ty = Builder.getInt32Ty(); Constant *Zero = ConstantInt::get(Int32Ty, 0); // kmp_task_t* => { ptr } Type *TaskPtr = StructType::get(VoidPtr); Value *TaskGEP = Builder.CreateInBoundsGEP(TaskPtr, TaskData, {Zero, Zero}); // kmp_task_t => { ptr, ptr, i32, ptr, ptr } Type *TaskStructType = StructType::get( VoidPtr, VoidPtr, Builder.getInt32Ty(), VoidPtr, VoidPtr); Value *PriorityData = Builder.CreateInBoundsGEP( TaskStructType, TaskGEP, {Zero, ConstantInt::get(Int32Ty, 4)}); // kmp_cmplrdata_t => { ptr, ptr } Type *CmplrStructType = StructType::get(VoidPtr, VoidPtr); Value *CmplrData = Builder.CreateInBoundsGEP(CmplrStructType, PriorityData, {Zero, Zero}); Builder.CreateStore(Priority, CmplrData); } Value *DepArray = emitTaskDependencies(*this, Dependencies); // In the presence of the `if` clause, the following IR is generated: // ... // %data = call @__kmpc_omp_task_alloc(...) // br i1 %if_condition, label %then, label %else // then: // call @__kmpc_omp_task(...) // br label %exit // else: // ;; Wait for resolution of dependencies, if any, before // ;; beginning the task // call @__kmpc_omp_wait_deps(...) // call @__kmpc_omp_task_begin_if0(...) // call @outlined_fn(...) // call @__kmpc_omp_task_complete_if0(...) // br label %exit // exit: // ... if (IfCondition) { // `SplitBlockAndInsertIfThenElse` requires the block to have a // terminator. splitBB(Builder, /*CreateBranch=*/true, "if.end"); Instruction *IfTerminator = Builder.GetInsertPoint()->getParent()->getTerminator(); Instruction *ThenTI = IfTerminator, *ElseTI = nullptr; Builder.SetInsertPoint(IfTerminator); SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI, &ElseTI); Builder.SetInsertPoint(ElseTI); if (Dependencies.size()) { Function *TaskWaitFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_wait_deps); Builder.CreateCall( TaskWaitFn, {Ident, ThreadID, Builder.getInt32(Dependencies.size()), DepArray, ConstantInt::get(Builder.getInt32Ty(), 0), ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))}); } Function *TaskBeginFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0); Function *TaskCompleteFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0); Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, TaskData}); CallInst *CI = nullptr; if (HasShareds) CI = Builder.CreateCall(&OutlinedFn, {ThreadID, TaskData}); else CI = Builder.CreateCall(&OutlinedFn, {ThreadID}); CI->setDebugLoc(StaleCI->getDebugLoc()); Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, TaskData}); Builder.SetInsertPoint(ThenTI); } if (Dependencies.size()) { Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps); Builder.CreateCall( TaskFn, {Ident, ThreadID, TaskData, Builder.getInt32(Dependencies.size()), DepArray, ConstantInt::get(Builder.getInt32Ty(), 0), ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))}); } else { // Emit the @__kmpc_omp_task runtime call to spawn the task Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task); Builder.CreateCall(TaskFn, {Ident, ThreadID, TaskData}); } StaleCI->eraseFromParent(); Builder.SetInsertPoint(TaskAllocaBB, TaskAllocaBB->begin()); if (HasShareds) { LoadInst *Shareds = Builder.CreateLoad(VoidPtr, OutlinedFn.getArg(1)); OutlinedFn.getArg(1)->replaceUsesWithIf( Shareds, [Shareds](Use &U) { return U.getUser() != Shareds; }); } for (Instruction *I : llvm::reverse(ToBeDeleted)) I->eraseFromParent(); }; addOutlineInfo(std::move(OI)); Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin()); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc, InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB) { if (!updateToLocation(Loc)) return InsertPointTy(); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadID = getOrCreateThreadID(Ident); // Emit the @__kmpc_taskgroup runtime call to start the taskgroup Function *TaskgroupFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup); Builder.CreateCall(TaskgroupFn, {Ident, ThreadID}); BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit"); if (Error Err = BodyGenCB(AllocaIP, Builder.saveIP())) return Err; Builder.SetInsertPoint(TaskgroupExitBB); // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup Function *EndTaskgroupFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup); Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID}); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createSections( const LocationDescription &Loc, InsertPointTy AllocaIP, ArrayRef SectionCBs, PrivatizeCallbackTy PrivCB, FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) { assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required"); if (!updateToLocation(Loc)) return Loc.IP; // FiniCBWrapper needs to create a branch to the loop finalization block, but // this has not been created yet at some times when this callback runs. SmallVector CancellationBranches; auto FiniCBWrapper = [&](InsertPointTy IP) { if (IP.getBlock()->end() != IP.getPoint()) return FiniCB(IP); // This must be done otherwise any nested constructs using FinalizeOMPRegion // will fail because that function requires the Finalization Basic Block to // have a terminator, which is already removed by EmitOMPRegionBody. // IP is currently at cancelation block. BranchInst *DummyBranch = Builder.CreateBr(IP.getBlock()); IP = InsertPointTy(DummyBranch->getParent(), DummyBranch->getIterator()); CancellationBranches.push_back(DummyBranch); return FiniCB(IP); }; FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable}); // Each section is emitted as a switch case // Each finalization callback is handled from clang.EmitOMPSectionDirective() // -> OMP.createSection() which generates the IR for each section // Iterate through all sections and emit a switch construct: // switch (IV) { // case 0: // ; // break; // ... // case - 1: // - 1]>; // break; // } // ... // section_loop.after: // ; auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) -> Error { Builder.restoreIP(CodeGenIP); BasicBlock *Continue = splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after"); Function *CurFn = Continue->getParent(); SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue); unsigned CaseNumber = 0; for (auto SectionCB : SectionCBs) { BasicBlock *CaseBB = BasicBlock::Create( M.getContext(), "omp_section_loop.body.case", CurFn, Continue); SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB); Builder.SetInsertPoint(CaseBB); BranchInst *CaseEndBr = Builder.CreateBr(Continue); if (Error Err = SectionCB(InsertPointTy(), {CaseEndBr->getParent(), CaseEndBr->getIterator()})) return Err; CaseNumber++; } // remove the existing terminator from body BB since there can be no // terminators after switch/case return Error::success(); }; // Loop body ends here // LowerBound, UpperBound, and STride for createCanonicalLoop Type *I32Ty = Type::getInt32Ty(M.getContext()); Value *LB = ConstantInt::get(I32Ty, 0); Value *UB = ConstantInt::get(I32Ty, SectionCBs.size()); Value *ST = ConstantInt::get(I32Ty, 1); Expected LoopInfo = createCanonicalLoop( Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop"); if (!LoopInfo) return LoopInfo.takeError(); InsertPointOrErrorTy WsloopIP = applyStaticWorkshareLoop(Loc.DL, *LoopInfo, AllocaIP, WorksharingLoopType::ForStaticLoop, !IsNowait); if (!WsloopIP) return WsloopIP.takeError(); InsertPointTy AfterIP = *WsloopIP; BasicBlock *LoopFini = AfterIP.getBlock()->getSinglePredecessor(); assert(LoopFini && "Bad structure of static workshare loop finalization"); // Apply the finalization callback in LoopAfterBB auto FiniInfo = FinalizationStack.pop_back_val(); assert(FiniInfo.DK == OMPD_sections && "Unexpected finalization stack state!"); if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) { Builder.restoreIP(AfterIP); BasicBlock *FiniBB = splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini"); if (Error Err = CB(Builder.saveIP())) return Err; AfterIP = {FiniBB, FiniBB->begin()}; } // Now we can fix the dummy branch to point to the right place for (BranchInst *DummyBranch : CancellationBranches) { assert(DummyBranch->getNumSuccessors() == 1); DummyBranch->setSuccessor(0, LoopFini); } return AfterIP; } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createSection(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB) { if (!updateToLocation(Loc)) return Loc.IP; auto FiniCBWrapper = [&](InsertPointTy IP) { if (IP.getBlock()->end() != IP.getPoint()) return FiniCB(IP); // This must be done otherwise any nested constructs using FinalizeOMPRegion // will fail because that function requires the Finalization Basic Block to // have a terminator, which is already removed by EmitOMPRegionBody. // IP is currently at cancelation block. // We need to backtrack to the condition block to fetch // the exit block and create a branch from cancelation // to exit block. IRBuilder<>::InsertPointGuard IPG(Builder); Builder.restoreIP(IP); auto *CaseBB = Loc.IP.getBlock(); auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); Instruction *I = Builder.CreateBr(ExitBB); IP = InsertPointTy(I->getParent(), I->getIterator()); return FiniCB(IP); }; Directive OMPD = Directive::OMPD_sections; // Since we are using Finalization Callback here, HasFinalize // and IsCancellable have to be true return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper, /*Conditional*/ false, /*hasFinalize*/ true, /*IsCancellable*/ true); } static OpenMPIRBuilder::InsertPointTy getInsertPointAfterInstr(Instruction *I) { BasicBlock::iterator IT(I); IT++; return OpenMPIRBuilder::InsertPointTy(I->getParent(), IT); } Value *OpenMPIRBuilder::getGPUThreadID() { return Builder.CreateCall( getOrCreateRuntimeFunction(M, OMPRTL___kmpc_get_hardware_thread_id_in_block), {}); } Value *OpenMPIRBuilder::getGPUWarpSize() { return Builder.CreateCall( getOrCreateRuntimeFunction(M, OMPRTL___kmpc_get_warp_size), {}); } Value *OpenMPIRBuilder::getNVPTXWarpID() { unsigned LaneIDBits = Log2_32(Config.getGridValue().GV_Warp_Size); return Builder.CreateAShr(getGPUThreadID(), LaneIDBits, "nvptx_warp_id"); } Value *OpenMPIRBuilder::getNVPTXLaneID() { unsigned LaneIDBits = Log2_32(Config.getGridValue().GV_Warp_Size); assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device."); unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); return Builder.CreateAnd(getGPUThreadID(), Builder.getInt32(LaneIDMask), "nvptx_lane_id"); } Value *OpenMPIRBuilder::castValueToType(InsertPointTy AllocaIP, Value *From, Type *ToType) { Type *FromType = From->getType(); uint64_t FromSize = M.getDataLayout().getTypeStoreSize(FromType); uint64_t ToSize = M.getDataLayout().getTypeStoreSize(ToType); assert(FromSize > 0 && "From size must be greater than zero"); assert(ToSize > 0 && "To size must be greater than zero"); if (FromType == ToType) return From; if (FromSize == ToSize) return Builder.CreateBitCast(From, ToType); if (ToType->isIntegerTy() && FromType->isIntegerTy()) return Builder.CreateIntCast(From, ToType, /*isSigned*/ true); InsertPointTy SaveIP = Builder.saveIP(); Builder.restoreIP(AllocaIP); Value *CastItem = Builder.CreateAlloca(ToType); Builder.restoreIP(SaveIP); Value *ValCastItem = Builder.CreatePointerBitCastOrAddrSpaceCast( CastItem, Builder.getPtrTy(0)); Builder.CreateStore(From, ValCastItem); return Builder.CreateLoad(ToType, CastItem); } Value *OpenMPIRBuilder::createRuntimeShuffleFunction(InsertPointTy AllocaIP, Value *Element, Type *ElementType, Value *Offset) { uint64_t Size = M.getDataLayout().getTypeStoreSize(ElementType); assert(Size <= 8 && "Unsupported bitwidth in shuffle instruction"); // Cast all types to 32- or 64-bit values before calling shuffle routines. Type *CastTy = Builder.getIntNTy(Size <= 4 ? 32 : 64); Value *ElemCast = castValueToType(AllocaIP, Element, CastTy); Value *WarpSize = Builder.CreateIntCast(getGPUWarpSize(), Builder.getInt16Ty(), true); Function *ShuffleFunc = getOrCreateRuntimeFunctionPtr( Size <= 4 ? RuntimeFunction::OMPRTL___kmpc_shuffle_int32 : RuntimeFunction::OMPRTL___kmpc_shuffle_int64); Value *WarpSizeCast = Builder.CreateIntCast(WarpSize, Builder.getInt16Ty(), /*isSigned=*/true); Value *ShuffleCall = Builder.CreateCall(ShuffleFunc, {ElemCast, Offset, WarpSizeCast}); return castValueToType(AllocaIP, ShuffleCall, CastTy); } void OpenMPIRBuilder::shuffleAndStore(InsertPointTy AllocaIP, Value *SrcAddr, Value *DstAddr, Type *ElemType, Value *Offset, Type *ReductionArrayTy) { uint64_t Size = M.getDataLayout().getTypeStoreSize(ElemType); // Create the loop over the big sized data. // ptr = (void*)Elem; // ptrEnd = (void*) Elem + 1; // Step = 8; // while (ptr + Step < ptrEnd) // shuffle((int64_t)*ptr); // Step = 4; // while (ptr + Step < ptrEnd) // shuffle((int32_t)*ptr); // ... Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); Value *ElemPtr = DstAddr; Value *Ptr = SrcAddr; for (unsigned IntSize = 8; IntSize >= 1; IntSize /= 2) { if (Size < IntSize) continue; Type *IntType = Builder.getIntNTy(IntSize * 8); Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast( Ptr, Builder.getPtrTy(0), Ptr->getName() + ".ascast"); Value *SrcAddrGEP = Builder.CreateGEP(ElemType, SrcAddr, {ConstantInt::get(IndexTy, 1)}); ElemPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( ElemPtr, Builder.getPtrTy(0), ElemPtr->getName() + ".ascast"); Function *CurFunc = Builder.GetInsertBlock()->getParent(); if ((Size / IntSize) > 1) { Value *PtrEnd = Builder.CreatePointerBitCastOrAddrSpaceCast( SrcAddrGEP, Builder.getPtrTy()); BasicBlock *PreCondBB = BasicBlock::Create(M.getContext(), ".shuffle.pre_cond"); BasicBlock *ThenBB = BasicBlock::Create(M.getContext(), ".shuffle.then"); BasicBlock *ExitBB = BasicBlock::Create(M.getContext(), ".shuffle.exit"); BasicBlock *CurrentBB = Builder.GetInsertBlock(); emitBlock(PreCondBB, CurFunc); PHINode *PhiSrc = Builder.CreatePHI(Ptr->getType(), /*NumReservedValues=*/2); PhiSrc->addIncoming(Ptr, CurrentBB); PHINode *PhiDest = Builder.CreatePHI(ElemPtr->getType(), /*NumReservedValues=*/2); PhiDest->addIncoming(ElemPtr, CurrentBB); Ptr = PhiSrc; ElemPtr = PhiDest; Value *PtrDiff = Builder.CreatePtrDiff( Builder.getInt8Ty(), PtrEnd, Builder.CreatePointerBitCastOrAddrSpaceCast(Ptr, Builder.getPtrTy())); Builder.CreateCondBr( Builder.CreateICmpSGT(PtrDiff, Builder.getInt64(IntSize - 1)), ThenBB, ExitBB); emitBlock(ThenBB, CurFunc); Value *Res = createRuntimeShuffleFunction( AllocaIP, Builder.CreateAlignedLoad( IntType, Ptr, M.getDataLayout().getPrefTypeAlign(ElemType)), IntType, Offset); Builder.CreateAlignedStore(Res, ElemPtr, M.getDataLayout().getPrefTypeAlign(ElemType)); Value *LocalPtr = Builder.CreateGEP(IntType, Ptr, {ConstantInt::get(IndexTy, 1)}); Value *LocalElemPtr = Builder.CreateGEP(IntType, ElemPtr, {ConstantInt::get(IndexTy, 1)}); PhiSrc->addIncoming(LocalPtr, ThenBB); PhiDest->addIncoming(LocalElemPtr, ThenBB); emitBranch(PreCondBB); emitBlock(ExitBB, CurFunc); } else { Value *Res = createRuntimeShuffleFunction( AllocaIP, Builder.CreateLoad(IntType, Ptr), IntType, Offset); if (ElemType->isIntegerTy() && ElemType->getScalarSizeInBits() < Res->getType()->getScalarSizeInBits()) Res = Builder.CreateTrunc(Res, ElemType); Builder.CreateStore(Res, ElemPtr); Ptr = Builder.CreateGEP(IntType, Ptr, {ConstantInt::get(IndexTy, 1)}); ElemPtr = Builder.CreateGEP(IntType, ElemPtr, {ConstantInt::get(IndexTy, 1)}); } Size = Size % IntSize; } } void OpenMPIRBuilder::emitReductionListCopy( InsertPointTy AllocaIP, CopyAction Action, Type *ReductionArrayTy, ArrayRef ReductionInfos, Value *SrcBase, Value *DestBase, CopyOptionsTy CopyOptions) { Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; // Iterates, element-by-element, through the source Reduce list and // make a copy. for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Value *SrcElementAddr = nullptr; Value *DestElementAddr = nullptr; Value *DestElementPtrAddr = nullptr; // Should we shuffle in an element from a remote lane? bool ShuffleInElement = false; // Set to true to update the pointer in the dest Reduce list to a // newly created element. bool UpdateDestListPtr = false; // Step 1.1: Get the address for the src element in the Reduce list. Value *SrcElementPtrAddr = Builder.CreateInBoundsGEP( ReductionArrayTy, SrcBase, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); SrcElementAddr = Builder.CreateLoad(Builder.getPtrTy(), SrcElementPtrAddr); // Step 1.2: Create a temporary to store the element in the destination // Reduce list. DestElementPtrAddr = Builder.CreateInBoundsGEP( ReductionArrayTy, DestBase, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); switch (Action) { case CopyAction::RemoteLaneToThread: { InsertPointTy CurIP = Builder.saveIP(); Builder.restoreIP(AllocaIP); AllocaInst *DestAlloca = Builder.CreateAlloca(RI.ElementType, nullptr, ".omp.reduction.element"); DestAlloca->setAlignment( M.getDataLayout().getPrefTypeAlign(RI.ElementType)); DestElementAddr = DestAlloca; DestElementAddr = Builder.CreateAddrSpaceCast(DestElementAddr, Builder.getPtrTy(), DestElementAddr->getName() + ".ascast"); Builder.restoreIP(CurIP); ShuffleInElement = true; UpdateDestListPtr = true; break; } case CopyAction::ThreadCopy: { DestElementAddr = Builder.CreateLoad(Builder.getPtrTy(), DestElementPtrAddr); break; } } // Now that all active lanes have read the element in the // Reduce list, shuffle over the value from the remote lane. if (ShuffleInElement) { shuffleAndStore(AllocaIP, SrcElementAddr, DestElementAddr, RI.ElementType, RemoteLaneOffset, ReductionArrayTy); } else { switch (RI.EvaluationKind) { case EvalKind::Scalar: { Value *Elem = Builder.CreateLoad(RI.ElementType, SrcElementAddr); // Store the source element value to the dest element address. Builder.CreateStore(Elem, DestElementAddr); break; } case EvalKind::Complex: { Value *SrcRealPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, SrcElementAddr, 0, 0, ".realp"); Value *SrcReal = Builder.CreateLoad( RI.ElementType->getStructElementType(0), SrcRealPtr, ".real"); Value *SrcImgPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, SrcElementAddr, 0, 1, ".imagp"); Value *SrcImg = Builder.CreateLoad( RI.ElementType->getStructElementType(1), SrcImgPtr, ".imag"); Value *DestRealPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, DestElementAddr, 0, 0, ".realp"); Value *DestImgPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, DestElementAddr, 0, 1, ".imagp"); Builder.CreateStore(SrcReal, DestRealPtr); Builder.CreateStore(SrcImg, DestImgPtr); break; } case EvalKind::Aggregate: { Value *SizeVal = Builder.getInt64( M.getDataLayout().getTypeStoreSize(RI.ElementType)); Builder.CreateMemCpy( DestElementAddr, M.getDataLayout().getPrefTypeAlign(RI.ElementType), SrcElementAddr, M.getDataLayout().getPrefTypeAlign(RI.ElementType), SizeVal, false); break; } }; } // Step 3.1: Modify reference in dest Reduce list as needed. // Modifying the reference in Reduce list to point to the newly // created element. The element is live in the current function // scope and that of functions it invokes (i.e., reduce_function). // RemoteReduceData[i] = (void*)&RemoteElem if (UpdateDestListPtr) { Value *CastDestAddr = Builder.CreatePointerBitCastOrAddrSpaceCast( DestElementAddr, Builder.getPtrTy(), DestElementAddr->getName() + ".ascast"); Builder.CreateStore(CastDestAddr, DestElementPtrAddr); } } } Expected OpenMPIRBuilder::emitInterWarpCopyFunction( const LocationDescription &Loc, ArrayRef ReductionInfos, AttributeList FuncAttrs) { IRBuilder<>::InsertPointGuard IPG(Builder); LLVMContext &Ctx = M.getContext(); FunctionType *FuncTy = FunctionType::get( Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt32Ty()}, /* IsVarArg */ false); Function *WcFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, "_omp_reduction_inter_warp_copy_func", &M); WcFunc->setAttributes(FuncAttrs); WcFunc->addParamAttr(0, Attribute::NoUndef); WcFunc->addParamAttr(1, Attribute::NoUndef); BasicBlock *EntryBB = BasicBlock::Create(M.getContext(), "entry", WcFunc); Builder.SetInsertPoint(EntryBB); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // ReduceList: thread local Reduce list. // At the stage of the computation when this function is called, partially // aggregated values reside in the first lane of every active warp. Argument *ReduceListArg = WcFunc->getArg(0); // NumWarps: number of warps active in the parallel region. This could // be smaller than 32 (max warps in a CTA) for partial block reduction. Argument *NumWarpsArg = WcFunc->getArg(1); // This array is used as a medium to transfer, one reduce element at a time, // the data from the first lane of every warp to lanes in the first warp // in order to perform the final step of a reduction in a parallel region // (reduction across warps). The array is placed in NVPTX __shared__ memory // for reduced latency, as well as to have a distinct copy for concurrently // executing target regions. The array is declared with common linkage so // as to be shared across compilation units. StringRef TransferMediumName = "__openmp_nvptx_data_transfer_temporary_storage"; GlobalVariable *TransferMedium = M.getGlobalVariable(TransferMediumName); unsigned WarpSize = Config.getGridValue().GV_Warp_Size; ArrayType *ArrayTy = ArrayType::get(Builder.getInt32Ty(), WarpSize); if (!TransferMedium) { TransferMedium = new GlobalVariable( M, ArrayTy, /*isConstant=*/false, GlobalVariable::WeakAnyLinkage, UndefValue::get(ArrayTy), TransferMediumName, /*InsertBefore=*/nullptr, GlobalVariable::NotThreadLocal, /*AddressSpace=*/3); } // Get the CUDA thread id of the current OpenMP thread on the GPU. Value *GPUThreadID = getGPUThreadID(); // nvptx_lane_id = nvptx_id % warpsize Value *LaneID = getNVPTXLaneID(); // nvptx_warp_id = nvptx_id / warpsize Value *WarpID = getNVPTXWarpID(); InsertPointTy AllocaIP = InsertPointTy(Builder.GetInsertBlock(), Builder.GetInsertBlock()->getFirstInsertionPt()); Type *Arg0Type = ReduceListArg->getType(); Type *Arg1Type = NumWarpsArg->getType(); Builder.restoreIP(AllocaIP); AllocaInst *ReduceListAlloca = Builder.CreateAlloca( Arg0Type, nullptr, ReduceListArg->getName() + ".addr"); AllocaInst *NumWarpsAlloca = Builder.CreateAlloca(Arg1Type, nullptr, NumWarpsArg->getName() + ".addr"); Value *ReduceListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceListAlloca, Arg0Type, ReduceListAlloca->getName() + ".ascast"); Value *NumWarpsAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( NumWarpsAlloca, Builder.getPtrTy(0), NumWarpsAlloca->getName() + ".ascast"); Builder.CreateStore(ReduceListArg, ReduceListAddrCast); Builder.CreateStore(NumWarpsArg, NumWarpsAddrCast); AllocaIP = getInsertPointAfterInstr(NumWarpsAlloca); InsertPointTy CodeGenIP = getInsertPointAfterInstr(&Builder.GetInsertBlock()->back()); Builder.restoreIP(CodeGenIP); Value *ReduceList = Builder.CreateLoad(Builder.getPtrTy(), ReduceListAddrCast); for (auto En : enumerate(ReductionInfos)) { // // Warp master copies reduce element to transfer medium in __shared__ // memory. // const ReductionInfo &RI = En.value(); unsigned RealTySize = M.getDataLayout().getTypeAllocSize(RI.ElementType); for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /= 2) { Type *CType = Builder.getIntNTy(TySize * 8); unsigned NumIters = RealTySize / TySize; if (NumIters == 0) continue; Value *Cnt = nullptr; Value *CntAddr = nullptr; BasicBlock *PrecondBB = nullptr; BasicBlock *ExitBB = nullptr; if (NumIters > 1) { CodeGenIP = Builder.saveIP(); Builder.restoreIP(AllocaIP); CntAddr = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, ".cnt.addr"); CntAddr = Builder.CreateAddrSpaceCast(CntAddr, Builder.getPtrTy(), CntAddr->getName() + ".ascast"); Builder.restoreIP(CodeGenIP); Builder.CreateStore(Constant::getNullValue(Builder.getInt32Ty()), CntAddr, /*Volatile=*/false); PrecondBB = BasicBlock::Create(Ctx, "precond"); ExitBB = BasicBlock::Create(Ctx, "exit"); BasicBlock *BodyBB = BasicBlock::Create(Ctx, "body"); emitBlock(PrecondBB, Builder.GetInsertBlock()->getParent()); Cnt = Builder.CreateLoad(Builder.getInt32Ty(), CntAddr, /*Volatile=*/false); Value *Cmp = Builder.CreateICmpULT( Cnt, ConstantInt::get(Builder.getInt32Ty(), NumIters)); Builder.CreateCondBr(Cmp, BodyBB, ExitBB); emitBlock(BodyBB, Builder.GetInsertBlock()->getParent()); } // kmpc_barrier. InsertPointOrErrorTy BarrierIP1 = createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ true); if (!BarrierIP1) return BarrierIP1.takeError(); BasicBlock *ThenBB = BasicBlock::Create(Ctx, "then"); BasicBlock *ElseBB = BasicBlock::Create(Ctx, "else"); BasicBlock *MergeBB = BasicBlock::Create(Ctx, "ifcont"); // if (lane_id == 0) Value *IsWarpMaster = Builder.CreateIsNull(LaneID, "warp_master"); Builder.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); emitBlock(ThenBB, Builder.GetInsertBlock()->getParent()); // Reduce element = LocalReduceList[i] auto *RedListArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); Value *ElemPtrPtr = Builder.CreateInBoundsGEP(RedListArrayTy, ReduceList, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); // elemptr = ((CopyType*)(elemptrptr)) + I Value *ElemPtr = Builder.CreateLoad(Builder.getPtrTy(), ElemPtrPtr); if (NumIters > 1) ElemPtr = Builder.CreateGEP(Builder.getInt32Ty(), ElemPtr, Cnt); // Get pointer to location in transfer medium. // MediumPtr = &medium[warp_id] Value *MediumPtr = Builder.CreateInBoundsGEP( ArrayTy, TransferMedium, {Builder.getInt64(0), WarpID}); // elem = *elemptr //*MediumPtr = elem Value *Elem = Builder.CreateLoad(CType, ElemPtr); // Store the source element value to the dest element address. Builder.CreateStore(Elem, MediumPtr, /*IsVolatile*/ true); Builder.CreateBr(MergeBB); // else emitBlock(ElseBB, Builder.GetInsertBlock()->getParent()); Builder.CreateBr(MergeBB); // endif emitBlock(MergeBB, Builder.GetInsertBlock()->getParent()); InsertPointOrErrorTy BarrierIP2 = createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ true); if (!BarrierIP2) return BarrierIP2.takeError(); // Warp 0 copies reduce element from transfer medium BasicBlock *W0ThenBB = BasicBlock::Create(Ctx, "then"); BasicBlock *W0ElseBB = BasicBlock::Create(Ctx, "else"); BasicBlock *W0MergeBB = BasicBlock::Create(Ctx, "ifcont"); Value *NumWarpsVal = Builder.CreateLoad(Builder.getInt32Ty(), NumWarpsAddrCast); // Up to 32 threads in warp 0 are active. Value *IsActiveThread = Builder.CreateICmpULT(GPUThreadID, NumWarpsVal, "is_active_thread"); Builder.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); emitBlock(W0ThenBB, Builder.GetInsertBlock()->getParent()); // SecMediumPtr = &medium[tid] // SrcMediumVal = *SrcMediumPtr Value *SrcMediumPtrVal = Builder.CreateInBoundsGEP( ArrayTy, TransferMedium, {Builder.getInt64(0), GPUThreadID}); // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I Value *TargetElemPtrPtr = Builder.CreateInBoundsGEP(RedListArrayTy, ReduceList, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); Value *TargetElemPtrVal = Builder.CreateLoad(Builder.getPtrTy(), TargetElemPtrPtr); Value *TargetElemPtr = TargetElemPtrVal; if (NumIters > 1) TargetElemPtr = Builder.CreateGEP(Builder.getInt32Ty(), TargetElemPtr, Cnt); // *TargetElemPtr = SrcMediumVal; Value *SrcMediumValue = Builder.CreateLoad(CType, SrcMediumPtrVal, /*IsVolatile*/ true); Builder.CreateStore(SrcMediumValue, TargetElemPtr); Builder.CreateBr(W0MergeBB); emitBlock(W0ElseBB, Builder.GetInsertBlock()->getParent()); Builder.CreateBr(W0MergeBB); emitBlock(W0MergeBB, Builder.GetInsertBlock()->getParent()); if (NumIters > 1) { Cnt = Builder.CreateNSWAdd( Cnt, ConstantInt::get(Builder.getInt32Ty(), /*V=*/1)); Builder.CreateStore(Cnt, CntAddr, /*Volatile=*/false); auto *CurFn = Builder.GetInsertBlock()->getParent(); emitBranch(PrecondBB); emitBlock(ExitBB, CurFn); } RealTySize %= TySize; } } Builder.CreateRetVoid(); return WcFunc; } Function *OpenMPIRBuilder::emitShuffleAndReduceFunction( ArrayRef ReductionInfos, Function *ReduceFn, AttributeList FuncAttrs) { LLVMContext &Ctx = M.getContext(); IRBuilder<>::InsertPointGuard IPG(Builder); FunctionType *FuncTy = FunctionType::get(Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt16Ty(), Builder.getInt16Ty(), Builder.getInt16Ty()}, /* IsVarArg */ false); Function *SarFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, "_omp_reduction_shuffle_and_reduce_func", &M); SarFunc->setAttributes(FuncAttrs); SarFunc->addParamAttr(0, Attribute::NoUndef); SarFunc->addParamAttr(1, Attribute::NoUndef); SarFunc->addParamAttr(2, Attribute::NoUndef); SarFunc->addParamAttr(3, Attribute::NoUndef); SarFunc->addParamAttr(1, Attribute::SExt); SarFunc->addParamAttr(2, Attribute::SExt); SarFunc->addParamAttr(3, Attribute::SExt); BasicBlock *EntryBB = BasicBlock::Create(M.getContext(), "entry", SarFunc); Builder.SetInsertPoint(EntryBB); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Thread local Reduce list used to host the values of data to be reduced. Argument *ReduceListArg = SarFunc->getArg(0); // Current lane id; could be logical. Argument *LaneIDArg = SarFunc->getArg(1); // Offset of the remote source lane relative to the current lane. Argument *RemoteLaneOffsetArg = SarFunc->getArg(2); // Algorithm version. This is expected to be known at compile time. Argument *AlgoVerArg = SarFunc->getArg(3); Type *ReduceListArgType = ReduceListArg->getType(); Type *LaneIDArgType = LaneIDArg->getType(); Type *LaneIDArgPtrType = Builder.getPtrTy(0); Value *ReduceListAlloca = Builder.CreateAlloca( ReduceListArgType, nullptr, ReduceListArg->getName() + ".addr"); Value *LaneIdAlloca = Builder.CreateAlloca(LaneIDArgType, nullptr, LaneIDArg->getName() + ".addr"); Value *RemoteLaneOffsetAlloca = Builder.CreateAlloca( LaneIDArgType, nullptr, RemoteLaneOffsetArg->getName() + ".addr"); Value *AlgoVerAlloca = Builder.CreateAlloca(LaneIDArgType, nullptr, AlgoVerArg->getName() + ".addr"); ArrayType *RedListArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); // Create a local thread-private variable to host the Reduce list // from a remote lane. Instruction *RemoteReductionListAlloca = Builder.CreateAlloca( RedListArrayTy, nullptr, ".omp.reduction.remote_reduce_list"); Value *ReduceListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceListAlloca, ReduceListArgType, ReduceListAlloca->getName() + ".ascast"); Value *LaneIdAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( LaneIdAlloca, LaneIDArgPtrType, LaneIdAlloca->getName() + ".ascast"); Value *RemoteLaneOffsetAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( RemoteLaneOffsetAlloca, LaneIDArgPtrType, RemoteLaneOffsetAlloca->getName() + ".ascast"); Value *AlgoVerAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( AlgoVerAlloca, LaneIDArgPtrType, AlgoVerAlloca->getName() + ".ascast"); Value *RemoteListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( RemoteReductionListAlloca, Builder.getPtrTy(), RemoteReductionListAlloca->getName() + ".ascast"); Builder.CreateStore(ReduceListArg, ReduceListAddrCast); Builder.CreateStore(LaneIDArg, LaneIdAddrCast); Builder.CreateStore(RemoteLaneOffsetArg, RemoteLaneOffsetAddrCast); Builder.CreateStore(AlgoVerArg, AlgoVerAddrCast); Value *ReduceList = Builder.CreateLoad(ReduceListArgType, ReduceListAddrCast); Value *LaneId = Builder.CreateLoad(LaneIDArgType, LaneIdAddrCast); Value *RemoteLaneOffset = Builder.CreateLoad(LaneIDArgType, RemoteLaneOffsetAddrCast); Value *AlgoVer = Builder.CreateLoad(LaneIDArgType, AlgoVerAddrCast); InsertPointTy AllocaIP = getInsertPointAfterInstr(RemoteReductionListAlloca); // This loop iterates through the list of reduce elements and copies, // element by element, from a remote lane in the warp to RemoteReduceList, // hosted on the thread's stack. emitReductionListCopy( AllocaIP, CopyAction::RemoteLaneToThread, RedListArrayTy, ReductionInfos, ReduceList, RemoteListAddrCast, {RemoteLaneOffset, nullptr, nullptr}); // The actions to be performed on the Remote Reduce list is dependent // on the algorithm version. // // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && // LaneId % 2 == 0 && Offset > 0): // do the reduction value aggregation // // The thread local variable Reduce list is mutated in place to host the // reduced data, which is the aggregated value produced from local and // remote lanes. // // Note that AlgoVer is expected to be a constant integer known at compile // time. // When AlgoVer==0, the first conjunction evaluates to true, making // the entire predicate true during compile time. // When AlgoVer==1, the second conjunction has only the second part to be // evaluated during runtime. Other conjunctions evaluates to false // during compile time. // When AlgoVer==2, the third conjunction has only the second part to be // evaluated during runtime. Other conjunctions evaluates to false // during compile time. Value *CondAlgo0 = Builder.CreateIsNull(AlgoVer); Value *Algo1 = Builder.CreateICmpEQ(AlgoVer, Builder.getInt16(1)); Value *LaneComp = Builder.CreateICmpULT(LaneId, RemoteLaneOffset); Value *CondAlgo1 = Builder.CreateAnd(Algo1, LaneComp); Value *Algo2 = Builder.CreateICmpEQ(AlgoVer, Builder.getInt16(2)); Value *LaneIdAnd1 = Builder.CreateAnd(LaneId, Builder.getInt16(1)); Value *LaneIdComp = Builder.CreateIsNull(LaneIdAnd1); Value *Algo2AndLaneIdComp = Builder.CreateAnd(Algo2, LaneIdComp); Value *RemoteOffsetComp = Builder.CreateICmpSGT(RemoteLaneOffset, Builder.getInt16(0)); Value *CondAlgo2 = Builder.CreateAnd(Algo2AndLaneIdComp, RemoteOffsetComp); Value *CA0OrCA1 = Builder.CreateOr(CondAlgo0, CondAlgo1); Value *CondReduce = Builder.CreateOr(CA0OrCA1, CondAlgo2); BasicBlock *ThenBB = BasicBlock::Create(Ctx, "then"); BasicBlock *ElseBB = BasicBlock::Create(Ctx, "else"); BasicBlock *MergeBB = BasicBlock::Create(Ctx, "ifcont"); Builder.CreateCondBr(CondReduce, ThenBB, ElseBB); emitBlock(ThenBB, Builder.GetInsertBlock()->getParent()); Value *LocalReduceListPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceList, Builder.getPtrTy()); Value *RemoteReduceListPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( RemoteListAddrCast, Builder.getPtrTy()); Builder.CreateCall(ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}) ->addFnAttr(Attribute::NoUnwind); Builder.CreateBr(MergeBB); emitBlock(ElseBB, Builder.GetInsertBlock()->getParent()); Builder.CreateBr(MergeBB); emitBlock(MergeBB, Builder.GetInsertBlock()->getParent()); // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local // Reduce list. Algo1 = Builder.CreateICmpEQ(AlgoVer, Builder.getInt16(1)); Value *LaneIdGtOffset = Builder.CreateICmpUGE(LaneId, RemoteLaneOffset); Value *CondCopy = Builder.CreateAnd(Algo1, LaneIdGtOffset); BasicBlock *CpyThenBB = BasicBlock::Create(Ctx, "then"); BasicBlock *CpyElseBB = BasicBlock::Create(Ctx, "else"); BasicBlock *CpyMergeBB = BasicBlock::Create(Ctx, "ifcont"); Builder.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); emitBlock(CpyThenBB, Builder.GetInsertBlock()->getParent()); emitReductionListCopy(AllocaIP, CopyAction::ThreadCopy, RedListArrayTy, ReductionInfos, RemoteListAddrCast, ReduceList); Builder.CreateBr(CpyMergeBB); emitBlock(CpyElseBB, Builder.GetInsertBlock()->getParent()); Builder.CreateBr(CpyMergeBB); emitBlock(CpyMergeBB, Builder.GetInsertBlock()->getParent()); Builder.CreateRetVoid(); return SarFunc; } Function *OpenMPIRBuilder::emitListToGlobalCopyFunction( ArrayRef ReductionInfos, Type *ReductionsBufferTy, AttributeList FuncAttrs) { IRBuilder<>::InsertPointGuard IPG(Builder); LLVMContext &Ctx = M.getContext(); FunctionType *FuncTy = FunctionType::get( Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()}, /* IsVarArg */ false); Function *LtGCFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, "_omp_reduction_list_to_global_copy_func", &M); LtGCFunc->setAttributes(FuncAttrs); LtGCFunc->addParamAttr(0, Attribute::NoUndef); LtGCFunc->addParamAttr(1, Attribute::NoUndef); LtGCFunc->addParamAttr(2, Attribute::NoUndef); BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGCFunc); Builder.SetInsertPoint(EntryBlock); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Buffer: global reduction buffer. Argument *BufferArg = LtGCFunc->getArg(0); // Idx: index of the buffer. Argument *IdxArg = LtGCFunc->getArg(1); // ReduceList: thread local Reduce list. Argument *ReduceListArg = LtGCFunc->getArg(2); Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr, BufferArg->getName() + ".addr"); Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, IdxArg->getName() + ".addr"); Value *ReduceListArgAlloca = Builder.CreateAlloca( Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr"); Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( BufferArgAlloca, Builder.getPtrTy(), BufferArgAlloca->getName() + ".ascast"); Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast"); Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceListArgAlloca, Builder.getPtrTy(), ReduceListArgAlloca->getName() + ".ascast"); Builder.CreateStore(BufferArg, BufferArgAddrCast); Builder.CreateStore(IdxArg, IdxArgAddrCast); Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast); Value *LocalReduceList = Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast); Value *BufferArgVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast); Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)}; Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); auto *RedListArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); // Reduce element = LocalReduceList[i] Value *ElemPtrPtr = Builder.CreateInBoundsGEP( RedListArrayTy, LocalReduceList, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); // elemptr = ((CopyType*)(elemptrptr)) + I Value *ElemPtr = Builder.CreateLoad(Builder.getPtrTy(), ElemPtrPtr); // Global = Buffer.VD[Idx]; Value *BufferVD = Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferArgVal, Idxs); Value *GlobVal = Builder.CreateConstInBoundsGEP2_32( ReductionsBufferTy, BufferVD, 0, En.index()); switch (RI.EvaluationKind) { case EvalKind::Scalar: { Value *TargetElement = Builder.CreateLoad(RI.ElementType, ElemPtr); Builder.CreateStore(TargetElement, GlobVal); break; } case EvalKind::Complex: { Value *SrcRealPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, ElemPtr, 0, 0, ".realp"); Value *SrcReal = Builder.CreateLoad( RI.ElementType->getStructElementType(0), SrcRealPtr, ".real"); Value *SrcImgPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, ElemPtr, 0, 1, ".imagp"); Value *SrcImg = Builder.CreateLoad( RI.ElementType->getStructElementType(1), SrcImgPtr, ".imag"); Value *DestRealPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, GlobVal, 0, 0, ".realp"); Value *DestImgPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, GlobVal, 0, 1, ".imagp"); Builder.CreateStore(SrcReal, DestRealPtr); Builder.CreateStore(SrcImg, DestImgPtr); break; } case EvalKind::Aggregate: { Value *SizeVal = Builder.getInt64(M.getDataLayout().getTypeStoreSize(RI.ElementType)); Builder.CreateMemCpy( GlobVal, M.getDataLayout().getPrefTypeAlign(RI.ElementType), ElemPtr, M.getDataLayout().getPrefTypeAlign(RI.ElementType), SizeVal, false); break; } } } Builder.CreateRetVoid(); return LtGCFunc; } Function *OpenMPIRBuilder::emitListToGlobalReduceFunction( ArrayRef ReductionInfos, Function *ReduceFn, Type *ReductionsBufferTy, AttributeList FuncAttrs) { IRBuilder<>::InsertPointGuard IPG(Builder); LLVMContext &Ctx = M.getContext(); FunctionType *FuncTy = FunctionType::get( Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()}, /* IsVarArg */ false); Function *LtGRFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, "_omp_reduction_list_to_global_reduce_func", &M); LtGRFunc->setAttributes(FuncAttrs); LtGRFunc->addParamAttr(0, Attribute::NoUndef); LtGRFunc->addParamAttr(1, Attribute::NoUndef); LtGRFunc->addParamAttr(2, Attribute::NoUndef); BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGRFunc); Builder.SetInsertPoint(EntryBlock); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Buffer: global reduction buffer. Argument *BufferArg = LtGRFunc->getArg(0); // Idx: index of the buffer. Argument *IdxArg = LtGRFunc->getArg(1); // ReduceList: thread local Reduce list. Argument *ReduceListArg = LtGRFunc->getArg(2); Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr, BufferArg->getName() + ".addr"); Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, IdxArg->getName() + ".addr"); Value *ReduceListArgAlloca = Builder.CreateAlloca( Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr"); auto *RedListArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; Value *LocalReduceList = Builder.CreateAlloca(RedListArrayTy, nullptr, ".omp.reduction.red_list"); Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( BufferArgAlloca, Builder.getPtrTy(), BufferArgAlloca->getName() + ".ascast"); Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast"); Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceListArgAlloca, Builder.getPtrTy(), ReduceListArgAlloca->getName() + ".ascast"); Value *LocalReduceListAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( LocalReduceList, Builder.getPtrTy(), LocalReduceList->getName() + ".ascast"); Builder.CreateStore(BufferArg, BufferArgAddrCast); Builder.CreateStore(IdxArg, IdxArgAddrCast); Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast); Value *BufferVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast); Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)}; Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); for (auto En : enumerate(ReductionInfos)) { Value *TargetElementPtrPtr = Builder.CreateInBoundsGEP( RedListArrayTy, LocalReduceListAddrCast, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); Value *BufferVD = Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferVal, Idxs); // Global = Buffer.VD[Idx]; Value *GlobValPtr = Builder.CreateConstInBoundsGEP2_32( ReductionsBufferTy, BufferVD, 0, En.index()); Builder.CreateStore(GlobValPtr, TargetElementPtrPtr); } // Call reduce_function(GlobalReduceList, ReduceList) Value *ReduceList = Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast); Builder.CreateCall(ReduceFn, {LocalReduceListAddrCast, ReduceList}) ->addFnAttr(Attribute::NoUnwind); Builder.CreateRetVoid(); return LtGRFunc; } Function *OpenMPIRBuilder::emitGlobalToListCopyFunction( ArrayRef ReductionInfos, Type *ReductionsBufferTy, AttributeList FuncAttrs) { IRBuilder<>::InsertPointGuard IPG(Builder); LLVMContext &Ctx = M.getContext(); FunctionType *FuncTy = FunctionType::get( Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()}, /* IsVarArg */ false); Function *LtGCFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, "_omp_reduction_global_to_list_copy_func", &M); LtGCFunc->setAttributes(FuncAttrs); LtGCFunc->addParamAttr(0, Attribute::NoUndef); LtGCFunc->addParamAttr(1, Attribute::NoUndef); LtGCFunc->addParamAttr(2, Attribute::NoUndef); BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGCFunc); Builder.SetInsertPoint(EntryBlock); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Buffer: global reduction buffer. Argument *BufferArg = LtGCFunc->getArg(0); // Idx: index of the buffer. Argument *IdxArg = LtGCFunc->getArg(1); // ReduceList: thread local Reduce list. Argument *ReduceListArg = LtGCFunc->getArg(2); Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr, BufferArg->getName() + ".addr"); Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, IdxArg->getName() + ".addr"); Value *ReduceListArgAlloca = Builder.CreateAlloca( Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr"); Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( BufferArgAlloca, Builder.getPtrTy(), BufferArgAlloca->getName() + ".ascast"); Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast"); Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceListArgAlloca, Builder.getPtrTy(), ReduceListArgAlloca->getName() + ".ascast"); Builder.CreateStore(BufferArg, BufferArgAddrCast); Builder.CreateStore(IdxArg, IdxArgAddrCast); Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast); Value *LocalReduceList = Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast); Value *BufferVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast); Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)}; Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); for (auto En : enumerate(ReductionInfos)) { const OpenMPIRBuilder::ReductionInfo &RI = En.value(); auto *RedListArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); // Reduce element = LocalReduceList[i] Value *ElemPtrPtr = Builder.CreateInBoundsGEP( RedListArrayTy, LocalReduceList, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); // elemptr = ((CopyType*)(elemptrptr)) + I Value *ElemPtr = Builder.CreateLoad(Builder.getPtrTy(), ElemPtrPtr); // Global = Buffer.VD[Idx]; Value *BufferVD = Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferVal, Idxs); Value *GlobValPtr = Builder.CreateConstInBoundsGEP2_32( ReductionsBufferTy, BufferVD, 0, En.index()); switch (RI.EvaluationKind) { case EvalKind::Scalar: { Value *TargetElement = Builder.CreateLoad(RI.ElementType, GlobValPtr); Builder.CreateStore(TargetElement, ElemPtr); break; } case EvalKind::Complex: { Value *SrcRealPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, GlobValPtr, 0, 0, ".realp"); Value *SrcReal = Builder.CreateLoad( RI.ElementType->getStructElementType(0), SrcRealPtr, ".real"); Value *SrcImgPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, GlobValPtr, 0, 1, ".imagp"); Value *SrcImg = Builder.CreateLoad( RI.ElementType->getStructElementType(1), SrcImgPtr, ".imag"); Value *DestRealPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, ElemPtr, 0, 0, ".realp"); Value *DestImgPtr = Builder.CreateConstInBoundsGEP2_32( RI.ElementType, ElemPtr, 0, 1, ".imagp"); Builder.CreateStore(SrcReal, DestRealPtr); Builder.CreateStore(SrcImg, DestImgPtr); break; } case EvalKind::Aggregate: { Value *SizeVal = Builder.getInt64(M.getDataLayout().getTypeStoreSize(RI.ElementType)); Builder.CreateMemCpy( ElemPtr, M.getDataLayout().getPrefTypeAlign(RI.ElementType), GlobValPtr, M.getDataLayout().getPrefTypeAlign(RI.ElementType), SizeVal, false); break; } } } Builder.CreateRetVoid(); return LtGCFunc; } Function *OpenMPIRBuilder::emitGlobalToListReduceFunction( ArrayRef ReductionInfos, Function *ReduceFn, Type *ReductionsBufferTy, AttributeList FuncAttrs) { IRBuilder<>::InsertPointGuard IPG(Builder); LLVMContext &Ctx = M.getContext(); auto *FuncTy = FunctionType::get( Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getInt32Ty(), Builder.getPtrTy()}, /* IsVarArg */ false); Function *LtGRFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, "_omp_reduction_global_to_list_reduce_func", &M); LtGRFunc->setAttributes(FuncAttrs); LtGRFunc->addParamAttr(0, Attribute::NoUndef); LtGRFunc->addParamAttr(1, Attribute::NoUndef); LtGRFunc->addParamAttr(2, Attribute::NoUndef); BasicBlock *EntryBlock = BasicBlock::Create(Ctx, "entry", LtGRFunc); Builder.SetInsertPoint(EntryBlock); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Buffer: global reduction buffer. Argument *BufferArg = LtGRFunc->getArg(0); // Idx: index of the buffer. Argument *IdxArg = LtGRFunc->getArg(1); // ReduceList: thread local Reduce list. Argument *ReduceListArg = LtGRFunc->getArg(2); Value *BufferArgAlloca = Builder.CreateAlloca(Builder.getPtrTy(), nullptr, BufferArg->getName() + ".addr"); Value *IdxArgAlloca = Builder.CreateAlloca(Builder.getInt32Ty(), nullptr, IdxArg->getName() + ".addr"); Value *ReduceListArgAlloca = Builder.CreateAlloca( Builder.getPtrTy(), nullptr, ReduceListArg->getName() + ".addr"); ArrayType *RedListArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; Value *LocalReduceList = Builder.CreateAlloca(RedListArrayTy, nullptr, ".omp.reduction.red_list"); Value *BufferArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( BufferArgAlloca, Builder.getPtrTy(), BufferArgAlloca->getName() + ".ascast"); Value *IdxArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( IdxArgAlloca, Builder.getPtrTy(), IdxArgAlloca->getName() + ".ascast"); Value *ReduceListArgAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( ReduceListArgAlloca, Builder.getPtrTy(), ReduceListArgAlloca->getName() + ".ascast"); Value *ReductionList = Builder.CreatePointerBitCastOrAddrSpaceCast( LocalReduceList, Builder.getPtrTy(), LocalReduceList->getName() + ".ascast"); Builder.CreateStore(BufferArg, BufferArgAddrCast); Builder.CreateStore(IdxArg, IdxArgAddrCast); Builder.CreateStore(ReduceListArg, ReduceListArgAddrCast); Value *BufferVal = Builder.CreateLoad(Builder.getPtrTy(), BufferArgAddrCast); Value *Idxs[] = {Builder.CreateLoad(Builder.getInt32Ty(), IdxArgAddrCast)}; Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); for (auto En : enumerate(ReductionInfos)) { Value *TargetElementPtrPtr = Builder.CreateInBoundsGEP( RedListArrayTy, ReductionList, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); // Global = Buffer.VD[Idx]; Value *BufferVD = Builder.CreateInBoundsGEP(ReductionsBufferTy, BufferVal, Idxs); Value *GlobValPtr = Builder.CreateConstInBoundsGEP2_32( ReductionsBufferTy, BufferVD, 0, En.index()); Builder.CreateStore(GlobValPtr, TargetElementPtrPtr); } // Call reduce_function(ReduceList, GlobalReduceList) Value *ReduceList = Builder.CreateLoad(Builder.getPtrTy(), ReduceListArgAddrCast); Builder.CreateCall(ReduceFn, {ReduceList, ReductionList}) ->addFnAttr(Attribute::NoUnwind); Builder.CreateRetVoid(); return LtGRFunc; } std::string OpenMPIRBuilder::getReductionFuncName(StringRef Name) const { std::string Suffix = createPlatformSpecificName({"omp", "reduction", "reduction_func"}); return (Name + Suffix).str(); } Expected OpenMPIRBuilder::createReductionFunction( StringRef ReducerName, ArrayRef ReductionInfos, ReductionGenCBKind ReductionGenCBKind, AttributeList FuncAttrs) { IRBuilder<>::InsertPointGuard IPG(Builder); auto *FuncTy = FunctionType::get(Builder.getVoidTy(), {Builder.getPtrTy(), Builder.getPtrTy()}, /* IsVarArg */ false); std::string Name = getReductionFuncName(ReducerName); Function *ReductionFunc = Function::Create(FuncTy, GlobalVariable::InternalLinkage, Name, &M); ReductionFunc->setAttributes(FuncAttrs); ReductionFunc->addParamAttr(0, Attribute::NoUndef); ReductionFunc->addParamAttr(1, Attribute::NoUndef); BasicBlock *EntryBB = BasicBlock::Create(M.getContext(), "entry", ReductionFunc); Builder.SetInsertPoint(EntryBB); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Need to alloca memory here and deal with the pointers before getting // LHS/RHS pointers out Value *LHSArrayPtr = nullptr; Value *RHSArrayPtr = nullptr; Argument *Arg0 = ReductionFunc->getArg(0); Argument *Arg1 = ReductionFunc->getArg(1); Type *Arg0Type = Arg0->getType(); Type *Arg1Type = Arg1->getType(); Value *LHSAlloca = Builder.CreateAlloca(Arg0Type, nullptr, Arg0->getName() + ".addr"); Value *RHSAlloca = Builder.CreateAlloca(Arg1Type, nullptr, Arg1->getName() + ".addr"); Value *LHSAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( LHSAlloca, Arg0Type, LHSAlloca->getName() + ".ascast"); Value *RHSAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast( RHSAlloca, Arg1Type, RHSAlloca->getName() + ".ascast"); Builder.CreateStore(Arg0, LHSAddrCast); Builder.CreateStore(Arg1, RHSAddrCast); LHSArrayPtr = Builder.CreateLoad(Arg0Type, LHSAddrCast); RHSArrayPtr = Builder.CreateLoad(Arg1Type, RHSAddrCast); Type *RedArrayTy = ArrayType::get(Builder.getPtrTy(), ReductionInfos.size()); Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); SmallVector LHSPtrs, RHSPtrs; for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Value *RHSI8PtrPtr = Builder.CreateInBoundsGEP( RedArrayTy, RHSArrayPtr, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); Value *RHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), RHSI8PtrPtr); Value *RHSPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( RHSI8Ptr, RI.PrivateVariable->getType(), RHSI8Ptr->getName() + ".ascast"); Value *LHSI8PtrPtr = Builder.CreateInBoundsGEP( RedArrayTy, LHSArrayPtr, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); Value *LHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), LHSI8PtrPtr); Value *LHSPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( LHSI8Ptr, RI.Variable->getType(), LHSI8Ptr->getName() + ".ascast"); if (ReductionGenCBKind == ReductionGenCBKind::Clang) { LHSPtrs.emplace_back(LHSPtr); RHSPtrs.emplace_back(RHSPtr); } else { Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr); Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr); Value *Reduced; InsertPointOrErrorTy AfterIP = RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced); if (!AfterIP) return AfterIP.takeError(); if (!Builder.GetInsertBlock()) return ReductionFunc; Builder.CreateStore(Reduced, LHSPtr); } } if (ReductionGenCBKind == ReductionGenCBKind::Clang) for (auto En : enumerate(ReductionInfos)) { unsigned Index = En.index(); const ReductionInfo &RI = En.value(); Value *LHSFixupPtr, *RHSFixupPtr; Builder.restoreIP(RI.ReductionGenClang( Builder.saveIP(), Index, &LHSFixupPtr, &RHSFixupPtr, ReductionFunc)); // Fix the CallBack code genereated to use the correct Values for the LHS // and RHS LHSFixupPtr->replaceUsesWithIf( LHSPtrs[Index], [ReductionFunc](const Use &U) { return cast(U.getUser())->getParent()->getParent() == ReductionFunc; }); RHSFixupPtr->replaceUsesWithIf( RHSPtrs[Index], [ReductionFunc](const Use &U) { return cast(U.getUser())->getParent()->getParent() == ReductionFunc; }); } Builder.CreateRetVoid(); return ReductionFunc; } static void checkReductionInfos(ArrayRef ReductionInfos, bool IsGPU) { for (const OpenMPIRBuilder::ReductionInfo &RI : ReductionInfos) { (void)RI; assert(RI.Variable && "expected non-null variable"); assert(RI.PrivateVariable && "expected non-null private variable"); assert((RI.ReductionGen || RI.ReductionGenClang) && "expected non-null reduction generator callback"); if (!IsGPU) { assert( RI.Variable->getType() == RI.PrivateVariable->getType() && "expected variables and their private equivalents to have the same " "type"); } assert(RI.Variable->getType()->isPointerTy() && "expected variables to be pointers"); } } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createReductionsGPU( const LocationDescription &Loc, InsertPointTy AllocaIP, InsertPointTy CodeGenIP, ArrayRef ReductionInfos, bool IsNoWait, bool IsTeamsReduction, ReductionGenCBKind ReductionGenCBKind, std::optional GridValue, unsigned ReductionBufNum, Value *SrcLocInfo) { if (!updateToLocation(Loc)) return InsertPointTy(); Builder.restoreIP(CodeGenIP); checkReductionInfos(ReductionInfos, /*IsGPU*/ true); LLVMContext &Ctx = M.getContext(); // Source location for the ident struct if (!SrcLocInfo) { uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize); } if (ReductionInfos.size() == 0) return Builder.saveIP(); BasicBlock *ContinuationBlock = nullptr; if (ReductionGenCBKind != ReductionGenCBKind::Clang) { // Copied code from createReductions BasicBlock *InsertBlock = Loc.IP.getBlock(); ContinuationBlock = InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize"); InsertBlock->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(InsertBlock, InsertBlock->end()); } Function *CurFunc = Builder.GetInsertBlock()->getParent(); AttributeList FuncAttrs; AttrBuilder AttrBldr(Ctx); for (auto Attr : CurFunc->getAttributes().getFnAttrs()) AttrBldr.addAttribute(Attr); AttrBldr.removeAttribute(Attribute::OptimizeNone); FuncAttrs = FuncAttrs.addFnAttributes(Ctx, AttrBldr); CodeGenIP = Builder.saveIP(); Expected ReductionResult = createReductionFunction(Builder.GetInsertBlock()->getParent()->getName(), ReductionInfos, ReductionGenCBKind, FuncAttrs); if (!ReductionResult) return ReductionResult.takeError(); Function *ReductionFunc = *ReductionResult; Builder.restoreIP(CodeGenIP); // Set the grid value in the config needed for lowering later on if (GridValue.has_value()) Config.setGridValue(GridValue.value()); else Config.setGridValue(getGridValue(T, ReductionFunc)); // Build res = __kmpc_reduce{_nowait}(, , sizeof(RedList), // RedList, shuffle_reduce_func, interwarp_copy_func); // or // Build res = __kmpc_reduce_teams_nowait_simple(, , ); Value *Res; // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; auto Size = ReductionInfos.size(); Type *PtrTy = PointerType::getUnqual(Ctx); Type *RedArrayTy = ArrayType::get(PtrTy, Size); CodeGenIP = Builder.saveIP(); Builder.restoreIP(AllocaIP); Value *ReductionListAlloca = Builder.CreateAlloca(RedArrayTy, nullptr, ".omp.reduction.red_list"); Value *ReductionList = Builder.CreatePointerBitCastOrAddrSpaceCast( ReductionListAlloca, PtrTy, ReductionListAlloca->getName() + ".ascast"); Builder.restoreIP(CodeGenIP); Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Value *ElemPtr = Builder.CreateInBoundsGEP( RedArrayTy, ReductionList, {ConstantInt::get(IndexTy, 0), ConstantInt::get(IndexTy, En.index())}); Value *CastElem = Builder.CreatePointerBitCastOrAddrSpaceCast(RI.PrivateVariable, PtrTy); Builder.CreateStore(CastElem, ElemPtr); } CodeGenIP = Builder.saveIP(); Function *SarFunc = emitShuffleAndReduceFunction(ReductionInfos, ReductionFunc, FuncAttrs); Expected CopyResult = emitInterWarpCopyFunction(Loc, ReductionInfos, FuncAttrs); if (!CopyResult) return CopyResult.takeError(); Function *WcFunc = *CopyResult; Builder.restoreIP(CodeGenIP); Value *RL = Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList, PtrTy); unsigned MaxDataSize = 0; SmallVector ReductionTypeArgs; for (auto En : enumerate(ReductionInfos)) { auto Size = M.getDataLayout().getTypeStoreSize(En.value().ElementType); if (Size > MaxDataSize) MaxDataSize = Size; ReductionTypeArgs.emplace_back(En.value().ElementType); } Value *ReductionDataSize = Builder.getInt64(MaxDataSize * ReductionInfos.size()); if (!IsTeamsReduction) { Value *SarFuncCast = Builder.CreatePointerBitCastOrAddrSpaceCast(SarFunc, PtrTy); Value *WcFuncCast = Builder.CreatePointerBitCastOrAddrSpaceCast(WcFunc, PtrTy); Value *Args[] = {SrcLocInfo, ReductionDataSize, RL, SarFuncCast, WcFuncCast}; Function *Pv2Ptr = getOrCreateRuntimeFunctionPtr( RuntimeFunction::OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2); Res = Builder.CreateCall(Pv2Ptr, Args); } else { CodeGenIP = Builder.saveIP(); StructType *ReductionsBufferTy = StructType::create( Ctx, ReductionTypeArgs, "struct._globalized_locals_ty"); Function *RedFixedBuferFn = getOrCreateRuntimeFunctionPtr( RuntimeFunction::OMPRTL___kmpc_reduction_get_fixed_buffer); Function *LtGCFunc = emitListToGlobalCopyFunction( ReductionInfos, ReductionsBufferTy, FuncAttrs); Function *LtGRFunc = emitListToGlobalReduceFunction( ReductionInfos, ReductionFunc, ReductionsBufferTy, FuncAttrs); Function *GtLCFunc = emitGlobalToListCopyFunction( ReductionInfos, ReductionsBufferTy, FuncAttrs); Function *GtLRFunc = emitGlobalToListReduceFunction( ReductionInfos, ReductionFunc, ReductionsBufferTy, FuncAttrs); Builder.restoreIP(CodeGenIP); Value *KernelTeamsReductionPtr = Builder.CreateCall( RedFixedBuferFn, {}, "_openmp_teams_reductions_buffer_$_$ptr"); Value *Args3[] = {SrcLocInfo, KernelTeamsReductionPtr, Builder.getInt32(ReductionBufNum), ReductionDataSize, RL, SarFunc, WcFunc, LtGCFunc, LtGRFunc, GtLCFunc, GtLRFunc}; Function *TeamsReduceFn = getOrCreateRuntimeFunctionPtr( RuntimeFunction::OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2); Res = Builder.CreateCall(TeamsReduceFn, Args3); } // 5. Build if (res == 1) BasicBlock *ExitBB = BasicBlock::Create(Ctx, ".omp.reduction.done"); BasicBlock *ThenBB = BasicBlock::Create(Ctx, ".omp.reduction.then"); Value *Cond = Builder.CreateICmpEQ(Res, Builder.getInt32(1)); Builder.CreateCondBr(Cond, ThenBB, ExitBB); // 6. Build then branch: where we have reduced values in the master // thread in each team. // __kmpc_end_reduce{_nowait}(); // break; emitBlock(ThenBB, CurFunc); // Add emission of __kmpc_end_reduce{_nowait}(); for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Value *LHS = RI.Variable; Value *RHS = Builder.CreatePointerBitCastOrAddrSpaceCast(RI.PrivateVariable, PtrTy); if (ReductionGenCBKind == ReductionGenCBKind::Clang) { Value *LHSPtr, *RHSPtr; Builder.restoreIP(RI.ReductionGenClang(Builder.saveIP(), En.index(), &LHSPtr, &RHSPtr, CurFunc)); // Fix the CallBack code genereated to use the correct Values for the LHS // and RHS LHSPtr->replaceUsesWithIf(LHS, [ReductionFunc](const Use &U) { return cast(U.getUser())->getParent()->getParent() == ReductionFunc; }); RHSPtr->replaceUsesWithIf(RHS, [ReductionFunc](const Use &U) { return cast(U.getUser())->getParent()->getParent() == ReductionFunc; }); } else { Value *LHSValue = Builder.CreateLoad(RI.ElementType, LHS, "final.lhs"); Value *RHSValue = Builder.CreateLoad(RI.ElementType, RHS, "final.rhs"); Value *Reduced; InsertPointOrErrorTy AfterIP = RI.ReductionGen(Builder.saveIP(), RHSValue, LHSValue, Reduced); if (!AfterIP) return AfterIP.takeError(); Builder.CreateStore(Reduced, LHS, false); } } emitBlock(ExitBB, CurFunc); if (ContinuationBlock) { Builder.CreateBr(ContinuationBlock); Builder.SetInsertPoint(ContinuationBlock); } Config.setEmitLLVMUsed(); return Builder.saveIP(); } static Function *getFreshReductionFunc(Module &M) { Type *VoidTy = Type::getVoidTy(M.getContext()); Type *Int8PtrTy = PointerType::getUnqual(M.getContext()); auto *FuncTy = FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false); return Function::Create(FuncTy, GlobalVariable::InternalLinkage, ".omp.reduction.func", &M); } static Error populateReductionFunction( Function *ReductionFunc, ArrayRef ReductionInfos, IRBuilder<> &Builder, ArrayRef IsByRef, bool IsGPU) { IRBuilder<>::InsertPointGuard IPG(Builder); Module *Module = ReductionFunc->getParent(); BasicBlock *ReductionFuncBlock = BasicBlock::Create(Module->getContext(), "", ReductionFunc); Builder.SetInsertPoint(ReductionFuncBlock); Builder.SetCurrentDebugLocation(llvm::DebugLoc()); Value *LHSArrayPtr = nullptr; Value *RHSArrayPtr = nullptr; if (IsGPU) { // Need to alloca memory here and deal with the pointers before getting // LHS/RHS pointers out // Argument *Arg0 = ReductionFunc->getArg(0); Argument *Arg1 = ReductionFunc->getArg(1); Type *Arg0Type = Arg0->getType(); Type *Arg1Type = Arg1->getType(); Value *LHSAlloca = Builder.CreateAlloca(Arg0Type, nullptr, Arg0->getName() + ".addr"); Value *RHSAlloca = Builder.CreateAlloca(Arg1Type, nullptr, Arg1->getName() + ".addr"); Value *LHSAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(LHSAlloca, Arg0Type); Value *RHSAddrCast = Builder.CreatePointerBitCastOrAddrSpaceCast(RHSAlloca, Arg1Type); Builder.CreateStore(Arg0, LHSAddrCast); Builder.CreateStore(Arg1, RHSAddrCast); LHSArrayPtr = Builder.CreateLoad(Arg0Type, LHSAddrCast); RHSArrayPtr = Builder.CreateLoad(Arg1Type, RHSAddrCast); } else { LHSArrayPtr = ReductionFunc->getArg(0); RHSArrayPtr = ReductionFunc->getArg(1); } unsigned NumReductions = ReductionInfos.size(); Type *RedArrayTy = ArrayType::get(Builder.getPtrTy(), NumReductions); for (auto En : enumerate(ReductionInfos)) { const OpenMPIRBuilder::ReductionInfo &RI = En.value(); Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( RedArrayTy, LHSArrayPtr, 0, En.index()); Value *LHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), LHSI8PtrPtr); Value *LHSPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( LHSI8Ptr, RI.Variable->getType()); Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr); Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( RedArrayTy, RHSArrayPtr, 0, En.index()); Value *RHSI8Ptr = Builder.CreateLoad(Builder.getPtrTy(), RHSI8PtrPtr); Value *RHSPtr = Builder.CreatePointerBitCastOrAddrSpaceCast( RHSI8Ptr, RI.PrivateVariable->getType()); Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr); Value *Reduced; OpenMPIRBuilder::InsertPointOrErrorTy AfterIP = RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); // TODO: Consider flagging an error. if (!Builder.GetInsertBlock()) return Error::success(); // store is inside of the reduction region when using by-ref if (!IsByRef[En.index()]) Builder.CreateStore(Reduced, LHSPtr); } Builder.CreateRetVoid(); return Error::success(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createReductions( const LocationDescription &Loc, InsertPointTy AllocaIP, ArrayRef ReductionInfos, ArrayRef IsByRef, bool IsNoWait, bool IsTeamsReduction) { assert(ReductionInfos.size() == IsByRef.size()); if (Config.isGPU()) return createReductionsGPU(Loc, AllocaIP, Builder.saveIP(), ReductionInfos, IsNoWait, IsTeamsReduction); checkReductionInfos(ReductionInfos, /*IsGPU*/ false); if (!updateToLocation(Loc)) return InsertPointTy(); if (ReductionInfos.size() == 0) return Builder.saveIP(); BasicBlock *InsertBlock = Loc.IP.getBlock(); BasicBlock *ContinuationBlock = InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize"); InsertBlock->getTerminator()->eraseFromParent(); // Create and populate array of type-erased pointers to private reduction // values. unsigned NumReductions = ReductionInfos.size(); Type *RedArrayTy = ArrayType::get(Builder.getPtrTy(), NumReductions); Builder.SetInsertPoint(AllocaIP.getBlock()->getTerminator()); Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array"); Builder.SetInsertPoint(InsertBlock, InsertBlock->end()); for (auto En : enumerate(ReductionInfos)) { unsigned Index = En.index(); const ReductionInfo &RI = En.value(); Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64( RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index)); Builder.CreateStore(RI.PrivateVariable, RedArrayElemPtr); } // Emit a call to the runtime function that orchestrates the reduction. // Declare the reduction function in the process. Type *IndexTy = Builder.getIndexTy( M.getDataLayout(), M.getDataLayout().getDefaultGlobalsAddressSpace()); Function *Func = Builder.GetInsertBlock()->getParent(); Module *Module = Func->getParent(); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); bool CanGenerateAtomic = all_of(ReductionInfos, [](const ReductionInfo &RI) { return RI.AtomicReductionGen; }); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize, CanGenerateAtomic ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE : IdentFlag(0)); Value *ThreadId = getOrCreateThreadID(Ident); Constant *NumVariables = Builder.getInt32(NumReductions); const DataLayout &DL = Module->getDataLayout(); unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy); Constant *RedArraySize = ConstantInt::get(IndexTy, RedArrayByteSize); Function *ReductionFunc = getFreshReductionFunc(*Module); Value *Lock = getOMPCriticalRegionLock(".reduction"); Function *ReduceFunc = getOrCreateRuntimeFunctionPtr( IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait : RuntimeFunction::OMPRTL___kmpc_reduce); CallInst *ReduceCall = Builder.CreateCall(ReduceFunc, {Ident, ThreadId, NumVariables, RedArraySize, RedArray, ReductionFunc, Lock}, "reduce"); // Create final reduction entry blocks for the atomic and non-atomic case. // Emit IR that dispatches control flow to one of the blocks based on the // reduction supporting the atomic mode. BasicBlock *NonAtomicRedBlock = BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func); BasicBlock *AtomicRedBlock = BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func); SwitchInst *Switch = Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2); Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock); Switch->addCase(Builder.getInt32(2), AtomicRedBlock); // Populate the non-atomic reduction using the elementwise reduction function. // This loads the elements from the global and private variables and reduces // them before storing back the result to the global variable. Builder.SetInsertPoint(NonAtomicRedBlock); for (auto En : enumerate(ReductionInfos)) { const ReductionInfo &RI = En.value(); Type *ValueType = RI.ElementType; // We have one less load for by-ref case because that load is now inside of // the reduction region Value *RedValue = RI.Variable; if (!IsByRef[En.index()]) { RedValue = Builder.CreateLoad(ValueType, RI.Variable, "red.value." + Twine(En.index())); } Value *PrivateRedValue = Builder.CreateLoad(ValueType, RI.PrivateVariable, "red.private.value." + Twine(En.index())); Value *Reduced; InsertPointOrErrorTy AfterIP = RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); if (!Builder.GetInsertBlock()) return InsertPointTy(); // for by-ref case, the load is inside of the reduction region if (!IsByRef[En.index()]) Builder.CreateStore(Reduced, RI.Variable); } Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr( IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait : RuntimeFunction::OMPRTL___kmpc_end_reduce); Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock}); Builder.CreateBr(ContinuationBlock); // Populate the atomic reduction using the atomic elementwise reduction // function. There are no loads/stores here because they will be happening // inside the atomic elementwise reduction. Builder.SetInsertPoint(AtomicRedBlock); if (CanGenerateAtomic && llvm::none_of(IsByRef, [](bool P) { return P; })) { for (const ReductionInfo &RI : ReductionInfos) { InsertPointOrErrorTy AfterIP = RI.AtomicReductionGen( Builder.saveIP(), RI.ElementType, RI.Variable, RI.PrivateVariable); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); if (!Builder.GetInsertBlock()) return InsertPointTy(); } Builder.CreateBr(ContinuationBlock); } else { Builder.CreateUnreachable(); } // Populate the outlined reduction function using the elementwise reduction // function. Partial values are extracted from the type-erased array of // pointers to private variables. Error Err = populateReductionFunction(ReductionFunc, ReductionInfos, Builder, IsByRef, /*isGPU=*/false); if (Err) return Err; if (!Builder.GetInsertBlock()) return InsertPointTy(); Builder.SetInsertPoint(ContinuationBlock); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createMaster(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_master; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master); Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ true, /*hasFinalize*/ true); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createMasked(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, Value *Filter) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_masked; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId, Filter}; Value *ArgsEnd[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked); Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd); return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ true, /*hasFinalize*/ true); } CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton( DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore, BasicBlock *PostInsertBefore, const Twine &Name) { Module *M = F->getParent(); LLVMContext &Ctx = M->getContext(); Type *IndVarTy = TripCount->getType(); // Create the basic block structure. BasicBlock *Preheader = BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore); BasicBlock *Header = BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore); BasicBlock *Cond = BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore); BasicBlock *Body = BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore); BasicBlock *Latch = BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore); BasicBlock *Exit = BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore); BasicBlock *After = BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore); // Use specified DebugLoc for new instructions. Builder.SetCurrentDebugLocation(DL); Builder.SetInsertPoint(Preheader); Builder.CreateBr(Header); Builder.SetInsertPoint(Header); PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv"); IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader); Builder.CreateBr(Cond); Builder.SetInsertPoint(Cond); Value *Cmp = Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp"); Builder.CreateCondBr(Cmp, Body, Exit); Builder.SetInsertPoint(Body); Builder.CreateBr(Latch); Builder.SetInsertPoint(Latch); Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1), "omp_" + Name + ".next", /*HasNUW=*/true); Builder.CreateBr(Header); IndVarPHI->addIncoming(Next, Latch); Builder.SetInsertPoint(Exit); Builder.CreateBr(After); // Remember and return the canonical control flow. LoopInfos.emplace_front(); CanonicalLoopInfo *CL = &LoopInfos.front(); CL->Header = Header; CL->Cond = Cond; CL->Latch = Latch; CL->Exit = Exit; #ifndef NDEBUG CL->assertOK(); #endif return CL; } Expected OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, Value *TripCount, const Twine &Name) { BasicBlock *BB = Loc.IP.getBlock(); BasicBlock *NextBB = BB->getNextNode(); CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(), NextBB, NextBB, Name); BasicBlock *After = CL->getAfter(); // If location is not set, don't connect the loop. if (updateToLocation(Loc)) { // Split the loop at the insertion point: Branch to the preheader and move // every following instruction to after the loop (the After BB). Also, the // new successor is the loop's after block. spliceBB(Builder, After, /*CreateBranch=*/false); Builder.CreateBr(CL->getPreheader()); } // Emit the body content. We do it after connecting the loop to the CFG to // avoid that the callback encounters degenerate BBs. if (Error Err = BodyGenCB(CL->getBodyIP(), CL->getIndVar())) return Err; #ifndef NDEBUG CL->assertOK(); #endif return CL; } Value *OpenMPIRBuilder::calculateCanonicalLoopTripCount( const LocationDescription &Loc, Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop, const Twine &Name) { // Consider the following difficulties (assuming 8-bit signed integers): // * Adding \p Step to the loop counter which passes \p Stop may overflow: // DO I = 1, 100, 50 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction: // DO I = 100, 0, -128 // Start, Stop and Step must be of the same integer type. auto *IndVarTy = cast(Start->getType()); assert(IndVarTy == Stop->getType() && "Stop type mismatch"); assert(IndVarTy == Step->getType() && "Step type mismatch"); updateToLocation(Loc); ConstantInt *Zero = ConstantInt::get(IndVarTy, 0); ConstantInt *One = ConstantInt::get(IndVarTy, 1); // Like Step, but always positive. Value *Incr = Step; // Distance between Start and Stop; always positive. Value *Span; // Condition whether there are no iterations are executed at all, e.g. because // UB < LB. Value *ZeroCmp; if (IsSigned) { // Ensure that increment is positive. If not, negate and invert LB and UB. Value *IsNeg = Builder.CreateICmpSLT(Step, Zero); Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step); Value *LB = Builder.CreateSelect(IsNeg, Stop, Start); Value *UB = Builder.CreateSelect(IsNeg, Start, Stop); Span = Builder.CreateSub(UB, LB, "", false, true); ZeroCmp = Builder.CreateICmp( InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB); } else { Span = Builder.CreateSub(Stop, Start, "", true); ZeroCmp = Builder.CreateICmp( InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start); } Value *CountIfLooping; if (InclusiveStop) { CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One); } else { // Avoid incrementing past stop since it could overflow. Value *CountIfTwo = Builder.CreateAdd( Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One); Value *OneCmp = Builder.CreateICmp(CmpInst::ICMP_ULE, Span, Incr); CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo); } return Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping, "omp_" + Name + ".tripcount"); } Expected OpenMPIRBuilder::createCanonicalLoop( const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop, InsertPointTy ComputeIP, const Twine &Name) { LocationDescription ComputeLoc = ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc; Value *TripCount = calculateCanonicalLoopTripCount( ComputeLoc, Start, Stop, Step, IsSigned, InclusiveStop, Name); auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) { Builder.restoreIP(CodeGenIP); Value *Span = Builder.CreateMul(IV, Step); Value *IndVar = Builder.CreateAdd(Span, Start); return BodyGenCB(Builder.saveIP(), IndVar); }; LocationDescription LoopLoc = ComputeIP.isSet() ? Loc : LocationDescription(Builder.saveIP(), Builder.getCurrentDebugLocation()); return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name); } // Returns an LLVM function to call for initializing loop bounds using OpenMP // static scheduling for composite `distribute parallel for` depending on // `type`. Only i32 and i64 are supported by the runtime. Always interpret // integers as unsigned similarly to CanonicalLoopInfo. static FunctionCallee getKmpcDistForStaticInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dist_for_static_init_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dist_for_static_init_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } // Returns an LLVM function to call for initializing loop bounds using OpenMP // static scheduling depending on `type`. Only i32 and i64 are supported by the // runtime. Always interpret integers as unsigned similarly to // CanonicalLoopInfo. static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::applyStaticWorkshareLoop( DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, WorksharingLoopType LoopType, bool NeedsBarrier) { assert(CLI->isValid() && "Requires a valid canonical loop"); assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && "Require dedicated allocate IP"); // Set up the source location value for OpenMP runtime. Builder.restoreIP(CLI->getPreheaderIP()); Builder.SetCurrentDebugLocation(DL); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // Declare useful OpenMP runtime functions. Value *IV = CLI->getIndVar(); Type *IVTy = IV->getType(); FunctionCallee StaticInit = LoopType == WorksharingLoopType::DistributeForStaticLoop ? getKmpcDistForStaticInitForType(IVTy, M, *this) : getKmpcForStaticInitForType(IVTy, M, *this); FunctionCallee StaticFini = getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); // Allocate space for computed loop bounds as expected by the "init" function. Builder.SetInsertPoint(AllocaIP.getBlock()->getFirstNonPHIOrDbgOrAlloca()); Type *I32Type = Type::getInt32Ty(M.getContext()); Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); CLI->setLastIter(PLastIter); // At the end of the preheader, prepare for calling the "init" function by // storing the current loop bounds into the allocated space. A canonical loop // always iterates from 0 to trip-count with step 1. Note that "init" expects // and produces an inclusive upper bound. Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); Constant *Zero = ConstantInt::get(IVTy, 0); Constant *One = ConstantInt::get(IVTy, 1); Builder.CreateStore(Zero, PLowerBound); Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One); Builder.CreateStore(UpperBound, PUpperBound); Builder.CreateStore(One, PStride); Value *ThreadNum = getOrCreateThreadID(SrcLoc); OMPScheduleType SchedType = (LoopType == WorksharingLoopType::DistributeStaticLoop) ? OMPScheduleType::OrderedDistribute : OMPScheduleType::UnorderedStatic; Constant *SchedulingType = ConstantInt::get(I32Type, static_cast(SchedType)); // Call the "init" function and update the trip count of the loop with the // value it produced. SmallVector Args( {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound, PUpperBound}); if (LoopType == WorksharingLoopType::DistributeForStaticLoop) { Value *PDistUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.distupperbound"); Args.push_back(PDistUpperBound); } Args.append({PStride, One, Zero}); Builder.CreateCall(StaticInit, Args); Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound); Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound); Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound); Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One); CLI->setTripCount(TripCount); // Update all uses of the induction variable except the one in the condition // block that compares it with the actual upper bound, and the increment in // the latch block. CLI->mapIndVar([&](Instruction *OldIV) -> Value * { Builder.SetInsertPoint(CLI->getBody(), CLI->getBody()->getFirstInsertionPt()); Builder.SetCurrentDebugLocation(DL); return Builder.CreateAdd(OldIV, LowerBound); }); // In the "exit" block, call the "fini" function. Builder.SetInsertPoint(CLI->getExit(), CLI->getExit()->getTerminator()->getIterator()); Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); // Add the barrier if requested. if (NeedsBarrier) { InsertPointOrErrorTy BarrierIP = createBarrier(LocationDescription(Builder.saveIP(), DL), omp::Directive::OMPD_for, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); if (!BarrierIP) return BarrierIP.takeError(); } InsertPointTy AfterIP = CLI->getAfterIP(); CLI->invalidate(); return AfterIP; } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, bool NeedsBarrier, Value *ChunkSize) { assert(CLI->isValid() && "Requires a valid canonical loop"); assert(ChunkSize && "Chunk size is required"); LLVMContext &Ctx = CLI->getFunction()->getContext(); Value *IV = CLI->getIndVar(); Value *OrigTripCount = CLI->getTripCount(); Type *IVTy = IV->getType(); assert(IVTy->getIntegerBitWidth() <= 64 && "Max supported tripcount bitwidth is 64 bits"); Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx); Type *I32Type = Type::getInt32Ty(M.getContext()); Constant *Zero = ConstantInt::get(InternalIVTy, 0); Constant *One = ConstantInt::get(InternalIVTy, 1); // Declare useful OpenMP runtime functions. FunctionCallee StaticInit = getKmpcForStaticInitForType(InternalIVTy, M, *this); FunctionCallee StaticFini = getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); // Allocate space for computed loop bounds as expected by the "init" function. Builder.restoreIP(AllocaIP); Builder.SetCurrentDebugLocation(DL); Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); Value *PLowerBound = Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound"); Value *PUpperBound = Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound"); Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride"); CLI->setLastIter(PLastIter); // Set up the source location value for the OpenMP runtime. Builder.restoreIP(CLI->getPreheaderIP()); Builder.SetCurrentDebugLocation(DL); // TODO: Detect overflow in ubsan or max-out with current tripcount. Value *CastedChunkSize = Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize"); Value *CastedTripCount = Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount"); Constant *SchedulingType = ConstantInt::get( I32Type, static_cast(OMPScheduleType::UnorderedStaticChunked)); Builder.CreateStore(Zero, PLowerBound); Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One); Builder.CreateStore(OrigUpperBound, PUpperBound); Builder.CreateStore(One, PStride); // Call the "init" function and update the trip count of the loop with the // value it produced. uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadNum = getOrCreateThreadID(SrcLoc); Builder.CreateCall(StaticInit, {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum, /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter, /*plower=*/PLowerBound, /*pupper=*/PUpperBound, /*pstride=*/PStride, /*incr=*/One, /*chunk=*/CastedChunkSize}); // Load values written by the "init" function. Value *FirstChunkStart = Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb"); Value *FirstChunkStop = Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub"); Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One); Value *ChunkRange = Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range"); Value *NextChunkStride = Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride"); // Create outer "dispatch" loop for enumerating the chunks. BasicBlock *DispatchEnter = splitBB(Builder, true); Value *DispatchCounter; // It is safe to assume this didn't return an error because the callback // passed into createCanonicalLoop is the only possible error source, and it // always returns success. CanonicalLoopInfo *DispatchCLI = cantFail(createCanonicalLoop( {Builder.saveIP(), DL}, [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; return Error::success(); }, FirstChunkStart, CastedTripCount, NextChunkStride, /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{}, "dispatch")); // Remember the BasicBlocks of the dispatch loop we need, then invalidate to // not have to preserve the canonical invariant. BasicBlock *DispatchBody = DispatchCLI->getBody(); BasicBlock *DispatchLatch = DispatchCLI->getLatch(); BasicBlock *DispatchExit = DispatchCLI->getExit(); BasicBlock *DispatchAfter = DispatchCLI->getAfter(); DispatchCLI->invalidate(); // Rewire the original loop to become the chunk loop inside the dispatch loop. redirectTo(DispatchAfter, CLI->getAfter(), DL); redirectTo(CLI->getExit(), DispatchLatch, DL); redirectTo(DispatchBody, DispatchEnter, DL); // Prepare the prolog of the chunk loop. Builder.restoreIP(CLI->getPreheaderIP()); Builder.SetCurrentDebugLocation(DL); // Compute the number of iterations of the chunk loop. Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange); Value *IsLastChunk = Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last"); Value *CountUntilOrigTripCount = Builder.CreateSub(CastedTripCount, DispatchCounter); Value *ChunkTripCount = Builder.CreateSelect( IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount"); Value *BackcastedChunkTC = Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc"); CLI->setTripCount(BackcastedChunkTC); // Update all uses of the induction variable except the one in the condition // block that compares it with the actual upper bound, and the increment in // the latch block. Value *BackcastedDispatchCounter = Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc"); CLI->mapIndVar([&](Instruction *) -> Value * { Builder.restoreIP(CLI->getBodyIP()); return Builder.CreateAdd(IV, BackcastedDispatchCounter); }); // In the "exit" block, call the "fini" function. Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt()); Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); // Add the barrier if requested. if (NeedsBarrier) { InsertPointOrErrorTy AfterIP = createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for, /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false); if (!AfterIP) return AfterIP.takeError(); } #ifndef NDEBUG // Even though we currently do not support applying additional methods to it, // the chunk loop should remain a canonical loop. CLI->assertOK(); #endif return InsertPointTy(DispatchAfter, DispatchAfter->getFirstInsertionPt()); } // Returns an LLVM function to call for executing an OpenMP static worksharing // for loop depending on `type`. Only i32 and i64 are supported by the runtime. // Always interpret integers as unsigned similarly to CanonicalLoopInfo. static FunctionCallee getKmpcForStaticLoopForType(Type *Ty, OpenMPIRBuilder *OMPBuilder, WorksharingLoopType LoopType) { unsigned Bitwidth = Ty->getIntegerBitWidth(); Module &M = OMPBuilder->M; switch (LoopType) { case WorksharingLoopType::ForStaticLoop: if (Bitwidth == 32) return OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_4u); if (Bitwidth == 64) return OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_loop_8u); break; case WorksharingLoopType::DistributeStaticLoop: if (Bitwidth == 32) return OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_4u); if (Bitwidth == 64) return OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_static_loop_8u); break; case WorksharingLoopType::DistributeForStaticLoop: if (Bitwidth == 32) return OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_4u); if (Bitwidth == 64) return OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_distribute_for_static_loop_8u); break; } if (Bitwidth != 32 && Bitwidth != 64) { llvm_unreachable("Unknown OpenMP loop iterator bitwidth"); } llvm_unreachable("Unknown type of OpenMP worksharing loop"); } // Inserts a call to proper OpenMP Device RTL function which handles // loop worksharing. static void createTargetLoopWorkshareCall(OpenMPIRBuilder *OMPBuilder, WorksharingLoopType LoopType, BasicBlock *InsertBlock, Value *Ident, Value *LoopBodyArg, Value *TripCount, Function &LoopBodyFn) { Type *TripCountTy = TripCount->getType(); Module &M = OMPBuilder->M; IRBuilder<> &Builder = OMPBuilder->Builder; FunctionCallee RTLFn = getKmpcForStaticLoopForType(TripCountTy, OMPBuilder, LoopType); SmallVector RealArgs; RealArgs.push_back(Ident); RealArgs.push_back(&LoopBodyFn); RealArgs.push_back(LoopBodyArg); RealArgs.push_back(TripCount); if (LoopType == WorksharingLoopType::DistributeStaticLoop) { RealArgs.push_back(ConstantInt::get(TripCountTy, 0)); Builder.restoreIP({InsertBlock, std::prev(InsertBlock->end())}); Builder.CreateCall(RTLFn, RealArgs); return; } FunctionCallee RTLNumThreads = OMPBuilder->getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL_omp_get_num_threads); Builder.restoreIP({InsertBlock, std::prev(InsertBlock->end())}); Value *NumThreads = Builder.CreateCall(RTLNumThreads, {}); RealArgs.push_back( Builder.CreateZExtOrTrunc(NumThreads, TripCountTy, "num.threads.cast")); RealArgs.push_back(ConstantInt::get(TripCountTy, 0)); if (LoopType == WorksharingLoopType::DistributeForStaticLoop) { RealArgs.push_back(ConstantInt::get(TripCountTy, 0)); } Builder.CreateCall(RTLFn, RealArgs); } static void workshareLoopTargetCallback( OpenMPIRBuilder *OMPIRBuilder, CanonicalLoopInfo *CLI, Value *Ident, Function &OutlinedFn, const SmallVector &ToBeDeleted, WorksharingLoopType LoopType) { IRBuilder<> &Builder = OMPIRBuilder->Builder; BasicBlock *Preheader = CLI->getPreheader(); Value *TripCount = CLI->getTripCount(); // After loop body outling, the loop body contains only set up // of loop body argument structure and the call to the outlined // loop body function. Firstly, we need to move setup of loop body args // into loop preheader. Preheader->splice(std::prev(Preheader->end()), CLI->getBody(), CLI->getBody()->begin(), std::prev(CLI->getBody()->end())); // The next step is to remove the whole loop. We do not it need anymore. // That's why make an unconditional branch from loop preheader to loop // exit block Builder.restoreIP({Preheader, Preheader->end()}); Builder.SetCurrentDebugLocation(Preheader->getTerminator()->getDebugLoc()); Preheader->getTerminator()->eraseFromParent(); Builder.CreateBr(CLI->getExit()); // Delete dead loop blocks OpenMPIRBuilder::OutlineInfo CleanUpInfo; SmallPtrSet RegionBlockSet; SmallVector BlocksToBeRemoved; CleanUpInfo.EntryBB = CLI->getHeader(); CleanUpInfo.ExitBB = CLI->getExit(); CleanUpInfo.collectBlocks(RegionBlockSet, BlocksToBeRemoved); DeleteDeadBlocks(BlocksToBeRemoved); // Find the instruction which corresponds to loop body argument structure // and remove the call to loop body function instruction. Value *LoopBodyArg; User *OutlinedFnUser = OutlinedFn.getUniqueUndroppableUser(); assert(OutlinedFnUser && "Expected unique undroppable user of outlined function"); CallInst *OutlinedFnCallInstruction = dyn_cast(OutlinedFnUser); assert(OutlinedFnCallInstruction && "Expected outlined function call"); assert((OutlinedFnCallInstruction->getParent() == Preheader) && "Expected outlined function call to be located in loop preheader"); // Check in case no argument structure has been passed. if (OutlinedFnCallInstruction->arg_size() > 1) LoopBodyArg = OutlinedFnCallInstruction->getArgOperand(1); else LoopBodyArg = Constant::getNullValue(Builder.getPtrTy()); OutlinedFnCallInstruction->eraseFromParent(); createTargetLoopWorkshareCall(OMPIRBuilder, LoopType, Preheader, Ident, LoopBodyArg, TripCount, OutlinedFn); for (auto &ToBeDeletedItem : ToBeDeleted) ToBeDeletedItem->eraseFromParent(); CLI->invalidate(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoopTarget(DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, WorksharingLoopType LoopType) { uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); OutlineInfo OI; OI.OuterAllocaBB = CLI->getPreheader(); Function *OuterFn = CLI->getPreheader()->getParent(); // Instructions which need to be deleted at the end of code generation SmallVector ToBeDeleted; OI.OuterAllocaBB = AllocaIP.getBlock(); // Mark the body loop as region which needs to be extracted OI.EntryBB = CLI->getBody(); OI.ExitBB = CLI->getLatch()->splitBasicBlock(CLI->getLatch()->begin(), "omp.prelatch", true); // Prepare loop body for extraction Builder.restoreIP({CLI->getPreheader(), CLI->getPreheader()->begin()}); // Insert new loop counter variable which will be used only in loop // body. AllocaInst *NewLoopCnt = Builder.CreateAlloca(CLI->getIndVarType(), 0, ""); Instruction *NewLoopCntLoad = Builder.CreateLoad(CLI->getIndVarType(), NewLoopCnt); // New loop counter instructions are redundant in the loop preheader when // code generation for workshare loop is finshed. That's why mark them as // ready for deletion. ToBeDeleted.push_back(NewLoopCntLoad); ToBeDeleted.push_back(NewLoopCnt); // Analyse loop body region. Find all input variables which are used inside // loop body region. SmallPtrSet ParallelRegionBlockSet; SmallVector Blocks; OI.collectBlocks(ParallelRegionBlockSet, Blocks); CodeExtractorAnalysisCache CEAC(*OuterFn); CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, /* AggregateArgs */ true, /* BlockFrequencyInfo */ nullptr, /* BranchProbabilityInfo */ nullptr, /* AssumptionCache */ nullptr, /* AllowVarArgs */ true, /* AllowAlloca */ true, /* AllocationBlock */ CLI->getPreheader(), /* Suffix */ ".omp_wsloop", /* AggrArgsIn0AddrSpace */ true); BasicBlock *CommonExit = nullptr; SetVector SinkingCands, HoistingCands; // Find allocas outside the loop body region which are used inside loop // body Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); // We need to model loop body region as the function f(cnt, loop_arg). // That's why we replace loop induction variable by the new counter // which will be one of loop body function argument SmallVector Users(CLI->getIndVar()->user_begin(), CLI->getIndVar()->user_end()); for (auto Use : Users) { if (Instruction *Inst = dyn_cast(Use)) { if (ParallelRegionBlockSet.count(Inst->getParent())) { Inst->replaceUsesOfWith(CLI->getIndVar(), NewLoopCntLoad); } } } // Make sure that loop counter variable is not merged into loop body // function argument structure and it is passed as separate variable OI.ExcludeArgsFromAggregate.push_back(NewLoopCntLoad); // PostOutline CB is invoked when loop body function is outlined and // loop body is replaced by call to outlined function. We need to add // call to OpenMP device rtl inside loop preheader. OpenMP device rtl // function will handle loop control logic. // OI.PostOutlineCB = [=, ToBeDeletedVec = std::move(ToBeDeleted)](Function &OutlinedFn) { workshareLoopTargetCallback(this, CLI, Ident, OutlinedFn, ToBeDeletedVec, LoopType); }; addOutlineInfo(std::move(OI)); return CLI->getAfterIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::applyWorkshareLoop( DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, bool NeedsBarrier, omp::ScheduleKind SchedKind, Value *ChunkSize, bool HasSimdModifier, bool HasMonotonicModifier, bool HasNonmonotonicModifier, bool HasOrderedClause, WorksharingLoopType LoopType) { if (Config.isTargetDevice()) return applyWorkshareLoopTarget(DL, CLI, AllocaIP, LoopType); OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType( SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier, HasNonmonotonicModifier, HasOrderedClause); bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) == OMPScheduleType::ModifierOrdered; switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) { case OMPScheduleType::BaseStatic: assert(!ChunkSize && "No chunk size with static-chunked schedule"); if (IsOrdered) return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, NeedsBarrier, ChunkSize); // FIXME: Monotonicity ignored? return applyStaticWorkshareLoop(DL, CLI, AllocaIP, LoopType, NeedsBarrier); case OMPScheduleType::BaseStaticChunked: if (IsOrdered) return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, NeedsBarrier, ChunkSize); // FIXME: Monotonicity ignored? return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier, ChunkSize); case OMPScheduleType::BaseRuntime: case OMPScheduleType::BaseAuto: case OMPScheduleType::BaseGreedy: case OMPScheduleType::BaseBalanced: case OMPScheduleType::BaseSteal: case OMPScheduleType::BaseGuidedSimd: case OMPScheduleType::BaseRuntimeSimd: assert(!ChunkSize && "schedule type does not support user-defined chunk sizes"); [[fallthrough]]; case OMPScheduleType::BaseDynamicChunked: case OMPScheduleType::BaseGuidedChunked: case OMPScheduleType::BaseGuidedIterativeChunked: case OMPScheduleType::BaseGuidedAnalyticalChunked: case OMPScheduleType::BaseStaticBalancedChunked: return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, NeedsBarrier, ChunkSize); default: llvm_unreachable("Unknown/unimplemented schedule kind"); } } /// Returns an LLVM function to call for initializing loop bounds using OpenMP /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by /// the runtime. Always interpret integers as unsigned similarly to /// CanonicalLoopInfo. static FunctionCallee getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } /// Returns an LLVM function to call for updating the next loop using OpenMP /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by /// the runtime. Always interpret integers as unsigned similarly to /// CanonicalLoopInfo. static FunctionCallee getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } /// Returns an LLVM function to call for finalizing the dynamic loop using /// depending on `type`. Only i32 and i64 are supported by the runtime. Always /// interpret integers as unsigned similarly to CanonicalLoopInfo. static FunctionCallee getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { unsigned Bitwidth = Ty->getIntegerBitWidth(); if (Bitwidth == 32) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u); if (Bitwidth == 64) return OMPBuilder.getOrCreateRuntimeFunction( M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u); llvm_unreachable("unknown OpenMP loop iterator bitwidth"); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::applyDynamicWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) { assert(CLI->isValid() && "Requires a valid canonical loop"); assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && "Require dedicated allocate IP"); assert(isValidWorkshareLoopScheduleType(SchedType) && "Require valid schedule type"); bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) == OMPScheduleType::ModifierOrdered; // Set up the source location value for OpenMP runtime. Builder.SetCurrentDebugLocation(DL); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // Declare useful OpenMP runtime functions. Value *IV = CLI->getIndVar(); Type *IVTy = IV->getType(); FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this); FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this); // Allocate space for computed loop bounds as expected by the "init" function. Builder.SetInsertPoint(AllocaIP.getBlock()->getFirstNonPHIOrDbgOrAlloca()); Type *I32Type = Type::getInt32Ty(M.getContext()); Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); CLI->setLastIter(PLastIter); // At the end of the preheader, prepare for calling the "init" function by // storing the current loop bounds into the allocated space. A canonical loop // always iterates from 0 to trip-count with step 1. Note that "init" expects // and produces an inclusive upper bound. BasicBlock *PreHeader = CLI->getPreheader(); Builder.SetInsertPoint(PreHeader->getTerminator()); Constant *One = ConstantInt::get(IVTy, 1); Builder.CreateStore(One, PLowerBound); Value *UpperBound = CLI->getTripCount(); Builder.CreateStore(UpperBound, PUpperBound); Builder.CreateStore(One, PStride); BasicBlock *Header = CLI->getHeader(); BasicBlock *Exit = CLI->getExit(); BasicBlock *Cond = CLI->getCond(); BasicBlock *Latch = CLI->getLatch(); InsertPointTy AfterIP = CLI->getAfterIP(); // The CLI will be "broken" in the code below, as the loop is no longer // a valid canonical loop. if (!Chunk) Chunk = One; Value *ThreadNum = getOrCreateThreadID(SrcLoc); Constant *SchedulingType = ConstantInt::get(I32Type, static_cast(SchedType)); // Call the "init" function. Builder.CreateCall(DynamicInit, {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One, UpperBound, /* step */ One, Chunk}); // An outer loop around the existing one. BasicBlock *OuterCond = BasicBlock::Create( PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond", PreHeader->getParent()); // This needs to be 32-bit always, so can't use the IVTy Zero above. Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt()); Value *Res = Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter, PLowerBound, PUpperBound, PStride}); Constant *Zero32 = ConstantInt::get(I32Type, 0); Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32); Value *LowerBound = Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb"); Builder.CreateCondBr(MoreWork, Header, Exit); // Change PHI-node in loop header to use outer cond rather than preheader, // and set IV to the LowerBound. Instruction *Phi = &Header->front(); auto *PI = cast(Phi); PI->setIncomingBlock(0, OuterCond); PI->setIncomingValue(0, LowerBound); // Then set the pre-header to jump to the OuterCond Instruction *Term = PreHeader->getTerminator(); auto *Br = cast(Term); Br->setSuccessor(0, OuterCond); // Modify the inner condition: // * Use the UpperBound returned from the DynamicNext call. // * jump to the loop outer loop when done with one of the inner loops. Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt()); UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub"); Instruction *Comp = &*Builder.GetInsertPoint(); auto *CI = cast(Comp); CI->setOperand(1, UpperBound); // Redirect the inner exit to branch to outer condition. Instruction *Branch = &Cond->back(); auto *BI = cast(Branch); assert(BI->getSuccessor(1) == Exit); BI->setSuccessor(1, OuterCond); // Call the "fini" function if "ordered" is present in wsloop directive. if (Ordered) { Builder.SetInsertPoint(&Latch->back()); FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this); Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum}); } // Add the barrier if requested. if (NeedsBarrier) { Builder.SetInsertPoint(&Exit->back()); InsertPointOrErrorTy BarrierIP = createBarrier(LocationDescription(Builder.saveIP(), DL), omp::Directive::OMPD_for, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); if (!BarrierIP) return BarrierIP.takeError(); } CLI->invalidate(); return AfterIP; } /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is, /// after this \p OldTarget will be orphaned. static void redirectAllPredecessorsTo(BasicBlock *OldTarget, BasicBlock *NewTarget, DebugLoc DL) { for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget))) redirectTo(Pred, NewTarget, DL); } /// Determine which blocks in \p BBs are reachable from outside and remove the /// ones that are not reachable from the function. static void removeUnusedBlocksFromParent(ArrayRef BBs) { SmallPtrSet BBsToErase(llvm::from_range, BBs); auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) { for (Use &U : BB->uses()) { auto *UseInst = dyn_cast(U.getUser()); if (!UseInst) continue; if (BBsToErase.count(UseInst->getParent())) continue; return true; } return false; }; while (BBsToErase.remove_if(HasRemainingUses)) { // Try again if anything was removed. } SmallVector BBVec(BBsToErase.begin(), BBsToErase.end()); DeleteDeadBlocks(BBVec); } CanonicalLoopInfo * OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef Loops, InsertPointTy ComputeIP) { assert(Loops.size() >= 1 && "At least one loop required"); size_t NumLoops = Loops.size(); // Nothing to do if there is already just one loop. if (NumLoops == 1) return Loops.front(); CanonicalLoopInfo *Outermost = Loops.front(); CanonicalLoopInfo *Innermost = Loops.back(); BasicBlock *OrigPreheader = Outermost->getPreheader(); BasicBlock *OrigAfter = Outermost->getAfter(); Function *F = OrigPreheader->getParent(); // Loop control blocks that may become orphaned later. SmallVector OldControlBBs; OldControlBBs.reserve(6 * Loops.size()); for (CanonicalLoopInfo *Loop : Loops) Loop->collectControlBlocks(OldControlBBs); // Setup the IRBuilder for inserting the trip count computation. Builder.SetCurrentDebugLocation(DL); if (ComputeIP.isSet()) Builder.restoreIP(ComputeIP); else Builder.restoreIP(Outermost->getPreheaderIP()); // Derive the collapsed' loop trip count. // TODO: Find common/largest indvar type. Value *CollapsedTripCount = nullptr; for (CanonicalLoopInfo *L : Loops) { assert(L->isValid() && "All loops to collapse must be valid canonical loops"); Value *OrigTripCount = L->getTripCount(); if (!CollapsedTripCount) { CollapsedTripCount = OrigTripCount; continue; } // TODO: Enable UndefinedSanitizer to diagnose an overflow here. CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount, {}, /*HasNUW=*/true); } // Create the collapsed loop control flow. CanonicalLoopInfo *Result = createLoopSkeleton(DL, CollapsedTripCount, F, OrigPreheader->getNextNode(), OrigAfter, "collapsed"); // Build the collapsed loop body code. // Start with deriving the input loop induction variables from the collapsed // one, using a divmod scheme. To preserve the original loops' order, the // innermost loop use the least significant bits. Builder.restoreIP(Result->getBodyIP()); Value *Leftover = Result->getIndVar(); SmallVector NewIndVars; NewIndVars.resize(NumLoops); for (int i = NumLoops - 1; i >= 1; --i) { Value *OrigTripCount = Loops[i]->getTripCount(); Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount); NewIndVars[i] = NewIndVar; Leftover = Builder.CreateUDiv(Leftover, OrigTripCount); } // Outermost loop gets all the remaining bits. NewIndVars[0] = Leftover; // Construct the loop body control flow. // We progressively construct the branch structure following in direction of // the control flow, from the leading in-between code, the loop nest body, the // trailing in-between code, and rejoining the collapsed loop's latch. // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If // the ContinueBlock is set, continue with that block. If ContinuePred, use // its predecessors as sources. BasicBlock *ContinueBlock = Result->getBody(); BasicBlock *ContinuePred = nullptr; auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest, BasicBlock *NextSrc) { if (ContinueBlock) redirectTo(ContinueBlock, Dest, DL); else redirectAllPredecessorsTo(ContinuePred, Dest, DL); ContinueBlock = nullptr; ContinuePred = NextSrc; }; // The code before the nested loop of each level. // Because we are sinking it into the nest, it will be executed more often // that the original loop. More sophisticated schemes could keep track of what // the in-between code is and instantiate it only once per thread. for (size_t i = 0; i < NumLoops - 1; ++i) ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader()); // Connect the loop nest body. ContinueWith(Innermost->getBody(), Innermost->getLatch()); // The code after the nested loop at each level. for (size_t i = NumLoops - 1; i > 0; --i) ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch()); // Connect the finished loop to the collapsed loop latch. ContinueWith(Result->getLatch(), nullptr); // Replace the input loops with the new collapsed loop. redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL); redirectTo(Result->getAfter(), Outermost->getAfter(), DL); // Replace the input loop indvars with the derived ones. for (size_t i = 0; i < NumLoops; ++i) Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]); // Remove unused parts of the input loops. removeUnusedBlocksFromParent(OldControlBBs); for (CanonicalLoopInfo *L : Loops) L->invalidate(); #ifndef NDEBUG Result->assertOK(); #endif return Result; } std::vector OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef Loops, ArrayRef TileSizes) { assert(TileSizes.size() == Loops.size() && "Must pass as many tile sizes as there are loops"); int NumLoops = Loops.size(); assert(NumLoops >= 1 && "At least one loop to tile required"); CanonicalLoopInfo *OutermostLoop = Loops.front(); CanonicalLoopInfo *InnermostLoop = Loops.back(); Function *F = OutermostLoop->getBody()->getParent(); BasicBlock *InnerEnter = InnermostLoop->getBody(); BasicBlock *InnerLatch = InnermostLoop->getLatch(); // Loop control blocks that may become orphaned later. SmallVector OldControlBBs; OldControlBBs.reserve(6 * Loops.size()); for (CanonicalLoopInfo *Loop : Loops) Loop->collectControlBlocks(OldControlBBs); // Collect original trip counts and induction variable to be accessible by // index. Also, the structure of the original loops is not preserved during // the construction of the tiled loops, so do it before we scavenge the BBs of // any original CanonicalLoopInfo. SmallVector OrigTripCounts, OrigIndVars; for (CanonicalLoopInfo *L : Loops) { assert(L->isValid() && "All input loops must be valid canonical loops"); OrigTripCounts.push_back(L->getTripCount()); OrigIndVars.push_back(L->getIndVar()); } // Collect the code between loop headers. These may contain SSA definitions // that are used in the loop nest body. To be usable with in the innermost // body, these BasicBlocks will be sunk into the loop nest body. That is, // these instructions may be executed more often than before the tiling. // TODO: It would be sufficient to only sink them into body of the // corresponding tile loop. SmallVector, 4> InbetweenCode; for (int i = 0; i < NumLoops - 1; ++i) { CanonicalLoopInfo *Surrounding = Loops[i]; CanonicalLoopInfo *Nested = Loops[i + 1]; BasicBlock *EnterBB = Surrounding->getBody(); BasicBlock *ExitBB = Nested->getHeader(); InbetweenCode.emplace_back(EnterBB, ExitBB); } // Compute the trip counts of the floor loops. Builder.SetCurrentDebugLocation(DL); Builder.restoreIP(OutermostLoop->getPreheaderIP()); SmallVector FloorCount, FloorRems; for (int i = 0; i < NumLoops; ++i) { Value *TileSize = TileSizes[i]; Value *OrigTripCount = OrigTripCounts[i]; Type *IVType = OrigTripCount->getType(); Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize); Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize); // 0 if tripcount divides the tilesize, 1 otherwise. // 1 means we need an additional iteration for a partial tile. // // Unfortunately we cannot just use the roundup-formula // (tripcount + tilesize - 1)/tilesize // because the summation might overflow. We do not want introduce undefined // behavior when the untiled loop nest did not. Value *FloorTripOverflow = Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0)); FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType); FloorTripCount = Builder.CreateAdd(FloorTripCount, FloorTripOverflow, "omp_floor" + Twine(i) + ".tripcount", true); // Remember some values for later use. FloorCount.push_back(FloorTripCount); FloorRems.push_back(FloorTripRem); } // Generate the new loop nest, from the outermost to the innermost. std::vector Result; Result.reserve(NumLoops * 2); // The basic block of the surrounding loop that enters the nest generated // loop. BasicBlock *Enter = OutermostLoop->getPreheader(); // The basic block of the surrounding loop where the inner code should // continue. BasicBlock *Continue = OutermostLoop->getAfter(); // Where the next loop basic block should be inserted. BasicBlock *OutroInsertBefore = InnermostLoop->getExit(); auto EmbeddNewLoop = [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore]( Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * { CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton( DL, TripCount, F, InnerEnter, OutroInsertBefore, Name); redirectTo(Enter, EmbeddedLoop->getPreheader(), DL); redirectTo(EmbeddedLoop->getAfter(), Continue, DL); // Setup the position where the next embedded loop connects to this loop. Enter = EmbeddedLoop->getBody(); Continue = EmbeddedLoop->getLatch(); OutroInsertBefore = EmbeddedLoop->getLatch(); return EmbeddedLoop; }; auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef TripCounts, const Twine &NameBase) { for (auto P : enumerate(TripCounts)) { CanonicalLoopInfo *EmbeddedLoop = EmbeddNewLoop(P.value(), NameBase + Twine(P.index())); Result.push_back(EmbeddedLoop); } }; EmbeddNewLoops(FloorCount, "floor"); // Within the innermost floor loop, emit the code that computes the tile // sizes. Builder.SetInsertPoint(Enter->getTerminator()); SmallVector TileCounts; for (int i = 0; i < NumLoops; ++i) { CanonicalLoopInfo *FloorLoop = Result[i]; Value *TileSize = TileSizes[i]; Value *FloorIsEpilogue = Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]); Value *TileTripCount = Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize); TileCounts.push_back(TileTripCount); } // Create the tile loops. EmbeddNewLoops(TileCounts, "tile"); // Insert the inbetween code into the body. BasicBlock *BodyEnter = Enter; BasicBlock *BodyEntered = nullptr; for (std::pair P : InbetweenCode) { BasicBlock *EnterBB = P.first; BasicBlock *ExitBB = P.second; if (BodyEnter) redirectTo(BodyEnter, EnterBB, DL); else redirectAllPredecessorsTo(BodyEntered, EnterBB, DL); BodyEnter = nullptr; BodyEntered = ExitBB; } // Append the original loop nest body into the generated loop nest body. if (BodyEnter) redirectTo(BodyEnter, InnerEnter, DL); else redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL); redirectAllPredecessorsTo(InnerLatch, Continue, DL); // Replace the original induction variable with an induction variable computed // from the tile and floor induction variables. Builder.restoreIP(Result.back()->getBodyIP()); for (int i = 0; i < NumLoops; ++i) { CanonicalLoopInfo *FloorLoop = Result[i]; CanonicalLoopInfo *TileLoop = Result[NumLoops + i]; Value *OrigIndVar = OrigIndVars[i]; Value *Size = TileSizes[i]; Value *Scale = Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true); Value *Shift = Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true); OrigIndVar->replaceAllUsesWith(Shift); } // Remove unused parts of the original loops. removeUnusedBlocksFromParent(OldControlBBs); for (CanonicalLoopInfo *L : Loops) L->invalidate(); #ifndef NDEBUG for (CanonicalLoopInfo *GenL : Result) GenL->assertOK(); #endif return Result; } /// Attach metadata \p Properties to the basic block described by \p BB. If the /// basic block already has metadata, the basic block properties are appended. static void addBasicBlockMetadata(BasicBlock *BB, ArrayRef Properties) { // Nothing to do if no property to attach. if (Properties.empty()) return; LLVMContext &Ctx = BB->getContext(); SmallVector NewProperties; NewProperties.push_back(nullptr); // If the basic block already has metadata, prepend it to the new metadata. MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop); if (Existing) append_range(NewProperties, drop_begin(Existing->operands(), 1)); append_range(NewProperties, Properties); MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties); BasicBlockID->replaceOperandWith(0, BasicBlockID); BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID); } /// Attach loop metadata \p Properties to the loop described by \p Loop. If the /// loop already has metadata, the loop properties are appended. static void addLoopMetadata(CanonicalLoopInfo *Loop, ArrayRef Properties) { assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo"); // Attach metadata to the loop's latch BasicBlock *Latch = Loop->getLatch(); assert(Latch && "A valid CanonicalLoopInfo must have a unique latch"); addBasicBlockMetadata(Latch, Properties); } /// Attach llvm.access.group metadata to the memref instructions of \p Block static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup, LoopInfo &LI) { for (Instruction &I : *Block) { if (I.mayReadOrWriteMemory()) { // TODO: This instruction may already have access group from // other pragmas e.g. #pragma clang loop vectorize. Append // so that the existing metadata is not overwritten. I.setMetadata(LLVMContext::MD_access_group, AccessGroup); } } } void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) { LLVMContext &Ctx = Builder.getContext(); addLoopMetadata( Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))}); } void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) { LLVMContext &Ctx = Builder.getContext(); addLoopMetadata( Loop, { MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), }); } void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop, Value *IfCond, ValueToValueMapTy &VMap, LoopAnalysis &LIA, LoopInfo &LI, Loop *L, const Twine &NamePrefix) { Function *F = CanonicalLoop->getFunction(); // We can't do // if (cond) { // simd_loop; // } else { // non_simd_loop; // } // because then the CanonicalLoopInfo would only point to one of the loops: // leading to other constructs operating on the same loop to malfunction. // Instead generate // while (...) { // if (cond) { // simd_body; // } else { // not_simd_body; // } // } // At least for simple loops, LLVM seems able to hoist the if out of the loop // body at -O3 // Define where if branch should be inserted auto SplitBeforeIt = CanonicalLoop->getBody()->getFirstNonPHIIt(); // Create additional blocks for the if statement BasicBlock *Cond = SplitBeforeIt->getParent(); llvm::LLVMContext &C = Cond->getContext(); llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create( C, NamePrefix + ".if.then", Cond->getParent(), Cond->getNextNode()); llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create( C, NamePrefix + ".if.else", Cond->getParent(), CanonicalLoop->getExit()); // Create if condition branch. Builder.SetInsertPoint(SplitBeforeIt); Instruction *BrInstr = Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock); InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()}; // Then block contains branch to omp loop body which needs to be vectorized spliceBB(IP, ThenBlock, false, Builder.getCurrentDebugLocation()); ThenBlock->replaceSuccessorsPhiUsesWith(Cond, ThenBlock); Builder.SetInsertPoint(ElseBlock); // Clone loop for the else branch SmallVector NewBlocks; SmallVector ExistingBlocks; ExistingBlocks.reserve(L->getNumBlocks() + 1); ExistingBlocks.push_back(ThenBlock); ExistingBlocks.append(L->block_begin(), L->block_end()); // Cond is the block that has the if clause condition // LoopCond is omp_loop.cond // LoopHeader is omp_loop.header BasicBlock *LoopCond = Cond->getUniquePredecessor(); BasicBlock *LoopHeader = LoopCond->getUniquePredecessor(); assert(LoopCond && LoopHeader && "Invalid loop structure"); for (BasicBlock *Block : ExistingBlocks) { if (Block == L->getLoopPreheader() || Block == L->getLoopLatch() || Block == LoopHeader || Block == LoopCond || Block == Cond) { continue; } BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F); // fix name not to be omp.if.then if (Block == ThenBlock) NewBB->setName(NamePrefix + ".if.else"); NewBB->moveBefore(CanonicalLoop->getExit()); VMap[Block] = NewBB; NewBlocks.push_back(NewBB); } remapInstructionsInBlocks(NewBlocks, VMap); Builder.CreateBr(NewBlocks.front()); // The loop latch must have only one predecessor. Currently it is branched to // from both the 'then' and 'else' branches. L->getLoopLatch()->splitBasicBlock( L->getLoopLatch()->begin(), NamePrefix + ".pre_latch", /*Before=*/true); // Ensure that the then block is added to the loop so we add the attributes in // the next step L->addBasicBlockToLoop(ThenBlock, LI); } unsigned OpenMPIRBuilder::getOpenMPDefaultSimdAlign(const Triple &TargetTriple, const StringMap &Features) { if (TargetTriple.isX86()) { if (Features.lookup("avx512f")) return 512; else if (Features.lookup("avx")) return 256; return 128; } if (TargetTriple.isPPC()) return 128; if (TargetTriple.isWasm()) return 128; return 0; } void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop, MapVector AlignedVars, Value *IfCond, OrderKind Order, ConstantInt *Simdlen, ConstantInt *Safelen) { LLVMContext &Ctx = Builder.getContext(); Function *F = CanonicalLoop->getFunction(); // TODO: We should not rely on pass manager. Currently we use pass manager // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo // object. We should have a method which returns all blocks between // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter() FunctionAnalysisManager FAM; FAM.registerPass([]() { return DominatorTreeAnalysis(); }); FAM.registerPass([]() { return LoopAnalysis(); }); FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); LoopAnalysis LIA; LoopInfo &&LI = LIA.run(*F, FAM); Loop *L = LI.getLoopFor(CanonicalLoop->getHeader()); if (AlignedVars.size()) { InsertPointTy IP = Builder.saveIP(); for (auto &AlignedItem : AlignedVars) { Value *AlignedPtr = AlignedItem.first; Value *Alignment = AlignedItem.second; Instruction *loadInst = dyn_cast(AlignedPtr); Builder.SetInsertPoint(loadInst->getNextNode()); Builder.CreateAlignmentAssumption(F->getDataLayout(), AlignedPtr, Alignment); } Builder.restoreIP(IP); } if (IfCond) { ValueToValueMapTy VMap; createIfVersion(CanonicalLoop, IfCond, VMap, LIA, LI, L, "simd"); } SmallSet Reachable; // Get the basic blocks from the loop in which memref instructions // can be found. // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo, // preferably without running any passes. for (BasicBlock *Block : L->getBlocks()) { if (Block == CanonicalLoop->getCond() || Block == CanonicalLoop->getHeader()) continue; Reachable.insert(Block); } SmallVector LoopMDList; // In presence of finite 'safelen', it may be unsafe to mark all // the memory instructions parallel, because loop-carried // dependences of 'safelen' iterations are possible. // If clause order(concurrent) is specified then the memory instructions // are marked parallel even if 'safelen' is finite. if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) { // Add access group metadata to memory-access instructions. MDNode *AccessGroup = MDNode::getDistinct(Ctx, {}); for (BasicBlock *BB : Reachable) addSimdMetadata(BB, AccessGroup, LI); // TODO: If the loop has existing parallel access metadata, have // to combine two lists. LoopMDList.push_back(MDNode::get( Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup})); } // FIXME: the IF clause shares a loop backedge for the SIMD and non-SIMD // versions so we can't add the loop attributes in that case. if (IfCond) { // we can still add llvm.loop.parallel_access addLoopMetadata(CanonicalLoop, LoopMDList); return; } // Use the above access group metadata to create loop level // metadata, which should be distinct for each loop. ConstantAsMetadata *BoolConst = ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx))); LoopMDList.push_back(MDNode::get( Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst})); if (Simdlen || Safelen) { // If both simdlen and safelen clauses are specified, the value of the // simdlen parameter must be less than or equal to the value of the safelen // parameter. Therefore, use safelen only in the absence of simdlen. ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen; LoopMDList.push_back( MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"), ConstantAsMetadata::get(VectorizeWidth)})); } addLoopMetadata(CanonicalLoop, LoopMDList); } /// Create the TargetMachine object to query the backend for optimization /// preferences. /// /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but /// e.g. Clang does not pass it to its CodeGen layer and creates it only when /// needed for the LLVM pass pipline. We use some default options to avoid /// having to pass too many settings from the frontend that probably do not /// matter. /// /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial /// method. If we are going to use TargetMachine for more purposes, especially /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it /// might become be worth requiring front-ends to pass on their TargetMachine, /// or at least cache it between methods. Note that while fontends such as Clang /// have just a single main TargetMachine per translation unit, "target-cpu" and /// "target-features" that determine the TargetMachine are per-function and can /// be overrided using __attribute__((target("OPTIONS"))). static std::unique_ptr createTargetMachine(Function *F, CodeGenOptLevel OptLevel) { Module *M = F->getParent(); StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString(); StringRef Features = F->getFnAttribute("target-features").getValueAsString(); const llvm::Triple &Triple = M->getTargetTriple(); std::string Error; const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); if (!TheTarget) return {}; llvm::TargetOptions Options; return std::unique_ptr(TheTarget->createTargetMachine( Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt, /*CodeModel=*/std::nullopt, OptLevel)); } /// Heuristically determine the best-performant unroll factor for \p CLI. This /// depends on the target processor. We are re-using the same heuristics as the /// LoopUnrollPass. static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) { Function *F = CLI->getFunction(); // Assume the user requests the most aggressive unrolling, even if the rest of // the code is optimized using a lower setting. CodeGenOptLevel OptLevel = CodeGenOptLevel::Aggressive; std::unique_ptr TM = createTargetMachine(F, OptLevel); FunctionAnalysisManager FAM; FAM.registerPass([]() { return TargetLibraryAnalysis(); }); FAM.registerPass([]() { return AssumptionAnalysis(); }); FAM.registerPass([]() { return DominatorTreeAnalysis(); }); FAM.registerPass([]() { return LoopAnalysis(); }); FAM.registerPass([]() { return ScalarEvolutionAnalysis(); }); FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); TargetIRAnalysis TIRA; if (TM) TIRA = TargetIRAnalysis( [&](const Function &F) { return TM->getTargetTransformInfo(F); }); FAM.registerPass([&]() { return TIRA; }); TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM); ScalarEvolutionAnalysis SEA; ScalarEvolution &&SE = SEA.run(*F, FAM); DominatorTreeAnalysis DTA; DominatorTree &&DT = DTA.run(*F, FAM); LoopAnalysis LIA; LoopInfo &&LI = LIA.run(*F, FAM); AssumptionAnalysis ACT; AssumptionCache &&AC = ACT.run(*F, FAM); OptimizationRemarkEmitter ORE{F}; Loop *L = LI.getLoopFor(CLI->getHeader()); assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop"); TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( L, SE, TTI, /*BlockFrequencyInfo=*/nullptr, /*ProfileSummaryInfo=*/nullptr, ORE, static_cast(OptLevel), /*UserThreshold=*/std::nullopt, /*UserCount=*/std::nullopt, /*UserAllowPartial=*/true, /*UserAllowRuntime=*/true, /*UserUpperBound=*/std::nullopt, /*UserFullUnrollMaxCount=*/std::nullopt); UP.Force = true; // Account for additional optimizations taking place before the LoopUnrollPass // would unroll the loop. UP.Threshold *= UnrollThresholdFactor; UP.PartialThreshold *= UnrollThresholdFactor; // Use normal unroll factors even if the rest of the code is optimized for // size. UP.OptSizeThreshold = UP.Threshold; UP.PartialOptSizeThreshold = UP.PartialThreshold; LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n" << " Threshold=" << UP.Threshold << "\n" << " PartialThreshold=" << UP.PartialThreshold << "\n" << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold << "\n"); // Disable peeling. TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(L, SE, TTI, /*UserAllowPeeling=*/false, /*UserAllowProfileBasedPeeling=*/false, /*UnrollingSpecficValues=*/false); SmallPtrSet EphValues; CodeMetrics::collectEphemeralValues(L, &AC, EphValues); // Assume that reads and writes to stack variables can be eliminated by // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's // size. for (BasicBlock *BB : L->blocks()) { for (Instruction &I : *BB) { Value *Ptr; if (auto *Load = dyn_cast(&I)) { Ptr = Load->getPointerOperand(); } else if (auto *Store = dyn_cast(&I)) { Ptr = Store->getPointerOperand(); } else continue; Ptr = Ptr->stripPointerCasts(); if (auto *Alloca = dyn_cast(Ptr)) { if (Alloca->getParent() == &F->getEntryBlock()) EphValues.insert(&I); } } } UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns); // Loop is not unrollable if the loop contains certain instructions. if (!UCE.canUnroll()) { LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n"); return 1; } LLVM_DEBUG(dbgs() << "Estimated loop size is " << UCE.getRolledLoopSize() << "\n"); // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might // be able to use it. int TripCount = 0; int MaxTripCount = 0; bool MaxOrZero = false; unsigned TripMultiple = 0; bool UseUpperBound = false; computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount, MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound); unsigned Factor = UP.Count; LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n"); // This function returns 1 to signal to not unroll a loop. if (Factor == 0) return 1; return Factor; } void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop, int32_t Factor, CanonicalLoopInfo **UnrolledCLI) { assert(Factor >= 0 && "Unroll factor must not be negative"); Function *F = Loop->getFunction(); LLVMContext &Ctx = F->getContext(); // If the unrolled loop is not used for another loop-associated directive, it // is sufficient to add metadata for the LoopUnrollPass. if (!UnrolledCLI) { SmallVector LoopMetadata; LoopMetadata.push_back( MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable"))); if (Factor >= 1) { ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); LoopMetadata.push_back(MDNode::get( Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})); } addLoopMetadata(Loop, LoopMetadata); return; } // Heuristically determine the unroll factor. if (Factor == 0) Factor = computeHeuristicUnrollFactor(Loop); // No change required with unroll factor 1. if (Factor == 1) { *UnrolledCLI = Loop; return; } assert(Factor >= 2 && "unrolling only makes sense with a factor of 2 or larger"); Type *IndVarTy = Loop->getIndVarType(); // Apply partial unrolling by tiling the loop by the unroll-factor, then fully // unroll the inner loop. Value *FactorVal = ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor, /*isSigned=*/false)); std::vector LoopNest = tileLoops(DL, {Loop}, {FactorVal}); assert(LoopNest.size() == 2 && "Expect 2 loops after tiling"); *UnrolledCLI = LoopNest[0]; CanonicalLoopInfo *InnerLoop = LoopNest[1]; // LoopUnrollPass can only fully unroll loops with constant trip count. // Unroll by the unroll factor with a fallback epilog for the remainder // iterations if necessary. ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); addLoopMetadata( InnerLoop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), MDNode::get( Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})}); #ifndef NDEBUG (*UnrolledCLI)->assertOK(); #endif } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc, llvm::Value *BufSize, llvm::Value *CpyBuf, llvm::Value *CpyFn, llvm::Value *DidIt) { if (!updateToLocation(Loc)) return Loc.IP; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt); Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate); Builder.CreateCall(Fn, Args); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createSingle( const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool IsNowait, ArrayRef CPVars, ArrayRef CPFuncs) { if (!updateToLocation(Loc)) return Loc.IP; // If needed allocate and initialize `DidIt` with 0. // DidIt: flag variable: 1=single thread; 0=not single thread. llvm::Value *DidIt = nullptr; if (!CPVars.empty()) { DidIt = Builder.CreateAlloca(llvm::Type::getInt32Ty(Builder.getContext())); Builder.CreateStore(Builder.getInt32(0), DidIt); } Directive OMPD = Directive::OMPD_single; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single); Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); auto FiniCBWrapper = [&](InsertPointTy IP) -> Error { if (Error Err = FiniCB(IP)) return Err; // The thread that executes the single region must set `DidIt` to 1. // This is used by __kmpc_copyprivate, to know if the caller is the // single thread or not. if (DidIt) Builder.CreateStore(Builder.getInt32(1), DidIt); return Error::success(); }; // generates the following: // if (__kmpc_single()) { // .... single region ... // __kmpc_end_single // } // __kmpc_copyprivate // __kmpc_barrier InsertPointOrErrorTy AfterIP = EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCBWrapper, /*Conditional*/ true, /*hasFinalize*/ true); if (!AfterIP) return AfterIP.takeError(); if (DidIt) { for (size_t I = 0, E = CPVars.size(); I < E; ++I) // NOTE BufSize is currently unused, so just pass 0. createCopyPrivate(LocationDescription(Builder.saveIP(), Loc.DL), /*BufSize=*/ConstantInt::get(Int64, 0), CPVars[I], CPFuncs[I], DidIt); // NOTE __kmpc_copyprivate already inserts a barrier } else if (!IsNowait) { InsertPointOrErrorTy AfterIP = createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, /* CheckCancelFlag */ false); if (!AfterIP) return AfterIP.takeError(); } return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createCritical( const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_critical; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *LockVar = getOMPCriticalRegionLock(CriticalName); Value *Args[] = {Ident, ThreadId, LockVar}; SmallVector EnterArgs(std::begin(Args), std::end(Args)); Function *RTFn = nullptr; if (HintInst) { // Add Hint to entry Args and create call EnterArgs.push_back(HintInst); RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint); } else { RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical); } Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical); Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ false, /*hasFinalize*/ true); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc, InsertPointTy AllocaIP, unsigned NumLoops, ArrayRef StoreValues, const Twine &Name, bool IsDependSource) { assert( llvm::all_of(StoreValues, [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && "OpenMP runtime requires depend vec with i64 type"); if (!updateToLocation(Loc)) return Loc.IP; // Allocate space for vector and generate alloc instruction. auto *ArrI64Ty = ArrayType::get(Int64, NumLoops); Builder.restoreIP(AllocaIP); AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name); ArgsBase->setAlignment(Align(8)); Builder.restoreIP(Loc.IP); // Store the index value with offset in depend vector. for (unsigned I = 0; I < NumLoops; ++I) { Value *DependAddrGEPIter = Builder.CreateInBoundsGEP( ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)}); StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter); STInst->setAlignment(Align(8)); } Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP( ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)}); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP}; Function *RTLFn = nullptr; if (IsDependSource) RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post); else RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait); Builder.CreateCall(RTLFn, Args); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createOrderedThreadsSimd( const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool IsThreads) { if (!updateToLocation(Loc)) return Loc.IP; Directive OMPD = Directive::OMPD_ordered; Instruction *EntryCall = nullptr; Instruction *ExitCall = nullptr; if (IsThreads) { uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {Ident, ThreadId}; Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered); EntryCall = Builder.CreateCall(EntryRTLFn, Args); Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered); ExitCall = Builder.CreateCall(ExitRTLFn, Args); } return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, /*Conditional*/ false, /*hasFinalize*/ true); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::EmitOMPInlinedRegion( Directive OMPD, Instruction *EntryCall, Instruction *ExitCall, BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional, bool HasFinalize, bool IsCancellable) { if (HasFinalize) FinalizationStack.push_back({FiniCB, OMPD, IsCancellable}); // Create inlined region's entry and body blocks, in preparation // for conditional creation BasicBlock *EntryBB = Builder.GetInsertBlock(); Instruction *SplitPos = EntryBB->getTerminator(); if (!isa_and_nonnull(SplitPos)) SplitPos = new UnreachableInst(Builder.getContext(), EntryBB); BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end"); BasicBlock *FiniBB = EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize"); Builder.SetInsertPoint(EntryBB->getTerminator()); emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional); // generate body if (Error Err = BodyGenCB(/* AllocaIP */ InsertPointTy(), /* CodeGenIP */ Builder.saveIP())) return Err; // emit exit call and do any needed finalization. auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt()); assert(FiniBB->getTerminator()->getNumSuccessors() == 1 && FiniBB->getTerminator()->getSuccessor(0) == ExitBB && "Unexpected control flow graph state!!"); InsertPointOrErrorTy AfterIP = emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize); if (!AfterIP) return AfterIP.takeError(); assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && "Unexpected Control Flow State!"); MergeBlockIntoPredecessor(FiniBB); // If we are skipping the region of a non conditional, remove the exit // block, and clear the builder's insertion point. assert(SplitPos->getParent() == ExitBB && "Unexpected Insertion point location!"); auto merged = MergeBlockIntoPredecessor(ExitBB); BasicBlock *ExitPredBB = SplitPos->getParent(); auto InsertBB = merged ? ExitPredBB : ExitBB; if (!isa_and_nonnull(SplitPos)) SplitPos->eraseFromParent(); Builder.SetInsertPoint(InsertBB); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry( Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) { // if nothing to do, Return current insertion point. if (!Conditional || !EntryCall) return Builder.saveIP(); BasicBlock *EntryBB = Builder.GetInsertBlock(); Value *CallBool = Builder.CreateIsNotNull(EntryCall); auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body"); auto *UI = new UnreachableInst(Builder.getContext(), ThenBB); // Emit thenBB and set the Builder's insertion point there for // body generation next. Place the block after the current block. Function *CurFn = EntryBB->getParent(); CurFn->insert(std::next(EntryBB->getIterator()), ThenBB); // Move Entry branch to end of ThenBB, and replace with conditional // branch (If-stmt) Instruction *EntryBBTI = EntryBB->getTerminator(); Builder.CreateCondBr(CallBool, ThenBB, ExitBB); EntryBBTI->removeFromParent(); Builder.SetInsertPoint(UI); Builder.Insert(EntryBBTI); UI->eraseFromParent(); Builder.SetInsertPoint(ThenBB->getTerminator()); // return an insertion point to ExitBB. return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt()); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::emitCommonDirectiveExit( omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall, bool HasFinalize) { Builder.restoreIP(FinIP); // If there is finalization to do, emit it before the exit call if (HasFinalize) { assert(!FinalizationStack.empty() && "Unexpected finalization stack state!"); FinalizationInfo Fi = FinalizationStack.pop_back_val(); assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!"); if (Error Err = Fi.FiniCB(FinIP)) return Err; BasicBlock *FiniBB = FinIP.getBlock(); Instruction *FiniBBTI = FiniBB->getTerminator(); // set Builder IP for call creation Builder.SetInsertPoint(FiniBBTI); } if (!ExitCall) return Builder.saveIP(); // place the Exitcall as last instruction before Finalization block terminator ExitCall->removeFromParent(); Builder.Insert(ExitCall); return IRBuilder<>::InsertPoint(ExitCall->getParent(), ExitCall->getIterator()); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks( InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr, llvm::IntegerType *IntPtrTy, bool BranchtoEnd) { if (!IP.isSet()) return IP; IRBuilder<>::InsertPointGuard IPG(Builder); // creates the following CFG structure // OMP_Entry : (MasterAddr != PrivateAddr)? // F T // | \ // | copin.not.master // | / // v / // copyin.not.master.end // | // v // OMP.Entry.Next BasicBlock *OMP_Entry = IP.getBlock(); Function *CurFn = OMP_Entry->getParent(); BasicBlock *CopyBegin = BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn); BasicBlock *CopyEnd = nullptr; // If entry block is terminated, split to preserve the branch to following // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is. if (isa_and_nonnull(OMP_Entry->getTerminator())) { CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(), "copyin.not.master.end"); OMP_Entry->getTerminator()->eraseFromParent(); } else { CopyEnd = BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn); } Builder.SetInsertPoint(OMP_Entry); Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy); Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy); Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr); Builder.CreateCondBr(cmp, CopyBegin, CopyEnd); Builder.SetInsertPoint(CopyBegin); if (BranchtoEnd) Builder.SetInsertPoint(Builder.CreateBr(CopyEnd)); return Builder.saveIP(); } CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc, Value *Size, Value *Allocator, std::string Name) { IRBuilder<>::InsertPointGuard IPG(Builder); updateToLocation(Loc); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {ThreadId, Size, Allocator}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc); return Builder.CreateCall(Fn, Args, Name); } CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc, Value *Addr, Value *Allocator, std::string Name) { IRBuilder<>::InsertPointGuard IPG(Builder); updateToLocation(Loc); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Value *Args[] = {ThreadId, Addr, Allocator}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free); return Builder.CreateCall(Fn, Args, Name); } CallInst *OpenMPIRBuilder::createOMPInteropInit( const LocationDescription &Loc, Value *InteropVar, omp::OMPInteropType InteropType, Value *Device, Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { IRBuilder<>::InsertPointGuard IPG(Builder); updateToLocation(Loc); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); if (Device == nullptr) Device = Constant::getAllOnesValue(Int32); Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType); if (NumDependences == nullptr) { NumDependences = ConstantInt::get(Int32, 0); PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext()); DependenceAddress = ConstantPointerNull::get(PointerTypeVar); } Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); Value *Args[] = { Ident, ThreadId, InteropVar, InteropTypeVal, Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init); return Builder.CreateCall(Fn, Args); } CallInst *OpenMPIRBuilder::createOMPInteropDestroy( const LocationDescription &Loc, Value *InteropVar, Value *Device, Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { IRBuilder<>::InsertPointGuard IPG(Builder); updateToLocation(Loc); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); if (Device == nullptr) Device = Constant::getAllOnesValue(Int32); if (NumDependences == nullptr) { NumDependences = ConstantInt::get(Int32, 0); PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext()); DependenceAddress = ConstantPointerNull::get(PointerTypeVar); } Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); Value *Args[] = { Ident, ThreadId, InteropVar, Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy); return Builder.CreateCall(Fn, Args); } CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc, Value *InteropVar, Value *Device, Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { IRBuilder<>::InsertPointGuard IPG(Builder); updateToLocation(Loc); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); if (Device == nullptr) Device = Constant::getAllOnesValue(Int32); if (NumDependences == nullptr) { NumDependences = ConstantInt::get(Int32, 0); PointerType *PointerTypeVar = PointerType::getUnqual(M.getContext()); DependenceAddress = ConstantPointerNull::get(PointerTypeVar); } Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); Value *Args[] = { Ident, ThreadId, InteropVar, Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use); return Builder.CreateCall(Fn, Args); } CallInst *OpenMPIRBuilder::createCachedThreadPrivate( const LocationDescription &Loc, llvm::Value *Pointer, llvm::ConstantInt *Size, const llvm::Twine &Name) { IRBuilder<>::InsertPointGuard IPG(Builder); updateToLocation(Loc); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Value *ThreadId = getOrCreateThreadID(Ident); Constant *ThreadPrivateCache = getOrCreateInternalVariable(Int8PtrPtr, Name.str()); llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache}; Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached); return Builder.CreateCall(Fn, Args); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetInit( const LocationDescription &Loc, const llvm::OpenMPIRBuilder::TargetKernelDefaultAttrs &Attrs) { assert(!Attrs.MaxThreads.empty() && !Attrs.MaxTeams.empty() && "expected num_threads and num_teams to be specified"); if (!updateToLocation(Loc)) return Loc.IP; uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Constant *IsSPMDVal = ConstantInt::getSigned(Int8, Attrs.ExecFlags); Constant *UseGenericStateMachineVal = ConstantInt::getSigned( Int8, Attrs.ExecFlags != omp::OMP_TGT_EXEC_MODE_SPMD); Constant *MayUseNestedParallelismVal = ConstantInt::getSigned(Int8, true); Constant *DebugIndentionLevelVal = ConstantInt::getSigned(Int16, 0); Function *DebugKernelWrapper = Builder.GetInsertBlock()->getParent(); Function *Kernel = DebugKernelWrapper; // We need to strip the debug prefix to get the correct kernel name. StringRef KernelName = Kernel->getName(); const std::string DebugPrefix = "_debug__"; if (KernelName.ends_with(DebugPrefix)) { KernelName = KernelName.drop_back(DebugPrefix.length()); Kernel = M.getFunction(KernelName); assert(Kernel && "Expected the real kernel to exist"); } // Manifest the launch configuration in the metadata matching the kernel // environment. if (Attrs.MinTeams > 1 || Attrs.MaxTeams.front() > 0) writeTeamsForKernel(T, *Kernel, Attrs.MinTeams, Attrs.MaxTeams.front()); // If MaxThreads not set, select the maximum between the default workgroup // size and the MinThreads value. int32_t MaxThreadsVal = Attrs.MaxThreads.front(); if (MaxThreadsVal < 0) MaxThreadsVal = std::max( int32_t(getGridValue(T, Kernel).GV_Default_WG_Size), Attrs.MinThreads); if (MaxThreadsVal > 0) writeThreadBoundsForKernel(T, *Kernel, Attrs.MinThreads, MaxThreadsVal); Constant *MinThreads = ConstantInt::getSigned(Int32, Attrs.MinThreads); Constant *MaxThreads = ConstantInt::getSigned(Int32, MaxThreadsVal); Constant *MinTeams = ConstantInt::getSigned(Int32, Attrs.MinTeams); Constant *MaxTeams = ConstantInt::getSigned(Int32, Attrs.MaxTeams.front()); Constant *ReductionDataSize = ConstantInt::getSigned(Int32, Attrs.ReductionDataSize); Constant *ReductionBufferLength = ConstantInt::getSigned(Int32, Attrs.ReductionBufferLength); Function *Fn = getOrCreateRuntimeFunctionPtr( omp::RuntimeFunction::OMPRTL___kmpc_target_init); const DataLayout &DL = Fn->getDataLayout(); Twine DynamicEnvironmentName = KernelName + "_dynamic_environment"; Constant *DynamicEnvironmentInitializer = ConstantStruct::get(DynamicEnvironment, {DebugIndentionLevelVal}); GlobalVariable *DynamicEnvironmentGV = new GlobalVariable( M, DynamicEnvironment, /*IsConstant=*/false, GlobalValue::WeakODRLinkage, DynamicEnvironmentInitializer, DynamicEnvironmentName, /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, DL.getDefaultGlobalsAddressSpace()); DynamicEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility); Constant *DynamicEnvironment = DynamicEnvironmentGV->getType() == DynamicEnvironmentPtr ? DynamicEnvironmentGV : ConstantExpr::getAddrSpaceCast(DynamicEnvironmentGV, DynamicEnvironmentPtr); Constant *ConfigurationEnvironmentInitializer = ConstantStruct::get( ConfigurationEnvironment, { UseGenericStateMachineVal, MayUseNestedParallelismVal, IsSPMDVal, MinThreads, MaxThreads, MinTeams, MaxTeams, ReductionDataSize, ReductionBufferLength, }); Constant *KernelEnvironmentInitializer = ConstantStruct::get( KernelEnvironment, { ConfigurationEnvironmentInitializer, Ident, DynamicEnvironment, }); std::string KernelEnvironmentName = (KernelName + "_kernel_environment").str(); GlobalVariable *KernelEnvironmentGV = new GlobalVariable( M, KernelEnvironment, /*IsConstant=*/true, GlobalValue::WeakODRLinkage, KernelEnvironmentInitializer, KernelEnvironmentName, /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, DL.getDefaultGlobalsAddressSpace()); KernelEnvironmentGV->setVisibility(GlobalValue::ProtectedVisibility); Constant *KernelEnvironment = KernelEnvironmentGV->getType() == KernelEnvironmentPtr ? KernelEnvironmentGV : ConstantExpr::getAddrSpaceCast(KernelEnvironmentGV, KernelEnvironmentPtr); Value *KernelLaunchEnvironment = DebugKernelWrapper->getArg(0); Type *KernelLaunchEnvParamTy = Fn->getFunctionType()->getParamType(1); KernelLaunchEnvironment = KernelLaunchEnvironment->getType() == KernelLaunchEnvParamTy ? KernelLaunchEnvironment : Builder.CreateAddrSpaceCast(KernelLaunchEnvironment, KernelLaunchEnvParamTy); CallInst *ThreadKind = Builder.CreateCall(Fn, {KernelEnvironment, KernelLaunchEnvironment}); Value *ExecUserCode = Builder.CreateICmpEQ( ThreadKind, Constant::getAllOnesValue(ThreadKind->getType()), "exec_user_code"); // ThreadKind = __kmpc_target_init(...) // if (ThreadKind == -1) // user_code // else // return; auto *UI = Builder.CreateUnreachable(); BasicBlock *CheckBB = UI->getParent(); BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry"); BasicBlock *WorkerExitBB = BasicBlock::Create( CheckBB->getContext(), "worker.exit", CheckBB->getParent()); Builder.SetInsertPoint(WorkerExitBB); Builder.CreateRetVoid(); auto *CheckBBTI = CheckBB->getTerminator(); Builder.SetInsertPoint(CheckBBTI); Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB); CheckBBTI->eraseFromParent(); UI->eraseFromParent(); // Continue in the "user_code" block, see diagram above and in // openmp/libomptarget/deviceRTLs/common/include/target.h . return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt()); } void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc, int32_t TeamsReductionDataSize, int32_t TeamsReductionBufferLength) { if (!updateToLocation(Loc)) return; Function *Fn = getOrCreateRuntimeFunctionPtr( omp::RuntimeFunction::OMPRTL___kmpc_target_deinit); Builder.CreateCall(Fn, {}); if (!TeamsReductionBufferLength || !TeamsReductionDataSize) return; Function *Kernel = Builder.GetInsertBlock()->getParent(); // We need to strip the debug prefix to get the correct kernel name. StringRef KernelName = Kernel->getName(); const std::string DebugPrefix = "_debug__"; if (KernelName.ends_with(DebugPrefix)) KernelName = KernelName.drop_back(DebugPrefix.length()); auto *KernelEnvironmentGV = M.getNamedGlobal((KernelName + "_kernel_environment").str()); assert(KernelEnvironmentGV && "Expected kernel environment global\n"); auto *KernelEnvironmentInitializer = KernelEnvironmentGV->getInitializer(); auto *NewInitializer = ConstantFoldInsertValueInstruction( KernelEnvironmentInitializer, ConstantInt::get(Int32, TeamsReductionDataSize), {0, 7}); NewInitializer = ConstantFoldInsertValueInstruction( NewInitializer, ConstantInt::get(Int32, TeamsReductionBufferLength), {0, 8}); KernelEnvironmentGV->setInitializer(NewInitializer); } static void updateNVPTXAttr(Function &Kernel, StringRef Name, int32_t Value, bool Min) { if (Kernel.hasFnAttribute(Name)) { int32_t OldLimit = Kernel.getFnAttributeAsParsedInteger(Name); Value = Min ? std::min(OldLimit, Value) : std::max(OldLimit, Value); } Kernel.addFnAttr(Name, llvm::utostr(Value)); } std::pair OpenMPIRBuilder::readThreadBoundsForKernel(const Triple &T, Function &Kernel) { int32_t ThreadLimit = Kernel.getFnAttributeAsParsedInteger("omp_target_thread_limit"); if (T.isAMDGPU()) { const auto &Attr = Kernel.getFnAttribute("amdgpu-flat-work-group-size"); if (!Attr.isValid() || !Attr.isStringAttribute()) return {0, ThreadLimit}; auto [LBStr, UBStr] = Attr.getValueAsString().split(','); int32_t LB, UB; if (!llvm::to_integer(UBStr, UB, 10)) return {0, ThreadLimit}; UB = ThreadLimit ? std::min(ThreadLimit, UB) : UB; if (!llvm::to_integer(LBStr, LB, 10)) return {0, UB}; return {LB, UB}; } if (Kernel.hasFnAttribute("nvvm.maxntid")) { int32_t UB = Kernel.getFnAttributeAsParsedInteger("nvvm.maxntid"); return {0, ThreadLimit ? std::min(ThreadLimit, UB) : UB}; } return {0, ThreadLimit}; } void OpenMPIRBuilder::writeThreadBoundsForKernel(const Triple &T, Function &Kernel, int32_t LB, int32_t UB) { Kernel.addFnAttr("omp_target_thread_limit", std::to_string(UB)); if (T.isAMDGPU()) { Kernel.addFnAttr("amdgpu-flat-work-group-size", llvm::utostr(LB) + "," + llvm::utostr(UB)); return; } updateNVPTXAttr(Kernel, "nvvm.maxntid", UB, true); } std::pair OpenMPIRBuilder::readTeamBoundsForKernel(const Triple &, Function &Kernel) { // TODO: Read from backend annotations if available. return {0, Kernel.getFnAttributeAsParsedInteger("omp_target_num_teams")}; } void OpenMPIRBuilder::writeTeamsForKernel(const Triple &T, Function &Kernel, int32_t LB, int32_t UB) { if (T.isNVPTX()) if (UB > 0) Kernel.addFnAttr("nvvm.maxclusterrank", llvm::utostr(UB)); if (T.isAMDGPU()) Kernel.addFnAttr("amdgpu-max-num-workgroups", llvm::utostr(LB) + ",1,1"); Kernel.addFnAttr("omp_target_num_teams", std::to_string(LB)); } void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes( Function *OutlinedFn) { if (Config.isTargetDevice()) { OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage); // TODO: Determine if DSO local can be set to true. OutlinedFn->setDSOLocal(false); OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility); if (T.isAMDGCN()) OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL); else if (T.isNVPTX()) OutlinedFn->setCallingConv(CallingConv::PTX_Kernel); else if (T.isSPIRV()) OutlinedFn->setCallingConv(CallingConv::SPIR_KERNEL); } } Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn, StringRef EntryFnIDName) { if (Config.isTargetDevice()) { assert(OutlinedFn && "The outlined function must exist if embedded"); return OutlinedFn; } return new GlobalVariable( M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage, Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName); } Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn, StringRef EntryFnName) { if (OutlinedFn) return OutlinedFn; assert(!M.getGlobalVariable(EntryFnName, true) && "Named kernel already exists?"); return new GlobalVariable( M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage, Constant::getNullValue(Builder.getInt8Ty()), EntryFnName); } Error OpenMPIRBuilder::emitTargetRegionFunction( TargetRegionEntryInfo &EntryInfo, FunctionGenCallback &GenerateFunctionCallback, bool IsOffloadEntry, Function *&OutlinedFn, Constant *&OutlinedFnID) { SmallString<64> EntryFnName; OffloadInfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo); if (Config.isTargetDevice() || !Config.openMPOffloadMandatory()) { Expected CBResult = GenerateFunctionCallback(EntryFnName); if (!CBResult) return CBResult.takeError(); OutlinedFn = *CBResult; } else { OutlinedFn = nullptr; } // If this target outline function is not an offload entry, we don't need to // register it. This may be in the case of a false if clause, or if there are // no OpenMP targets. if (!IsOffloadEntry) return Error::success(); std::string EntryFnIDName = Config.isTargetDevice() ? std::string(EntryFnName) : createPlatformSpecificName({EntryFnName, "region_id"}); OutlinedFnID = registerTargetRegionFunction(EntryInfo, OutlinedFn, EntryFnName, EntryFnIDName); return Error::success(); } Constant *OpenMPIRBuilder::registerTargetRegionFunction( TargetRegionEntryInfo &EntryInfo, Function *OutlinedFn, StringRef EntryFnName, StringRef EntryFnIDName) { if (OutlinedFn) setOutlinedTargetRegionFunctionAttributes(OutlinedFn); auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName); auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName); OffloadInfoManager.registerTargetRegionEntryInfo( EntryInfo, EntryAddr, OutlinedFnID, OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion); return OutlinedFnID; } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createTargetData( const LocationDescription &Loc, InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value *DeviceID, Value *IfCond, TargetDataInfo &Info, GenMapInfoCallbackTy GenMapInfoCB, CustomMapperCallbackTy CustomMapperCB, omp::RuntimeFunction *MapperFunc, function_ref BodyGenCB, function_ref DeviceAddrCB, Value *SrcLocInfo) { if (!updateToLocation(Loc)) return InsertPointTy(); Builder.restoreIP(CodeGenIP); // Disable TargetData CodeGen on Device pass. if (Config.IsTargetDevice.value_or(false)) { if (BodyGenCB) { InsertPointOrErrorTy AfterIP = BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); } return Builder.saveIP(); } bool IsStandAlone = !BodyGenCB; MapInfosTy *MapInfo; // Generate the code for the opening of the data environment. Capture all the // arguments of the runtime call by reference because they are used in the // closing of the region. auto BeginThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) -> Error { MapInfo = &GenMapInfoCB(Builder.saveIP()); if (Error Err = emitOffloadingArrays( AllocaIP, Builder.saveIP(), *MapInfo, Info, CustomMapperCB, /*IsNonContiguous=*/true, DeviceAddrCB)) return Err; TargetDataRTArgs RTArgs; emitOffloadingArraysArgument(Builder, RTArgs, Info); // Emit the number of elements in the offloading arrays. Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs); // Source location for the ident struct if (!SrcLocInfo) { uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize); } SmallVector OffloadingArgs = { SrcLocInfo, DeviceID, PointerNum, RTArgs.BasePointersArray, RTArgs.PointersArray, RTArgs.SizesArray, RTArgs.MapTypesArray, RTArgs.MapNamesArray, RTArgs.MappersArray}; if (IsStandAlone) { assert(MapperFunc && "MapperFunc missing for standalone target data"); auto TaskBodyCB = [&](Value *, Value *, IRBuilderBase::InsertPoint) -> Error { if (Info.HasNoWait) { OffloadingArgs.append({llvm::Constant::getNullValue(Int32), llvm::Constant::getNullValue(VoidPtr), llvm::Constant::getNullValue(Int32), llvm::Constant::getNullValue(VoidPtr)}); } Builder.CreateCall(getOrCreateRuntimeFunctionPtr(*MapperFunc), OffloadingArgs); if (Info.HasNoWait) { BasicBlock *OffloadContBlock = BasicBlock::Create(Builder.getContext(), "omp_offload.cont"); Function *CurFn = Builder.GetInsertBlock()->getParent(); emitBlock(OffloadContBlock, CurFn, /*IsFinished=*/true); Builder.restoreIP(Builder.saveIP()); } return Error::success(); }; bool RequiresOuterTargetTask = Info.HasNoWait; if (!RequiresOuterTargetTask) cantFail(TaskBodyCB(/*DeviceID=*/nullptr, /*RTLoc=*/nullptr, /*TargetTaskAllocaIP=*/{})); else cantFail(emitTargetTask(TaskBodyCB, DeviceID, SrcLocInfo, AllocaIP, /*Dependencies=*/{}, RTArgs, Info.HasNoWait)); } else { Function *BeginMapperFunc = getOrCreateRuntimeFunctionPtr( omp::OMPRTL___tgt_target_data_begin_mapper); Builder.CreateCall(BeginMapperFunc, OffloadingArgs); for (auto DeviceMap : Info.DevicePtrInfoMap) { if (isa(DeviceMap.second.second)) { auto *LI = Builder.CreateLoad(Builder.getPtrTy(), DeviceMap.second.first); Builder.CreateStore(LI, DeviceMap.second.second); } } // If device pointer privatization is required, emit the body of the // region here. It will have to be duplicated: with and without // privatization. InsertPointOrErrorTy AfterIP = BodyGenCB(Builder.saveIP(), BodyGenTy::Priv); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); } return Error::success(); }; // If we need device pointer privatization, we need to emit the body of the // region with no privatization in the 'else' branch of the conditional. // Otherwise, we don't have to do anything. auto BeginElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) -> Error { InsertPointOrErrorTy AfterIP = BodyGenCB(Builder.saveIP(), BodyGenTy::DupNoPriv); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); return Error::success(); }; // Generate code for the closing of the data region. auto EndThenGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { TargetDataRTArgs RTArgs; Info.EmitDebug = !MapInfo->Names.empty(); emitOffloadingArraysArgument(Builder, RTArgs, Info, /*ForEndCall=*/true); // Emit the number of elements in the offloading arrays. Value *PointerNum = Builder.getInt32(Info.NumberOfPtrs); // Source location for the ident struct if (!SrcLocInfo) { uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); SrcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize); } Value *OffloadingArgs[] = {SrcLocInfo, DeviceID, PointerNum, RTArgs.BasePointersArray, RTArgs.PointersArray, RTArgs.SizesArray, RTArgs.MapTypesArray, RTArgs.MapNamesArray, RTArgs.MappersArray}; Function *EndMapperFunc = getOrCreateRuntimeFunctionPtr(omp::OMPRTL___tgt_target_data_end_mapper); Builder.CreateCall(EndMapperFunc, OffloadingArgs); return Error::success(); }; // We don't have to do anything to close the region if the if clause evaluates // to false. auto EndElseGen = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) { return Error::success(); }; Error Err = [&]() -> Error { if (BodyGenCB) { Error Err = [&]() { if (IfCond) return emitIfClause(IfCond, BeginThenGen, BeginElseGen, AllocaIP); return BeginThenGen(AllocaIP, Builder.saveIP()); }(); if (Err) return Err; // If we don't require privatization of device pointers, we emit the body // in between the runtime calls. This avoids duplicating the body code. InsertPointOrErrorTy AfterIP = BodyGenCB(Builder.saveIP(), BodyGenTy::NoPriv); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); if (IfCond) return emitIfClause(IfCond, EndThenGen, EndElseGen, AllocaIP); return EndThenGen(AllocaIP, Builder.saveIP()); } if (IfCond) return emitIfClause(IfCond, BeginThenGen, EndElseGen, AllocaIP); return BeginThenGen(AllocaIP, Builder.saveIP()); }(); if (Err) return Err; return Builder.saveIP(); } FunctionCallee OpenMPIRBuilder::createForStaticInitFunction(unsigned IVSize, bool IVSigned, bool IsGPUDistribute) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); RuntimeFunction Name; if (IsGPUDistribute) Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_4 : omp::OMPRTL___kmpc_distribute_static_init_4u) : (IVSigned ? omp::OMPRTL___kmpc_distribute_static_init_8 : omp::OMPRTL___kmpc_distribute_static_init_8u); else Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_for_static_init_4 : omp::OMPRTL___kmpc_for_static_init_4u) : (IVSigned ? omp::OMPRTL___kmpc_for_static_init_8 : omp::OMPRTL___kmpc_for_static_init_8u); return getOrCreateRuntimeFunction(M, Name); } FunctionCallee OpenMPIRBuilder::createDispatchInitFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); RuntimeFunction Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_4 : omp::OMPRTL___kmpc_dispatch_init_4u) : (IVSigned ? omp::OMPRTL___kmpc_dispatch_init_8 : omp::OMPRTL___kmpc_dispatch_init_8u); return getOrCreateRuntimeFunction(M, Name); } FunctionCallee OpenMPIRBuilder::createDispatchNextFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); RuntimeFunction Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_4 : omp::OMPRTL___kmpc_dispatch_next_4u) : (IVSigned ? omp::OMPRTL___kmpc_dispatch_next_8 : omp::OMPRTL___kmpc_dispatch_next_8u); return getOrCreateRuntimeFunction(M, Name); } FunctionCallee OpenMPIRBuilder::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) { assert((IVSize == 32 || IVSize == 64) && "IV size is not compatible with the omp runtime"); RuntimeFunction Name = IVSize == 32 ? (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_4 : omp::OMPRTL___kmpc_dispatch_fini_4u) : (IVSigned ? omp::OMPRTL___kmpc_dispatch_fini_8 : omp::OMPRTL___kmpc_dispatch_fini_8u); return getOrCreateRuntimeFunction(M, Name); } FunctionCallee OpenMPIRBuilder::createDispatchDeinitFunction() { return getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_dispatch_deinit); } static void FixupDebugInfoForOutlinedFunction( OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, Function *Func, DenseMap> &ValueReplacementMap) { DISubprogram *NewSP = Func->getSubprogram(); if (!NewSP) return; SmallDenseMap RemappedVariables; auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar, unsigned arg) { DILocalVariable *&NewVar = RemappedVariables[OldVar]; // Only use cached variable if the arg number matches. This is important // so that DIVariable created for privatized variables are not discarded. if (NewVar && (arg == NewVar->getArg())) return NewVar; NewVar = llvm::DILocalVariable::get( Builder.getContext(), OldVar->getScope(), OldVar->getName(), OldVar->getFile(), OldVar->getLine(), OldVar->getType(), arg, OldVar->getFlags(), OldVar->getAlignInBits(), OldVar->getAnnotations()); return NewVar; }; auto UpdateDebugRecord = [&](auto *DR) { DILocalVariable *OldVar = DR->getVariable(); unsigned ArgNo = 0; for (auto Loc : DR->location_ops()) { auto Iter = ValueReplacementMap.find(Loc); if (Iter != ValueReplacementMap.end()) { DR->replaceVariableLocationOp(Loc, std::get<0>(Iter->second)); ArgNo = std::get<1>(Iter->second) + 1; } } if (ArgNo != 0) DR->setVariable(GetUpdatedDIVariable(OldVar, ArgNo)); }; // The location and scope of variable intrinsics and records still point to // the parent function of the target region. Update them. for (Instruction &I : instructions(Func)) { if (auto *DDI = dyn_cast(&I)) UpdateDebugRecord(DDI); for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) UpdateDebugRecord(&DVR); } // An extra argument is passed to the device. Create the debug data for it. if (OMPBuilder.Config.isTargetDevice()) { DICompileUnit *CU = NewSP->getUnit(); Module *M = Func->getParent(); DIBuilder DB(*M, true, CU); DIType *VoidPtrTy = DB.createQualifiedType(dwarf::DW_TAG_pointer_type, nullptr); DILocalVariable *Var = DB.createParameterVariable( NewSP, "dyn_ptr", /*ArgNo*/ 1, NewSP->getFile(), /*LineNo=*/0, VoidPtrTy, /*AlwaysPreserve=*/false, DINode::DIFlags::FlagArtificial); auto Loc = DILocation::get(Func->getContext(), 0, 0, NewSP, 0); DB.insertDeclare(&(*Func->arg_begin()), Var, DB.createExpression(), Loc, &(*Func->begin())); } } static Expected createOutlinedFunction( OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, const OpenMPIRBuilder::TargetKernelDefaultAttrs &DefaultAttrs, StringRef FuncName, SmallVectorImpl &Inputs, OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc, OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) { SmallVector ParameterTypes; if (OMPBuilder.Config.isTargetDevice()) { // Add the "implicit" runtime argument we use to provide launch specific // information for target devices. auto *Int8PtrTy = PointerType::getUnqual(Builder.getContext()); ParameterTypes.push_back(Int8PtrTy); // All parameters to target devices are passed as pointers // or i64. This assumes 64-bit address spaces/pointers. for (auto &Arg : Inputs) ParameterTypes.push_back(Arg->getType()->isPointerTy() ? Arg->getType() : Type::getInt64Ty(Builder.getContext())); } else { for (auto &Arg : Inputs) ParameterTypes.push_back(Arg->getType()); } auto BB = Builder.GetInsertBlock(); auto M = BB->getModule(); auto FuncType = FunctionType::get(Builder.getVoidTy(), ParameterTypes, /*isVarArg*/ false); auto Func = Function::Create(FuncType, GlobalValue::InternalLinkage, FuncName, M); // Forward target-cpu and target-features function attributes from the // original function to the new outlined function. Function *ParentFn = Builder.GetInsertBlock()->getParent(); auto TargetCpuAttr = ParentFn->getFnAttribute("target-cpu"); if (TargetCpuAttr.isStringAttribute()) Func->addFnAttr(TargetCpuAttr); auto TargetFeaturesAttr = ParentFn->getFnAttribute("target-features"); if (TargetFeaturesAttr.isStringAttribute()) Func->addFnAttr(TargetFeaturesAttr); if (OMPBuilder.Config.isTargetDevice()) { Value *ExecMode = OMPBuilder.emitKernelExecutionMode(FuncName, DefaultAttrs.ExecFlags); OMPBuilder.emitUsed("llvm.compiler.used", {ExecMode}); } // Save insert point. IRBuilder<>::InsertPointGuard IPG(Builder); // We will generate the entries in the outlined function but the debug // location may still be pointing to the parent function. Reset it now. Builder.SetCurrentDebugLocation(llvm::DebugLoc()); // Generate the region into the function. BasicBlock *EntryBB = BasicBlock::Create(Builder.getContext(), "entry", Func); Builder.SetInsertPoint(EntryBB); // Insert target init call in the device compilation pass. if (OMPBuilder.Config.isTargetDevice()) Builder.restoreIP(OMPBuilder.createTargetInit(Builder, DefaultAttrs)); BasicBlock *UserCodeEntryBB = Builder.GetInsertBlock(); // As we embed the user code in the middle of our target region after we // generate entry code, we must move what allocas we can into the entry // block to avoid possible breaking optimisations for device if (OMPBuilder.Config.isTargetDevice()) OMPBuilder.ConstantAllocaRaiseCandidates.emplace_back(Func); // Insert target deinit call in the device compilation pass. BasicBlock *OutlinedBodyBB = splitBB(Builder, /*CreateBranch=*/true, "outlined.body"); llvm::OpenMPIRBuilder::InsertPointOrErrorTy AfterIP = CBFunc( Builder.saveIP(), OpenMPIRBuilder::InsertPointTy(OutlinedBodyBB, OutlinedBodyBB->begin())); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); if (OMPBuilder.Config.isTargetDevice()) OMPBuilder.createTargetDeinit(Builder); // Insert return instruction. Builder.CreateRetVoid(); // New Alloca IP at entry point of created device function. Builder.SetInsertPoint(EntryBB->getFirstNonPHIIt()); auto AllocaIP = Builder.saveIP(); Builder.SetInsertPoint(UserCodeEntryBB->getFirstNonPHIOrDbg()); // Skip the artificial dyn_ptr on the device. const auto &ArgRange = OMPBuilder.Config.isTargetDevice() ? make_range(Func->arg_begin() + 1, Func->arg_end()) : Func->args(); DenseMap> ValueReplacementMap; auto ReplaceValue = [](Value *Input, Value *InputCopy, Function *Func) { // Things like GEP's can come in the form of Constants. Constants and // ConstantExpr's do not have access to the knowledge of what they're // contained in, so we must dig a little to find an instruction so we // can tell if they're used inside of the function we're outlining. We // also replace the original constant expression with a new instruction // equivalent; an instruction as it allows easy modification in the // following loop, as we can now know the constant (instruction) is // owned by our target function and replaceUsesOfWith can now be invoked // on it (cannot do this with constants it seems). A brand new one also // allows us to be cautious as it is perhaps possible the old expression // was used inside of the function but exists and is used externally // (unlikely by the nature of a Constant, but still). // NOTE: We cannot remove dead constants that have been rewritten to // instructions at this stage, we run the risk of breaking later lowering // by doing so as we could still be in the process of lowering the module // from MLIR to LLVM-IR and the MLIR lowering may still require the original // constants we have created rewritten versions of. if (auto *Const = dyn_cast(Input)) convertUsersOfConstantsToInstructions(Const, Func, false); // Collect users before iterating over them to avoid invalidating the // iteration in case a user uses Input more than once (e.g. a call // instruction). SetVector Users(Input->users().begin(), Input->users().end()); // Collect all the instructions for (User *User : make_early_inc_range(Users)) if (auto *Instr = dyn_cast(User)) if (Instr->getFunction() == Func) Instr->replaceUsesOfWith(Input, InputCopy); }; SmallVector> DeferredReplacement; // Rewrite uses of input valus to parameters. for (auto InArg : zip(Inputs, ArgRange)) { Value *Input = std::get<0>(InArg); Argument &Arg = std::get<1>(InArg); Value *InputCopy = nullptr; llvm::OpenMPIRBuilder::InsertPointOrErrorTy AfterIP = ArgAccessorFuncCB(Arg, Input, InputCopy, AllocaIP, Builder.saveIP()); if (!AfterIP) return AfterIP.takeError(); Builder.restoreIP(*AfterIP); ValueReplacementMap[Input] = std::make_tuple(InputCopy, Arg.getArgNo()); // In certain cases a Global may be set up for replacement, however, this // Global may be used in multiple arguments to the kernel, just segmented // apart, for example, if we have a global array, that is sectioned into // multiple mappings (technically not legal in OpenMP, but there is a case // in Fortran for Common Blocks where this is neccesary), we will end up // with GEP's into this array inside the kernel, that refer to the Global // but are technically seperate arguments to the kernel for all intents and // purposes. If we have mapped a segment that requires a GEP into the 0-th // index, it will fold into an referal to the Global, if we then encounter // this folded GEP during replacement all of the references to the // Global in the kernel will be replaced with the argument we have generated // that corresponds to it, including any other GEP's that refer to the // Global that may be other arguments. This will invalidate all of the other // preceding mapped arguments that refer to the same global that may be // seperate segments. To prevent this, we defer global processing until all // other processing has been performed. if (isa(Input)) { DeferredReplacement.push_back(std::make_pair(Input, InputCopy)); continue; } if (isa(Input)) continue; ReplaceValue(Input, InputCopy, Func); } // Replace all of our deferred Input values, currently just Globals. for (auto Deferred : DeferredReplacement) ReplaceValue(std::get<0>(Deferred), std::get<1>(Deferred), Func); FixupDebugInfoForOutlinedFunction(OMPBuilder, Builder, Func, ValueReplacementMap); return Func; } /// Given a task descriptor, TaskWithPrivates, return the pointer to the block /// of pointers containing shared data between the parent task and the created /// task. static LoadInst *loadSharedDataFromTaskDescriptor(OpenMPIRBuilder &OMPIRBuilder, IRBuilderBase &Builder, Value *TaskWithPrivates, Type *TaskWithPrivatesTy) { Type *TaskTy = OMPIRBuilder.Task; LLVMContext &Ctx = Builder.getContext(); Value *TaskT = Builder.CreateStructGEP(TaskWithPrivatesTy, TaskWithPrivates, 0); Value *Shareds = TaskT; // TaskWithPrivatesTy can be one of the following // 1. %struct.task_with_privates = type { %struct.kmp_task_ompbuilder_t, // %struct.privates } // 2. %struct.kmp_task_ompbuilder_t ;; This is simply TaskTy // // In the former case, that is when TaskWithPrivatesTy != TaskTy, // its first member has to be the task descriptor. TaskTy is the type of the // task descriptor. TaskT is the pointer to the task descriptor. Loading the // first member of TaskT, gives us the pointer to shared data. if (TaskWithPrivatesTy != TaskTy) Shareds = Builder.CreateStructGEP(TaskTy, TaskT, 0); return Builder.CreateLoad(PointerType::getUnqual(Ctx), Shareds); } /// Create an entry point for a target task with the following. /// It'll have the following signature /// void @.omp_target_task_proxy_func(i32 %thread.id, ptr %task) /// This function is called from emitTargetTask once the /// code to launch the target kernel has been outlined already. /// NumOffloadingArrays is the number of offloading arrays that we need to copy /// into the task structure so that the deferred target task can access this /// data even after the stack frame of the generating task has been rolled /// back. Offloading arrays contain base pointers, pointers, sizes etc /// of the data that the target kernel will access. These in effect are the /// non-empty arrays of pointers held by OpenMPIRBuilder::TargetDataRTArgs. static Function *emitTargetTaskProxyFunction( OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, CallInst *StaleCI, StructType *PrivatesTy, StructType *TaskWithPrivatesTy, const size_t NumOffloadingArrays, const int SharedArgsOperandNo) { // If NumOffloadingArrays is non-zero, PrivatesTy better not be nullptr. // This is because PrivatesTy is the type of the structure in which // we pass the offloading arrays to the deferred target task. assert((!NumOffloadingArrays || PrivatesTy) && "PrivatesTy cannot be nullptr when there are offloadingArrays" "to privatize"); Module &M = OMPBuilder.M; // KernelLaunchFunction is the target launch function, i.e. // the function that sets up kernel arguments and calls // __tgt_target_kernel to launch the kernel on the device. // Function *KernelLaunchFunction = StaleCI->getCalledFunction(); // StaleCI is the CallInst which is the call to the outlined // target kernel launch function. If there are local live-in values // that the outlined function uses then these are aggregated into a structure // which is passed as the second argument. If there are no local live-in // values or if all values used by the outlined kernel are global variables, // then there's only one argument, the threadID. So, StaleCI can be // // %structArg = alloca { ptr, ptr }, align 8 // %gep_ = getelementptr { ptr, ptr }, ptr %structArg, i32 0, i32 0 // store ptr %20, ptr %gep_, align 8 // %gep_8 = getelementptr { ptr, ptr }, ptr %structArg, i32 0, i32 1 // store ptr %21, ptr %gep_8, align 8 // call void @_QQmain..omp_par.1(i32 %global.tid.val6, ptr %structArg) // // OR // // call void @_QQmain..omp_par.1(i32 %global.tid.val6) OpenMPIRBuilder::InsertPointTy IP(StaleCI->getParent(), StaleCI->getIterator()); LLVMContext &Ctx = StaleCI->getParent()->getContext(); Type *ThreadIDTy = Type::getInt32Ty(Ctx); Type *TaskPtrTy = OMPBuilder.TaskPtr; [[maybe_unused]] Type *TaskTy = OMPBuilder.Task; auto ProxyFnTy = FunctionType::get(Builder.getVoidTy(), {ThreadIDTy, TaskPtrTy}, /* isVarArg */ false); auto ProxyFn = Function::Create(ProxyFnTy, GlobalValue::InternalLinkage, ".omp_target_task_proxy_func", Builder.GetInsertBlock()->getModule()); Value *ThreadId = ProxyFn->getArg(0); Value *TaskWithPrivates = ProxyFn->getArg(1); ThreadId->setName("thread.id"); TaskWithPrivates->setName("task"); bool HasShareds = SharedArgsOperandNo > 0; bool HasOffloadingArrays = NumOffloadingArrays > 0; BasicBlock *EntryBB = BasicBlock::Create(Builder.getContext(), "entry", ProxyFn); Builder.SetInsertPoint(EntryBB); SmallVector KernelLaunchArgs; KernelLaunchArgs.reserve(StaleCI->arg_size()); KernelLaunchArgs.push_back(ThreadId); if (HasOffloadingArrays) { assert(TaskTy != TaskWithPrivatesTy && "If there are offloading arrays to pass to the target" "TaskTy cannot be the same as TaskWithPrivatesTy"); (void)TaskTy; Value *Privates = Builder.CreateStructGEP(TaskWithPrivatesTy, TaskWithPrivates, 1); for (unsigned int i = 0; i < NumOffloadingArrays; ++i) KernelLaunchArgs.push_back( Builder.CreateStructGEP(PrivatesTy, Privates, i)); } if (HasShareds) { auto *ArgStructAlloca = dyn_cast(StaleCI->getArgOperand(SharedArgsOperandNo)); assert(ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments " "for extracted function"); auto *ArgStructType = cast(ArgStructAlloca->getAllocatedType()); AllocaInst *NewArgStructAlloca = Builder.CreateAlloca(ArgStructType, nullptr, "structArg"); Value *SharedsSize = Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType)); LoadInst *LoadShared = loadSharedDataFromTaskDescriptor( OMPBuilder, Builder, TaskWithPrivates, TaskWithPrivatesTy); Builder.CreateMemCpy( NewArgStructAlloca, NewArgStructAlloca->getAlign(), LoadShared, LoadShared->getPointerAlignment(M.getDataLayout()), SharedsSize); KernelLaunchArgs.push_back(NewArgStructAlloca); } Builder.CreateCall(KernelLaunchFunction, KernelLaunchArgs); Builder.CreateRetVoid(); return ProxyFn; } static Type *getOffloadingArrayType(Value *V) { if (auto *GEP = dyn_cast(V)) return GEP->getSourceElementType(); if (auto *Alloca = dyn_cast(V)) return Alloca->getAllocatedType(); llvm_unreachable("Unhandled Instruction type"); return nullptr; } // This function returns a struct that has at most two members. // The first member is always %struct.kmp_task_ompbuilder_t, that is the task // descriptor. The second member, if needed, is a struct containing arrays // that need to be passed to the offloaded target kernel. For example, // if .offload_baseptrs, .offload_ptrs and .offload_sizes have to be passed to // the target kernel and their types are [3 x ptr], [3 x ptr] and [3 x i64] // respectively, then the types created by this function are // // %struct.privates = type { [3 x ptr], [3 x ptr], [3 x i64] } // %struct.task_with_privates = type { %struct.kmp_task_ompbuilder_t, // %struct.privates } // %struct.task_with_privates is returned by this function. // If there aren't any offloading arrays to pass to the target kernel, // %struct.kmp_task_ompbuilder_t is returned. static StructType * createTaskWithPrivatesTy(OpenMPIRBuilder &OMPIRBuilder, ArrayRef OffloadingArraysToPrivatize) { if (OffloadingArraysToPrivatize.empty()) return OMPIRBuilder.Task; SmallVector StructFieldTypes; for (Value *V : OffloadingArraysToPrivatize) { assert(V->getType()->isPointerTy() && "Expected pointer to array to privatize. Got a non-pointer value " "instead"); Type *ArrayTy = getOffloadingArrayType(V); assert(ArrayTy && "ArrayType cannot be nullptr"); StructFieldTypes.push_back(ArrayTy); } StructType *PrivatesStructTy = StructType::create(StructFieldTypes, "struct.privates"); return StructType::create({OMPIRBuilder.Task, PrivatesStructTy}, "struct.task_with_privates"); } static Error emitTargetOutlinedFunction( OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, bool IsOffloadEntry, TargetRegionEntryInfo &EntryInfo, const OpenMPIRBuilder::TargetKernelDefaultAttrs &DefaultAttrs, Function *&OutlinedFn, Constant *&OutlinedFnID, SmallVectorImpl &Inputs, OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc, OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy &ArgAccessorFuncCB) { OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction = [&](StringRef EntryFnName) { return createOutlinedFunction(OMPBuilder, Builder, DefaultAttrs, EntryFnName, Inputs, CBFunc, ArgAccessorFuncCB); }; return OMPBuilder.emitTargetRegionFunction( EntryInfo, GenerateOutlinedFunction, IsOffloadEntry, OutlinedFn, OutlinedFnID); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::emitTargetTask( TargetTaskBodyCallbackTy TaskBodyCB, Value *DeviceID, Value *RTLoc, OpenMPIRBuilder::InsertPointTy AllocaIP, const SmallVector &Dependencies, const TargetDataRTArgs &RTArgs, bool HasNoWait) { // The following explains the code-gen scenario for the `target` directive. A // similar scneario is followed for other device-related directives (e.g. // `target enter data`) but in similar fashion since we only need to emit task // that encapsulates the proper runtime call. // // When we arrive at this function, the target region itself has been // outlined into the function OutlinedFn. // So at ths point, for // -------------------------------------------------------------- // void user_code_that_offloads(...) { // omp target depend(..) map(from:a) map(to:b) private(i) // do i = 1, 10 // a(i) = b(i) + n // } // // -------------------------------------------------------------- // // we have // // -------------------------------------------------------------- // // void user_code_that_offloads(...) { // %.offload_baseptrs = alloca [2 x ptr], align 8 // %.offload_ptrs = alloca [2 x ptr], align 8 // %.offload_mappers = alloca [2 x ptr], align 8 // ;; target region has been outlined and now we need to // ;; offload to it via a target task. // } // void outlined_device_function(ptr a, ptr b, ptr n) { // n = *n_ptr; // do i = 1, 10 // a(i) = b(i) + n // } // // We have to now do the following // (i) Make an offloading call to outlined_device_function using the OpenMP // RTL. See 'kernel_launch_function' in the pseudo code below. This is // emitted by emitKernelLaunch // (ii) Create a task entry point function that calls kernel_launch_function // and is the entry point for the target task. See // '@.omp_target_task_proxy_func in the pseudocode below. // (iii) Create a task with the task entry point created in (ii) // // That is we create the following // struct task_with_privates { // struct kmp_task_ompbuilder_t task_struct; // struct privates { // [2 x ptr] ; baseptrs // [2 x ptr] ; ptrs // [2 x i64] ; sizes // } // } // void user_code_that_offloads(...) { // %.offload_baseptrs = alloca [2 x ptr], align 8 // %.offload_ptrs = alloca [2 x ptr], align 8 // %.offload_sizes = alloca [2 x i64], align 8 // // %structArg = alloca { ptr, ptr, ptr }, align 8 // %strucArg[0] = a // %strucArg[1] = b // %strucArg[2] = &n // // target_task_with_privates = @__kmpc_omp_target_task_alloc(..., // sizeof(kmp_task_ompbuilder_t), // sizeof(structArg), // @.omp_target_task_proxy_func, // ...) // memcpy(target_task_with_privates->task_struct->shareds, %structArg, // sizeof(structArg)) // memcpy(target_task_with_privates->privates->baseptrs, // offload_baseptrs, sizeof(offload_baseptrs) // memcpy(target_task_with_privates->privates->ptrs, // offload_ptrs, sizeof(offload_ptrs) // memcpy(target_task_with_privates->privates->sizes, // offload_sizes, sizeof(offload_sizes) // dependencies_array = ... // ;; if nowait not present // call @__kmpc_omp_wait_deps(..., dependencies_array) // call @__kmpc_omp_task_begin_if0(...) // call @ @.omp_target_task_proxy_func(i32 thread_id, ptr // %target_task_with_privates) // call @__kmpc_omp_task_complete_if0(...) // } // // define internal void @.omp_target_task_proxy_func(i32 %thread.id, // ptr %task) { // %structArg = alloca {ptr, ptr, ptr} // %task_ptr = getelementptr(%task, 0, 0) // %shared_data = load (getelementptr %task_ptr, 0, 0) // mempcy(%structArg, %shared_data, sizeof(%structArg)) // // %offloading_arrays = getelementptr(%task, 0, 1) // %offload_baseptrs = getelementptr(%offloading_arrays, 0, 0) // %offload_ptrs = getelementptr(%offloading_arrays, 0, 1) // %offload_sizes = getelementptr(%offloading_arrays, 0, 2) // kernel_launch_function(%thread.id, %offload_baseptrs, %offload_ptrs, // %offload_sizes, %structArg) // } // // We need the proxy function because the signature of the task entry point // expected by kmpc_omp_task is always the same and will be different from // that of the kernel_launch function. // // kernel_launch_function is generated by emitKernelLaunch and has the // always_inline attribute. For this example, it'll look like so: // void kernel_launch_function(%thread_id, %offload_baseptrs, %offload_ptrs, // %offload_sizes, %structArg) alwaysinline { // %kernel_args = alloca %struct.__tgt_kernel_arguments, align 8 // ; load aggregated data from %structArg // ; setup kernel_args using offload_baseptrs, offload_ptrs and // ; offload_sizes // call i32 @__tgt_target_kernel(..., // outlined_device_function, // ptr %kernel_args) // } // void outlined_device_function(ptr a, ptr b, ptr n) { // n = *n_ptr; // do i = 1, 10 // a(i) = b(i) + n // } // BasicBlock *TargetTaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "target.task.body"); BasicBlock *TargetTaskAllocaBB = splitBB(Builder, /*CreateBranch=*/true, "target.task.alloca"); InsertPointTy TargetTaskAllocaIP(TargetTaskAllocaBB, TargetTaskAllocaBB->begin()); InsertPointTy TargetTaskBodyIP(TargetTaskBodyBB, TargetTaskBodyBB->begin()); OutlineInfo OI; OI.EntryBB = TargetTaskAllocaBB; OI.OuterAllocaBB = AllocaIP.getBlock(); // Add the thread ID argument. SmallVector ToBeDeleted; OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal( Builder, AllocaIP, ToBeDeleted, TargetTaskAllocaIP, "global.tid", false)); // Generate the task body which will subsequently be outlined. Builder.restoreIP(TargetTaskBodyIP); if (Error Err = TaskBodyCB(DeviceID, RTLoc, TargetTaskAllocaIP)) return Err; // The outliner (CodeExtractor) extract a sequence or vector of blocks that // it is given. These blocks are enumerated by // OpenMPIRBuilder::OutlineInfo::collectBlocks which expects the OI.ExitBlock // to be outside the region. In other words, OI.ExitBlock is expected to be // the start of the region after the outlining. We used to set OI.ExitBlock // to the InsertBlock after TaskBodyCB is done. This is fine in most cases // except when the task body is a single basic block. In that case, // OI.ExitBlock is set to the single task body block and will get left out of // the outlining process. So, simply create a new empty block to which we // uncoditionally branch from where TaskBodyCB left off OI.ExitBB = BasicBlock::Create(Builder.getContext(), "target.task.cont"); emitBlock(OI.ExitBB, Builder.GetInsertBlock()->getParent(), /*IsFinished=*/true); SmallVector OffloadingArraysToPrivatize; bool NeedsTargetTask = HasNoWait && DeviceID; if (NeedsTargetTask) { for (auto *V : {RTArgs.BasePointersArray, RTArgs.PointersArray, RTArgs.MappersArray, RTArgs.MapNamesArray, RTArgs.MapTypesArray, RTArgs.MapTypesArrayEnd, RTArgs.SizesArray}) { if (V && !isa(V)) { OffloadingArraysToPrivatize.push_back(V); OI.ExcludeArgsFromAggregate.push_back(V); } } } OI.PostOutlineCB = [this, ToBeDeleted, Dependencies, NeedsTargetTask, DeviceID, OffloadingArraysToPrivatize]( Function &OutlinedFn) mutable { assert(OutlinedFn.hasOneUse() && "there must be a single user for the outlined function"); CallInst *StaleCI = cast(OutlinedFn.user_back()); // The first argument of StaleCI is always the thread id. // The next few arguments are the pointers to offloading arrays // if any. (see OffloadingArraysToPrivatize) // Finally, all other local values that are live-in into the outlined region // end up in a structure whose pointer is passed as the last argument. This // piece of data is passed in the "shared" field of the task structure. So, // we know we have to pass shareds to the task if the number of arguments is // greater than OffloadingArraysToPrivatize.size() + 1 The 1 is for the // thread id. Further, for safety, we assert that the number of arguments of // StaleCI is exactly OffloadingArraysToPrivatize.size() + 2 const unsigned int NumStaleCIArgs = StaleCI->arg_size(); bool HasShareds = NumStaleCIArgs > OffloadingArraysToPrivatize.size() + 1; assert((!HasShareds || NumStaleCIArgs == (OffloadingArraysToPrivatize.size() + 2)) && "Wrong number of arguments for StaleCI when shareds are present"); int SharedArgOperandNo = HasShareds ? OffloadingArraysToPrivatize.size() + 1 : 0; StructType *TaskWithPrivatesTy = createTaskWithPrivatesTy(*this, OffloadingArraysToPrivatize); StructType *PrivatesTy = nullptr; if (!OffloadingArraysToPrivatize.empty()) PrivatesTy = static_cast(TaskWithPrivatesTy->getElementType(1)); Function *ProxyFn = emitTargetTaskProxyFunction( *this, Builder, StaleCI, PrivatesTy, TaskWithPrivatesTy, OffloadingArraysToPrivatize.size(), SharedArgOperandNo); LLVM_DEBUG(dbgs() << "Proxy task entry function created: " << *ProxyFn << "\n"); Builder.SetInsertPoint(StaleCI); // Gather the arguments for emitting the runtime call. uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(LocationDescription(Builder), SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); // @__kmpc_omp_task_alloc or @__kmpc_omp_target_task_alloc // // If `HasNoWait == true`, we call @__kmpc_omp_target_task_alloc to provide // the DeviceID to the deferred task and also since // @__kmpc_omp_target_task_alloc creates an untied/async task. Function *TaskAllocFn = !NeedsTargetTask ? getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc) : getOrCreateRuntimeFunctionPtr( OMPRTL___kmpc_omp_target_task_alloc); // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID) // call. Value *ThreadID = getOrCreateThreadID(Ident); // Argument - `sizeof_kmp_task_t` (TaskSize) // Tasksize refers to the size in bytes of kmp_task_t data structure // plus any other data to be passed to the target task, if any, which // is packed into a struct. kmp_task_t and the struct so created are // packed into a wrapper struct whose type is TaskWithPrivatesTy. Value *TaskSize = Builder.getInt64( M.getDataLayout().getTypeStoreSize(TaskWithPrivatesTy)); // Argument - `sizeof_shareds` (SharedsSize) // SharedsSize refers to the shareds array size in the kmp_task_t data // structure. Value *SharedsSize = Builder.getInt64(0); if (HasShareds) { auto *ArgStructAlloca = dyn_cast(StaleCI->getArgOperand(SharedArgOperandNo)); assert(ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments " "for extracted function"); auto *ArgStructType = dyn_cast(ArgStructAlloca->getAllocatedType()); assert(ArgStructType && "Unable to find struct type corresponding to " "arguments for extracted function"); SharedsSize = Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType)); } // Argument - `flags` // Task is tied iff (Flags & 1) == 1. // Task is untied iff (Flags & 1) == 0. // Task is final iff (Flags & 2) == 2. // Task is not final iff (Flags & 2) == 0. // A target task is not final and is untied. Value *Flags = Builder.getInt32(0); // Emit the @__kmpc_omp_task_alloc runtime call // The runtime call returns a pointer to an area where the task captured // variables must be copied before the task is run (TaskData) CallInst *TaskData = nullptr; SmallVector TaskAllocArgs = { /*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags, /*sizeof_task=*/TaskSize, /*sizeof_shared=*/SharedsSize, /*task_func=*/ProxyFn}; if (NeedsTargetTask) { assert(DeviceID && "Expected non-empty device ID."); TaskAllocArgs.push_back(DeviceID); } TaskData = Builder.CreateCall(TaskAllocFn, TaskAllocArgs); Align Alignment = TaskData->getPointerAlignment(M.getDataLayout()); if (HasShareds) { Value *Shareds = StaleCI->getArgOperand(SharedArgOperandNo); Value *TaskShareds = loadSharedDataFromTaskDescriptor( *this, Builder, TaskData, TaskWithPrivatesTy); Builder.CreateMemCpy(TaskShareds, Alignment, Shareds, Alignment, SharedsSize); } if (!OffloadingArraysToPrivatize.empty()) { Value *Privates = Builder.CreateStructGEP(TaskWithPrivatesTy, TaskData, 1); for (unsigned int i = 0; i < OffloadingArraysToPrivatize.size(); ++i) { Value *PtrToPrivatize = OffloadingArraysToPrivatize[i]; [[maybe_unused]] Type *ArrayType = getOffloadingArrayType(PtrToPrivatize); assert(ArrayType && "ArrayType cannot be nullptr"); Type *ElementType = PrivatesTy->getElementType(i); assert(ElementType == ArrayType && "ElementType should match ArrayType"); (void)ArrayType; Value *Dst = Builder.CreateStructGEP(PrivatesTy, Privates, i); Builder.CreateMemCpy( Dst, Alignment, PtrToPrivatize, Alignment, Builder.getInt64(M.getDataLayout().getTypeStoreSize(ElementType))); } } Value *DepArray = emitTaskDependencies(*this, Dependencies); // --------------------------------------------------------------- // V5.2 13.8 target construct // If the nowait clause is present, execution of the target task // may be deferred. If the nowait clause is not present, the target task is // an included task. // --------------------------------------------------------------- // The above means that the lack of a nowait on the target construct // translates to '#pragma omp task if(0)' if (!NeedsTargetTask) { if (DepArray) { Function *TaskWaitFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_wait_deps); Builder.CreateCall( TaskWaitFn, {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*ndeps=*/Builder.getInt32(Dependencies.size()), /*dep_list=*/DepArray, /*ndeps_noalias=*/ConstantInt::get(Builder.getInt32Ty(), 0), /*noalias_dep_list=*/ ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))}); } // Included task. Function *TaskBeginFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0); Function *TaskCompleteFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0); Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, TaskData}); CallInst *CI = Builder.CreateCall(ProxyFn, {ThreadID, TaskData}); CI->setDebugLoc(StaleCI->getDebugLoc()); Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, TaskData}); } else if (DepArray) { // HasNoWait - meaning the task may be deferred. Call // __kmpc_omp_task_with_deps if there are dependencies, // else call __kmpc_omp_task Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps); Builder.CreateCall( TaskFn, {Ident, ThreadID, TaskData, Builder.getInt32(Dependencies.size()), DepArray, ConstantInt::get(Builder.getInt32Ty(), 0), ConstantPointerNull::get(PointerType::getUnqual(M.getContext()))}); } else { // Emit the @__kmpc_omp_task runtime call to spawn the task Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task); Builder.CreateCall(TaskFn, {Ident, ThreadID, TaskData}); } StaleCI->eraseFromParent(); for (Instruction *I : llvm::reverse(ToBeDeleted)) I->eraseFromParent(); }; addOutlineInfo(std::move(OI)); LLVM_DEBUG(dbgs() << "Insert block after emitKernelLaunch = \n" << *(Builder.GetInsertBlock()) << "\n"); LLVM_DEBUG(dbgs() << "Module after emitKernelLaunch = \n" << *(Builder.GetInsertBlock()->getParent()->getParent()) << "\n"); return Builder.saveIP(); } Error OpenMPIRBuilder::emitOffloadingArraysAndArgs( InsertPointTy AllocaIP, InsertPointTy CodeGenIP, TargetDataInfo &Info, TargetDataRTArgs &RTArgs, MapInfosTy &CombinedInfo, CustomMapperCallbackTy CustomMapperCB, bool IsNonContiguous, bool ForEndCall, function_ref DeviceAddrCB) { if (Error Err = emitOffloadingArrays(AllocaIP, CodeGenIP, CombinedInfo, Info, CustomMapperCB, IsNonContiguous, DeviceAddrCB)) return Err; emitOffloadingArraysArgument(Builder, RTArgs, Info, ForEndCall); return Error::success(); } static void emitTargetCall( OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder, OpenMPIRBuilder::InsertPointTy AllocaIP, OpenMPIRBuilder::TargetDataInfo &Info, const OpenMPIRBuilder::TargetKernelDefaultAttrs &DefaultAttrs, const OpenMPIRBuilder::TargetKernelRuntimeAttrs &RuntimeAttrs, Value *IfCond, Function *OutlinedFn, Constant *OutlinedFnID, SmallVectorImpl &Args, OpenMPIRBuilder::GenMapInfoCallbackTy GenMapInfoCB, OpenMPIRBuilder::CustomMapperCallbackTy CustomMapperCB, const SmallVector &Dependencies, bool HasNoWait) { // Generate a function call to the host fallback implementation of the target // region. This is called by the host when no offload entry was generated for // the target region and when the offloading call fails at runtime. auto &&EmitTargetCallFallbackCB = [&](OpenMPIRBuilder::InsertPointTy IP) -> OpenMPIRBuilder::InsertPointOrErrorTy { Builder.restoreIP(IP); Builder.CreateCall(OutlinedFn, Args); return Builder.saveIP(); }; bool HasDependencies = Dependencies.size() > 0; bool RequiresOuterTargetTask = HasNoWait || HasDependencies; OpenMPIRBuilder::TargetKernelArgs KArgs; auto TaskBodyCB = [&](Value *DeviceID, Value *RTLoc, IRBuilderBase::InsertPoint TargetTaskAllocaIP) -> Error { // Assume no error was returned because EmitTargetCallFallbackCB doesn't // produce any. llvm::OpenMPIRBuilder::InsertPointTy AfterIP = cantFail([&]() { // emitKernelLaunch makes the necessary runtime call to offload the // kernel. We then outline all that code into a separate function // ('kernel_launch_function' in the pseudo code above). This function is // then called by the target task proxy function (see // '@.omp_target_task_proxy_func' in the pseudo code above) // "@.omp_target_task_proxy_func' is generated by // emitTargetTaskProxyFunction. if (OutlinedFnID && DeviceID) return OMPBuilder.emitKernelLaunch(Builder, OutlinedFnID, EmitTargetCallFallbackCB, KArgs, DeviceID, RTLoc, TargetTaskAllocaIP); // We only need to do the outlining if `DeviceID` is set to avoid calling // `emitKernelLaunch` if we want to code-gen for the host; e.g. if we are // generating the `else` branch of an `if` clause. // // When OutlinedFnID is set to nullptr, then it's not an offloading call. // In this case, we execute the host implementation directly. return EmitTargetCallFallbackCB(OMPBuilder.Builder.saveIP()); }()); OMPBuilder.Builder.restoreIP(AfterIP); return Error::success(); }; auto &&EmitTargetCallElse = [&](OpenMPIRBuilder::InsertPointTy AllocaIP, OpenMPIRBuilder::InsertPointTy CodeGenIP) -> Error { // Assume no error was returned because EmitTargetCallFallbackCB doesn't // produce any. OpenMPIRBuilder::InsertPointTy AfterIP = cantFail([&]() { if (RequiresOuterTargetTask) { // Arguments that are intended to be directly forwarded to an // emitKernelLaunch call are pased as nullptr, since // OutlinedFnID=nullptr results in that call not being done. OpenMPIRBuilder::TargetDataRTArgs EmptyRTArgs; return OMPBuilder.emitTargetTask(TaskBodyCB, /*DeviceID=*/nullptr, /*RTLoc=*/nullptr, AllocaIP, Dependencies, EmptyRTArgs, HasNoWait); } return EmitTargetCallFallbackCB(Builder.saveIP()); }()); Builder.restoreIP(AfterIP); return Error::success(); }; auto &&EmitTargetCallThen = [&](OpenMPIRBuilder::InsertPointTy AllocaIP, OpenMPIRBuilder::InsertPointTy CodeGenIP) -> Error { Info.HasNoWait = HasNoWait; OpenMPIRBuilder::MapInfosTy &MapInfo = GenMapInfoCB(Builder.saveIP()); OpenMPIRBuilder::TargetDataRTArgs RTArgs; if (Error Err = OMPBuilder.emitOffloadingArraysAndArgs( AllocaIP, Builder.saveIP(), Info, RTArgs, MapInfo, CustomMapperCB, /*IsNonContiguous=*/true, /*ForEndCall=*/false)) return Err; SmallVector NumTeamsC; for (auto [DefaultVal, RuntimeVal] : zip_equal(DefaultAttrs.MaxTeams, RuntimeAttrs.MaxTeams)) NumTeamsC.push_back(RuntimeVal ? RuntimeVal : Builder.getInt32(DefaultVal)); // Calculate number of threads: 0 if no clauses specified, otherwise it is // the minimum between optional THREAD_LIMIT and NUM_THREADS clauses. auto InitMaxThreadsClause = [&Builder](Value *Clause) { if (Clause) Clause = Builder.CreateIntCast(Clause, Builder.getInt32Ty(), /*isSigned=*/false); return Clause; }; auto CombineMaxThreadsClauses = [&Builder](Value *Clause, Value *&Result) { if (Clause) Result = Result ? Builder.CreateSelect(Builder.CreateICmpULT(Result, Clause), Result, Clause) : Clause; }; // If a multi-dimensional THREAD_LIMIT is set, it is the OMPX_BARE case, so // the NUM_THREADS clause is overriden by THREAD_LIMIT. SmallVector NumThreadsC; Value *MaxThreadsClause = RuntimeAttrs.TeamsThreadLimit.size() == 1 ? InitMaxThreadsClause(RuntimeAttrs.MaxThreads) : nullptr; for (auto [TeamsVal, TargetVal] : zip_equal( RuntimeAttrs.TeamsThreadLimit, RuntimeAttrs.TargetThreadLimit)) { Value *TeamsThreadLimitClause = InitMaxThreadsClause(TeamsVal); Value *NumThreads = InitMaxThreadsClause(TargetVal); CombineMaxThreadsClauses(TeamsThreadLimitClause, NumThreads); CombineMaxThreadsClauses(MaxThreadsClause, NumThreads); NumThreadsC.push_back(NumThreads ? NumThreads : Builder.getInt32(0)); } unsigned NumTargetItems = Info.NumberOfPtrs; // TODO: Use correct device ID Value *DeviceID = Builder.getInt64(OMP_DEVICEID_UNDEF); uint32_t SrcLocStrSize; Constant *SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize); Value *RTLoc = OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize, llvm::omp::IdentFlag(0), 0); Value *TripCount = RuntimeAttrs.LoopTripCount ? Builder.CreateIntCast(RuntimeAttrs.LoopTripCount, Builder.getInt64Ty(), /*isSigned=*/false) : Builder.getInt64(0); // TODO: Use correct DynCGGroupMem Value *DynCGGroupMem = Builder.getInt32(0); KArgs = OpenMPIRBuilder::TargetKernelArgs(NumTargetItems, RTArgs, TripCount, NumTeamsC, NumThreadsC, DynCGGroupMem, HasNoWait); // Assume no error was returned because TaskBodyCB and // EmitTargetCallFallbackCB don't produce any. OpenMPIRBuilder::InsertPointTy AfterIP = cantFail([&]() { // The presence of certain clauses on the target directive require the // explicit generation of the target task. if (RequiresOuterTargetTask) return OMPBuilder.emitTargetTask(TaskBodyCB, DeviceID, RTLoc, AllocaIP, Dependencies, KArgs.RTArgs, Info.HasNoWait); return OMPBuilder.emitKernelLaunch(Builder, OutlinedFnID, EmitTargetCallFallbackCB, KArgs, DeviceID, RTLoc, AllocaIP); }()); Builder.restoreIP(AfterIP); return Error::success(); }; // If we don't have an ID for the target region, it means an offload entry // wasn't created. In this case we just run the host fallback directly and // ignore any potential 'if' clauses. if (!OutlinedFnID) { cantFail(EmitTargetCallElse(AllocaIP, Builder.saveIP())); return; } // If there's no 'if' clause, only generate the kernel launch code path. if (!IfCond) { cantFail(EmitTargetCallThen(AllocaIP, Builder.saveIP())); return; } cantFail(OMPBuilder.emitIfClause(IfCond, EmitTargetCallThen, EmitTargetCallElse, AllocaIP)); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createTarget( const LocationDescription &Loc, bool IsOffloadEntry, InsertPointTy AllocaIP, InsertPointTy CodeGenIP, TargetDataInfo &Info, TargetRegionEntryInfo &EntryInfo, const TargetKernelDefaultAttrs &DefaultAttrs, const TargetKernelRuntimeAttrs &RuntimeAttrs, Value *IfCond, SmallVectorImpl &Inputs, GenMapInfoCallbackTy GenMapInfoCB, OpenMPIRBuilder::TargetBodyGenCallbackTy CBFunc, OpenMPIRBuilder::TargetGenArgAccessorsCallbackTy ArgAccessorFuncCB, CustomMapperCallbackTy CustomMapperCB, const SmallVector &Dependencies, bool HasNowait) { if (!updateToLocation(Loc)) return InsertPointTy(); Builder.restoreIP(CodeGenIP); Function *OutlinedFn; Constant *OutlinedFnID = nullptr; // The target region is outlined into its own function. The LLVM IR for // the target region itself is generated using the callbacks CBFunc // and ArgAccessorFuncCB if (Error Err = emitTargetOutlinedFunction( *this, Builder, IsOffloadEntry, EntryInfo, DefaultAttrs, OutlinedFn, OutlinedFnID, Inputs, CBFunc, ArgAccessorFuncCB)) return Err; // If we are not on the target device, then we need to generate code // to make a remote call (offload) to the previously outlined function // that represents the target region. Do that now. if (!Config.isTargetDevice()) emitTargetCall(*this, Builder, AllocaIP, Info, DefaultAttrs, RuntimeAttrs, IfCond, OutlinedFn, OutlinedFnID, Inputs, GenMapInfoCB, CustomMapperCB, Dependencies, HasNowait); return Builder.saveIP(); } std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef Parts, StringRef FirstSeparator, StringRef Separator) { SmallString<128> Buffer; llvm::raw_svector_ostream OS(Buffer); StringRef Sep = FirstSeparator; for (StringRef Part : Parts) { OS << Sep << Part; Sep = Separator; } return OS.str().str(); } std::string OpenMPIRBuilder::createPlatformSpecificName(ArrayRef Parts) const { return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(), Config.separator()); } GlobalVariable * OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name, unsigned AddressSpace) { auto &Elem = *InternalVars.try_emplace(Name, nullptr).first; if (Elem.second) { assert(Elem.second->getValueType() == Ty && "OMP internal variable has different type than requested"); } else { // TODO: investigate the appropriate linkage type used for the global // variable for possibly changing that to internal or private, or maybe // create different versions of the function for different OMP internal // variables. auto Linkage = this->M.getTargetTriple().getArch() == Triple::wasm32 ? GlobalValue::InternalLinkage : GlobalValue::CommonLinkage; auto *GV = new GlobalVariable(M, Ty, /*IsConstant=*/false, Linkage, Constant::getNullValue(Ty), Elem.first(), /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, AddressSpace); const DataLayout &DL = M.getDataLayout(); const llvm::Align TypeAlign = DL.getABITypeAlign(Ty); const llvm::Align PtrAlign = DL.getPointerABIAlignment(AddressSpace); GV->setAlignment(std::max(TypeAlign, PtrAlign)); Elem.second = GV; } return Elem.second; } Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) { std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); std::string Name = getNameWithSeparators({Prefix, "var"}, ".", "."); return getOrCreateInternalVariable(KmpCriticalNameTy, Name); } Value *OpenMPIRBuilder::getSizeInBytes(Value *BasePtr) { LLVMContext &Ctx = Builder.getContext(); Value *Null = Constant::getNullValue(PointerType::getUnqual(BasePtr->getContext())); Value *SizeGep = Builder.CreateGEP(BasePtr->getType(), Null, Builder.getInt32(1)); Value *SizePtrToInt = Builder.CreatePtrToInt(SizeGep, Type::getInt64Ty(Ctx)); return SizePtrToInt; } GlobalVariable * OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl &Mappings, std::string VarName) { llvm::Constant *MaptypesArrayInit = llvm::ConstantDataArray::get(M.getContext(), Mappings); auto *MaptypesArrayGlobal = new llvm::GlobalVariable( M, MaptypesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit, VarName); MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); return MaptypesArrayGlobal; } void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc, InsertPointTy AllocaIP, unsigned NumOperands, struct MapperAllocas &MapperAllocas) { if (!updateToLocation(Loc)) return; auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); Builder.restoreIP(AllocaIP); AllocaInst *ArgsBase = Builder.CreateAlloca( ArrI8PtrTy, /* ArraySize = */ nullptr, ".offload_baseptrs"); AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy, /* ArraySize = */ nullptr, ".offload_ptrs"); AllocaInst *ArgSizes = Builder.CreateAlloca( ArrI64Ty, /* ArraySize = */ nullptr, ".offload_sizes"); Builder.restoreIP(Loc.IP); MapperAllocas.ArgsBase = ArgsBase; MapperAllocas.Args = Args; MapperAllocas.ArgSizes = ArgSizes; } void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc, Function *MapperFunc, Value *SrcLocInfo, Value *MaptypesArg, Value *MapnamesArg, struct MapperAllocas &MapperAllocas, int64_t DeviceID, unsigned NumOperands) { if (!updateToLocation(Loc)) return; auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); Value *ArgsBaseGEP = Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase, {Builder.getInt32(0), Builder.getInt32(0)}); Value *ArgsGEP = Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args, {Builder.getInt32(0), Builder.getInt32(0)}); Value *ArgSizesGEP = Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes, {Builder.getInt32(0), Builder.getInt32(0)}); Value *NullPtr = Constant::getNullValue(PointerType::getUnqual(Int8Ptr->getContext())); Builder.CreateCall(MapperFunc, {SrcLocInfo, Builder.getInt64(DeviceID), Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP, ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr}); } void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder, TargetDataRTArgs &RTArgs, TargetDataInfo &Info, bool ForEndCall) { assert((!ForEndCall || Info.separateBeginEndCalls()) && "expected region end call to runtime only when end call is separate"); auto UnqualPtrTy = PointerType::getUnqual(M.getContext()); auto VoidPtrTy = UnqualPtrTy; auto VoidPtrPtrTy = UnqualPtrTy; auto Int64Ty = Type::getInt64Ty(M.getContext()); auto Int64PtrTy = UnqualPtrTy; if (!Info.NumberOfPtrs) { RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy); RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy); RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy); RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy); RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy); RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy); return; } RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.BasePointersArray, /*Idx0=*/0, /*Idx1=*/0); RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray, /*Idx0=*/0, /*Idx1=*/0); RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray, /*Idx0=*/0, /*Idx1=*/0); RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(Int64Ty, Info.NumberOfPtrs), ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd : Info.RTArgs.MapTypesArray, /*Idx0=*/0, /*Idx1=*/0); // Only emit the mapper information arrays if debug information is // requested. if (!Info.EmitDebug) RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy); else RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray, /*Idx0=*/0, /*Idx1=*/0); // If there is no user-defined mapper, set the mapper array to nullptr to // avoid an unnecessary data privatization if (!Info.HasMapper) RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy); else RTArgs.MappersArray = Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy); } void OpenMPIRBuilder::emitNonContiguousDescriptor(InsertPointTy AllocaIP, InsertPointTy CodeGenIP, MapInfosTy &CombinedInfo, TargetDataInfo &Info) { MapInfosTy::StructNonContiguousInfo &NonContigInfo = CombinedInfo.NonContigInfo; // Build an array of struct descriptor_dim and then assign it to // offload_args. // // struct descriptor_dim { // uint64_t offset; // uint64_t count; // uint64_t stride // }; Type *Int64Ty = Builder.getInt64Ty(); StructType *DimTy = StructType::create( M.getContext(), ArrayRef({Int64Ty, Int64Ty, Int64Ty}), "struct.descriptor_dim"); enum { OffsetFD = 0, CountFD, StrideFD }; // We need two index variable here since the size of "Dims" is the same as // the size of Components, however, the size of offset, count, and stride is // equal to the size of base declaration that is non-contiguous. for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) { // Skip emitting ir if dimension size is 1 since it cannot be // non-contiguous. if (NonContigInfo.Dims[I] == 1) continue; Builder.restoreIP(AllocaIP); ArrayType *ArrayTy = ArrayType::get(DimTy, NonContigInfo.Dims[I]); AllocaInst *DimsAddr = Builder.CreateAlloca(ArrayTy, /* ArraySize = */ nullptr, "dims"); Builder.restoreIP(CodeGenIP); for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) { unsigned RevIdx = EE - II - 1; Value *DimsLVal = Builder.CreateInBoundsGEP( DimsAddr->getAllocatedType(), DimsAddr, {Builder.getInt64(0), Builder.getInt64(II)}); // Offset Value *OffsetLVal = Builder.CreateStructGEP(DimTy, DimsLVal, OffsetFD); Builder.CreateAlignedStore( NonContigInfo.Offsets[L][RevIdx], OffsetLVal, M.getDataLayout().getPrefTypeAlign(OffsetLVal->getType())); // Count Value *CountLVal = Builder.CreateStructGEP(DimTy, DimsLVal, CountFD); Builder.CreateAlignedStore( NonContigInfo.Counts[L][RevIdx], CountLVal, M.getDataLayout().getPrefTypeAlign(CountLVal->getType())); // Stride Value *StrideLVal = Builder.CreateStructGEP(DimTy, DimsLVal, StrideFD); Builder.CreateAlignedStore( NonContigInfo.Strides[L][RevIdx], StrideLVal, M.getDataLayout().getPrefTypeAlign(CountLVal->getType())); } // args[I] = &dims Builder.restoreIP(CodeGenIP); Value *DAddr = Builder.CreatePointerBitCastOrAddrSpaceCast( DimsAddr, Builder.getPtrTy()); Value *P = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(Builder.getPtrTy(), Info.NumberOfPtrs), Info.RTArgs.PointersArray, 0, I); Builder.CreateAlignedStore( DAddr, P, M.getDataLayout().getPrefTypeAlign(Builder.getPtrTy())); ++L; } } void OpenMPIRBuilder::emitUDMapperArrayInitOrDel( Function *MapperFn, Value *MapperHandle, Value *Base, Value *Begin, Value *Size, Value *MapType, Value *MapName, TypeSize ElementSize, BasicBlock *ExitBB, bool IsInit) { StringRef Prefix = IsInit ? ".init" : ".del"; // Evaluate if this is an array section. BasicBlock *BodyBB = BasicBlock::Create( M.getContext(), createPlatformSpecificName({"omp.array", Prefix})); Value *IsArray = Builder.CreateICmpSGT(Size, Builder.getInt64(1), "omp.arrayinit.isarray"); Value *DeleteBit = Builder.CreateAnd( MapType, Builder.getInt64( static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_DELETE))); Value *DeleteCond; Value *Cond; if (IsInit) { // base != begin? Value *BaseIsBegin = Builder.CreateICmpNE(Base, Begin); // IsPtrAndObj? Value *PtrAndObjBit = Builder.CreateAnd( MapType, Builder.getInt64( static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ))); PtrAndObjBit = Builder.CreateIsNotNull(PtrAndObjBit); BaseIsBegin = Builder.CreateAnd(BaseIsBegin, PtrAndObjBit); Cond = Builder.CreateOr(IsArray, BaseIsBegin); DeleteCond = Builder.CreateIsNull( DeleteBit, createPlatformSpecificName({"omp.array", Prefix, ".delete"})); } else { Cond = IsArray; DeleteCond = Builder.CreateIsNotNull( DeleteBit, createPlatformSpecificName({"omp.array", Prefix, ".delete"})); } Cond = Builder.CreateAnd(Cond, DeleteCond); Builder.CreateCondBr(Cond, BodyBB, ExitBB); emitBlock(BodyBB, MapperFn); // Get the array size by multiplying element size and element number (i.e., \p // Size). Value *ArraySize = Builder.CreateNUWMul(Size, Builder.getInt64(ElementSize)); // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves // memory allocation/deletion purpose only. Value *MapTypeArg = Builder.CreateAnd( MapType, Builder.getInt64( ~static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_TO | OpenMPOffloadMappingFlags::OMP_MAP_FROM))); MapTypeArg = Builder.CreateOr( MapTypeArg, Builder.getInt64( static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT))); // Call the runtime API __tgt_push_mapper_component to fill up the runtime // data structure. Value *OffloadingArgs[] = {MapperHandle, Base, Begin, ArraySize, MapTypeArg, MapName}; Builder.CreateCall( getOrCreateRuntimeFunction(M, OMPRTL___tgt_push_mapper_component), OffloadingArgs); } Expected OpenMPIRBuilder::emitUserDefinedMapper( function_ref GenMapInfoCB, Type *ElemTy, StringRef FuncName, CustomMapperCallbackTy CustomMapperCB) { SmallVector Params; Params.emplace_back(Builder.getPtrTy()); Params.emplace_back(Builder.getPtrTy()); Params.emplace_back(Builder.getPtrTy()); Params.emplace_back(Builder.getInt64Ty()); Params.emplace_back(Builder.getInt64Ty()); Params.emplace_back(Builder.getPtrTy()); auto *FnTy = FunctionType::get(Builder.getVoidTy(), Params, /* IsVarArg */ false); SmallString<64> TyStr; raw_svector_ostream Out(TyStr); Function *MapperFn = Function::Create(FnTy, GlobalValue::InternalLinkage, FuncName, M); MapperFn->addFnAttr(Attribute::NoInline); MapperFn->addFnAttr(Attribute::NoUnwind); MapperFn->addParamAttr(0, Attribute::NoUndef); MapperFn->addParamAttr(1, Attribute::NoUndef); MapperFn->addParamAttr(2, Attribute::NoUndef); MapperFn->addParamAttr(3, Attribute::NoUndef); MapperFn->addParamAttr(4, Attribute::NoUndef); MapperFn->addParamAttr(5, Attribute::NoUndef); // Start the mapper function code generation. BasicBlock *EntryBB = BasicBlock::Create(M.getContext(), "entry", MapperFn); auto SavedIP = Builder.saveIP(); Builder.SetInsertPoint(EntryBB); Value *MapperHandle = MapperFn->getArg(0); Value *BaseIn = MapperFn->getArg(1); Value *BeginIn = MapperFn->getArg(2); Value *Size = MapperFn->getArg(3); Value *MapType = MapperFn->getArg(4); Value *MapName = MapperFn->getArg(5); // Compute the starting and end addresses of array elements. // Prepare common arguments for array initiation and deletion. // Convert the size in bytes into the number of array elements. TypeSize ElementSize = M.getDataLayout().getTypeStoreSize(ElemTy); Size = Builder.CreateExactUDiv(Size, Builder.getInt64(ElementSize)); Value *PtrBegin = BeginIn; Value *PtrEnd = Builder.CreateGEP(ElemTy, PtrBegin, Size); // Emit array initiation if this is an array section and \p MapType indicates // that memory allocation is required. BasicBlock *HeadBB = BasicBlock::Create(M.getContext(), "omp.arraymap.head"); emitUDMapperArrayInitOrDel(MapperFn, MapperHandle, BaseIn, BeginIn, Size, MapType, MapName, ElementSize, HeadBB, /*IsInit=*/true); // Emit a for loop to iterate through SizeArg of elements and map all of them. // Emit the loop header block. emitBlock(HeadBB, MapperFn); BasicBlock *BodyBB = BasicBlock::Create(M.getContext(), "omp.arraymap.body"); BasicBlock *DoneBB = BasicBlock::Create(M.getContext(), "omp.done"); // Evaluate whether the initial condition is satisfied. Value *IsEmpty = Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty"); Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); // Emit the loop body block. emitBlock(BodyBB, MapperFn); BasicBlock *LastBB = BodyBB; PHINode *PtrPHI = Builder.CreatePHI(PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent"); PtrPHI->addIncoming(PtrBegin, HeadBB); // Get map clause information. Fill up the arrays with all mapped variables. MapInfosOrErrorTy Info = GenMapInfoCB(Builder.saveIP(), PtrPHI, BeginIn); if (!Info) return Info.takeError(); // Call the runtime API __tgt_mapper_num_components to get the number of // pre-existing components. Value *OffloadingArgs[] = {MapperHandle}; Value *PreviousSize = Builder.CreateCall( getOrCreateRuntimeFunction(M, OMPRTL___tgt_mapper_num_components), OffloadingArgs); Value *ShiftedPreviousSize = Builder.CreateShl(PreviousSize, Builder.getInt64(getFlagMemberOffset())); // Fill up the runtime mapper handle for all components. for (unsigned I = 0; I < Info->BasePointers.size(); ++I) { Value *CurBaseArg = Info->BasePointers[I]; Value *CurBeginArg = Info->Pointers[I]; Value *CurSizeArg = Info->Sizes[I]; Value *CurNameArg = Info->Names.size() ? Info->Names[I] : Constant::getNullValue(Builder.getPtrTy()); // Extract the MEMBER_OF field from the map type. Value *OriMapType = Builder.getInt64( static_cast>( Info->Types[I])); Value *MemberMapType = Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize); // Combine the map type inherited from user-defined mapper with that // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM // bits of the \a MapType, which is the input argument of the mapper // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM // bits of MemberMapType. // [OpenMP 5.0], 1.2.6. map-type decay. // | alloc | to | from | tofrom | release | delete // ---------------------------------------------------------- // alloc | alloc | alloc | alloc | alloc | release | delete // to | alloc | to | alloc | to | release | delete // from | alloc | alloc | from | from | release | delete // tofrom | alloc | to | from | tofrom | release | delete Value *LeftToFrom = Builder.CreateAnd( MapType, Builder.getInt64( static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_TO | OpenMPOffloadMappingFlags::OMP_MAP_FROM))); BasicBlock *AllocBB = BasicBlock::Create(M.getContext(), "omp.type.alloc"); BasicBlock *AllocElseBB = BasicBlock::Create(M.getContext(), "omp.type.alloc.else"); BasicBlock *ToBB = BasicBlock::Create(M.getContext(), "omp.type.to"); BasicBlock *ToElseBB = BasicBlock::Create(M.getContext(), "omp.type.to.else"); BasicBlock *FromBB = BasicBlock::Create(M.getContext(), "omp.type.from"); BasicBlock *EndBB = BasicBlock::Create(M.getContext(), "omp.type.end"); Value *IsAlloc = Builder.CreateIsNull(LeftToFrom); Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB); // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM. emitBlock(AllocBB, MapperFn); Value *AllocMapType = Builder.CreateAnd( MemberMapType, Builder.getInt64( ~static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_TO | OpenMPOffloadMappingFlags::OMP_MAP_FROM))); Builder.CreateBr(EndBB); emitBlock(AllocElseBB, MapperFn); Value *IsTo = Builder.CreateICmpEQ( LeftToFrom, Builder.getInt64( static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_TO))); Builder.CreateCondBr(IsTo, ToBB, ToElseBB); // In case of to, clear OMP_MAP_FROM. emitBlock(ToBB, MapperFn); Value *ToMapType = Builder.CreateAnd( MemberMapType, Builder.getInt64( ~static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_FROM))); Builder.CreateBr(EndBB); emitBlock(ToElseBB, MapperFn); Value *IsFrom = Builder.CreateICmpEQ( LeftToFrom, Builder.getInt64( static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_FROM))); Builder.CreateCondBr(IsFrom, FromBB, EndBB); // In case of from, clear OMP_MAP_TO. emitBlock(FromBB, MapperFn); Value *FromMapType = Builder.CreateAnd( MemberMapType, Builder.getInt64( ~static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_TO))); // In case of tofrom, do nothing. emitBlock(EndBB, MapperFn); LastBB = EndBB; PHINode *CurMapType = Builder.CreatePHI(Builder.getInt64Ty(), 4, "omp.maptype"); CurMapType->addIncoming(AllocMapType, AllocBB); CurMapType->addIncoming(ToMapType, ToBB); CurMapType->addIncoming(FromMapType, FromBB); CurMapType->addIncoming(MemberMapType, ToElseBB); Value *OffloadingArgs[] = {MapperHandle, CurBaseArg, CurBeginArg, CurSizeArg, CurMapType, CurNameArg}; auto ChildMapperFn = CustomMapperCB(I); if (!ChildMapperFn) return ChildMapperFn.takeError(); if (*ChildMapperFn) { // Call the corresponding mapper function. Builder.CreateCall(*ChildMapperFn, OffloadingArgs)->setDoesNotThrow(); } else { // Call the runtime API __tgt_push_mapper_component to fill up the runtime // data structure. Builder.CreateCall( getOrCreateRuntimeFunction(M, OMPRTL___tgt_push_mapper_component), OffloadingArgs); } } // Update the pointer to point to the next element that needs to be mapped, // and check whether we have mapped all elements. Value *PtrNext = Builder.CreateConstGEP1_32(ElemTy, PtrPHI, /*Idx0=*/1, "omp.arraymap.next"); PtrPHI->addIncoming(PtrNext, LastBB); Value *IsDone = Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone"); BasicBlock *ExitBB = BasicBlock::Create(M.getContext(), "omp.arraymap.exit"); Builder.CreateCondBr(IsDone, ExitBB, BodyBB); emitBlock(ExitBB, MapperFn); // Emit array deletion if this is an array section and \p MapType indicates // that deletion is required. emitUDMapperArrayInitOrDel(MapperFn, MapperHandle, BaseIn, BeginIn, Size, MapType, MapName, ElementSize, DoneBB, /*IsInit=*/false); // Emit the function exit block. emitBlock(DoneBB, MapperFn, /*IsFinished=*/true); Builder.CreateRetVoid(); Builder.restoreIP(SavedIP); return MapperFn; } Error OpenMPIRBuilder::emitOffloadingArrays( InsertPointTy AllocaIP, InsertPointTy CodeGenIP, MapInfosTy &CombinedInfo, TargetDataInfo &Info, CustomMapperCallbackTy CustomMapperCB, bool IsNonContiguous, function_ref DeviceAddrCB) { // Reset the array information. Info.clearArrayInfo(); Info.NumberOfPtrs = CombinedInfo.BasePointers.size(); if (Info.NumberOfPtrs == 0) return Error::success(); Builder.restoreIP(AllocaIP); // Detect if we have any capture size requiring runtime evaluation of the // size so that a constant array could be eventually used. ArrayType *PointerArrayType = ArrayType::get(Builder.getPtrTy(), Info.NumberOfPtrs); Info.RTArgs.BasePointersArray = Builder.CreateAlloca( PointerArrayType, /* ArraySize = */ nullptr, ".offload_baseptrs"); Info.RTArgs.PointersArray = Builder.CreateAlloca( PointerArrayType, /* ArraySize = */ nullptr, ".offload_ptrs"); AllocaInst *MappersArray = Builder.CreateAlloca( PointerArrayType, /* ArraySize = */ nullptr, ".offload_mappers"); Info.RTArgs.MappersArray = MappersArray; // If we don't have any VLA types or other types that require runtime // evaluation, we can use a constant array for the map sizes, otherwise we // need to fill up the arrays as we do for the pointers. Type *Int64Ty = Builder.getInt64Ty(); SmallVector ConstSizes(CombinedInfo.Sizes.size(), ConstantInt::get(Int64Ty, 0)); SmallBitVector RuntimeSizes(CombinedInfo.Sizes.size()); for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) { if (auto *CI = dyn_cast(CombinedInfo.Sizes[I])) { if (!isa(CI) && !isa(CI)) { if (IsNonContiguous && static_cast>( CombinedInfo.Types[I] & OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG)) ConstSizes[I] = ConstantInt::get(Int64Ty, CombinedInfo.NonContigInfo.Dims[I]); else ConstSizes[I] = CI; continue; } } RuntimeSizes.set(I); } if (RuntimeSizes.all()) { ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs); Info.RTArgs.SizesArray = Builder.CreateAlloca( SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes"); Builder.restoreIP(CodeGenIP); } else { auto *SizesArrayInit = ConstantArray::get( ArrayType::get(Int64Ty, ConstSizes.size()), ConstSizes); std::string Name = createPlatformSpecificName({"offload_sizes"}); auto *SizesArrayGbl = new GlobalVariable(M, SizesArrayInit->getType(), /*isConstant=*/true, GlobalValue::PrivateLinkage, SizesArrayInit, Name); SizesArrayGbl->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); if (!RuntimeSizes.any()) { Info.RTArgs.SizesArray = SizesArrayGbl; } else { unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0); Align OffloadSizeAlign = M.getDataLayout().getABIIntegerTypeAlignment(64); ArrayType *SizeArrayType = ArrayType::get(Int64Ty, Info.NumberOfPtrs); AllocaInst *Buffer = Builder.CreateAlloca( SizeArrayType, /* ArraySize = */ nullptr, ".offload_sizes"); Buffer->setAlignment(OffloadSizeAlign); Builder.restoreIP(CodeGenIP); Builder.CreateMemCpy( Buffer, M.getDataLayout().getPrefTypeAlign(Buffer->getType()), SizesArrayGbl, OffloadSizeAlign, Builder.getIntN( IndexSize, Buffer->getAllocationSize(M.getDataLayout())->getFixedValue())); Info.RTArgs.SizesArray = Buffer; } Builder.restoreIP(CodeGenIP); } // The map types are always constant so we don't need to generate code to // fill arrays. Instead, we create an array constant. SmallVector Mapping; for (auto mapFlag : CombinedInfo.Types) Mapping.push_back( static_cast>( mapFlag)); std::string MaptypesName = createPlatformSpecificName({"offload_maptypes"}); auto *MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName); Info.RTArgs.MapTypesArray = MapTypesArrayGbl; // The information types are only built if provided. if (!CombinedInfo.Names.empty()) { auto *MapNamesArrayGbl = createOffloadMapnames( CombinedInfo.Names, createPlatformSpecificName({"offload_mapnames"})); Info.RTArgs.MapNamesArray = MapNamesArrayGbl; Info.EmitDebug = true; } else { Info.RTArgs.MapNamesArray = Constant::getNullValue(PointerType::getUnqual(Builder.getContext())); Info.EmitDebug = false; } // If there's a present map type modifier, it must not be applied to the end // of a region, so generate a separate map type array in that case. if (Info.separateBeginEndCalls()) { bool EndMapTypesDiffer = false; for (uint64_t &Type : Mapping) { if (Type & static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_PRESENT)) { Type &= ~static_cast>( OpenMPOffloadMappingFlags::OMP_MAP_PRESENT); EndMapTypesDiffer = true; } } if (EndMapTypesDiffer) { MapTypesArrayGbl = createOffloadMaptypes(Mapping, MaptypesName); Info.RTArgs.MapTypesArrayEnd = MapTypesArrayGbl; } } PointerType *PtrTy = Builder.getPtrTy(); for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) { Value *BPVal = CombinedInfo.BasePointers[I]; Value *BP = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(PtrTy, Info.NumberOfPtrs), Info.RTArgs.BasePointersArray, 0, I); Builder.CreateAlignedStore(BPVal, BP, M.getDataLayout().getPrefTypeAlign(PtrTy)); if (Info.requiresDevicePointerInfo()) { if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Pointer) { CodeGenIP = Builder.saveIP(); Builder.restoreIP(AllocaIP); Info.DevicePtrInfoMap[BPVal] = {BP, Builder.CreateAlloca(PtrTy)}; Builder.restoreIP(CodeGenIP); if (DeviceAddrCB) DeviceAddrCB(I, Info.DevicePtrInfoMap[BPVal].second); } else if (CombinedInfo.DevicePointers[I] == DeviceInfoTy::Address) { Info.DevicePtrInfoMap[BPVal] = {BP, BP}; if (DeviceAddrCB) DeviceAddrCB(I, BP); } } Value *PVal = CombinedInfo.Pointers[I]; Value *P = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(PtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray, 0, I); // TODO: Check alignment correct. Builder.CreateAlignedStore(PVal, P, M.getDataLayout().getPrefTypeAlign(PtrTy)); if (RuntimeSizes.test(I)) { Value *S = Builder.CreateConstInBoundsGEP2_32( ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray, /*Idx0=*/0, /*Idx1=*/I); Builder.CreateAlignedStore(Builder.CreateIntCast(CombinedInfo.Sizes[I], Int64Ty, /*isSigned=*/true), S, M.getDataLayout().getPrefTypeAlign(PtrTy)); } // Fill up the mapper array. unsigned IndexSize = M.getDataLayout().getIndexSizeInBits(0); Value *MFunc = ConstantPointerNull::get(PtrTy); auto CustomMFunc = CustomMapperCB(I); if (!CustomMFunc) return CustomMFunc.takeError(); if (*CustomMFunc) MFunc = Builder.CreatePointerCast(*CustomMFunc, PtrTy); Value *MAddr = Builder.CreateInBoundsGEP( MappersArray->getAllocatedType(), MappersArray, {Builder.getIntN(IndexSize, 0), Builder.getIntN(IndexSize, I)}); Builder.CreateAlignedStore( MFunc, MAddr, M.getDataLayout().getPrefTypeAlign(MAddr->getType())); } if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() || Info.NumberOfPtrs == 0) return Error::success(); emitNonContiguousDescriptor(AllocaIP, CodeGenIP, CombinedInfo, Info); return Error::success(); } void OpenMPIRBuilder::emitBranch(BasicBlock *Target) { BasicBlock *CurBB = Builder.GetInsertBlock(); if (!CurBB || CurBB->getTerminator()) { // If there is no insert point or the previous block is already // terminated, don't touch it. } else { // Otherwise, create a fall-through branch. Builder.CreateBr(Target); } Builder.ClearInsertionPoint(); } void OpenMPIRBuilder::emitBlock(BasicBlock *BB, Function *CurFn, bool IsFinished) { BasicBlock *CurBB = Builder.GetInsertBlock(); // Fall out of the current block (if necessary). emitBranch(BB); if (IsFinished && BB->use_empty()) { BB->eraseFromParent(); return; } // Place the block after the current block, if possible, or else at // the end of the function. if (CurBB && CurBB->getParent()) CurFn->insert(std::next(CurBB->getIterator()), BB); else CurFn->insert(CurFn->end(), BB); Builder.SetInsertPoint(BB); } Error OpenMPIRBuilder::emitIfClause(Value *Cond, BodyGenCallbackTy ThenGen, BodyGenCallbackTy ElseGen, InsertPointTy AllocaIP) { // If the condition constant folds and can be elided, try to avoid emitting // the condition and the dead arm of the if/else. if (auto *CI = dyn_cast(Cond)) { auto CondConstant = CI->getSExtValue(); if (CondConstant) return ThenGen(AllocaIP, Builder.saveIP()); return ElseGen(AllocaIP, Builder.saveIP()); } Function *CurFn = Builder.GetInsertBlock()->getParent(); // Otherwise, the condition did not fold, or we couldn't elide it. Just // emit the conditional branch. BasicBlock *ThenBlock = BasicBlock::Create(M.getContext(), "omp_if.then"); BasicBlock *ElseBlock = BasicBlock::Create(M.getContext(), "omp_if.else"); BasicBlock *ContBlock = BasicBlock::Create(M.getContext(), "omp_if.end"); Builder.CreateCondBr(Cond, ThenBlock, ElseBlock); // Emit the 'then' code. emitBlock(ThenBlock, CurFn); if (Error Err = ThenGen(AllocaIP, Builder.saveIP())) return Err; emitBranch(ContBlock); // Emit the 'else' code if present. // There is no need to emit line number for unconditional branch. emitBlock(ElseBlock, CurFn); if (Error Err = ElseGen(AllocaIP, Builder.saveIP())) return Err; // There is no need to emit line number for unconditional branch. emitBranch(ContBlock); // Emit the continuation block for code after the if. emitBlock(ContBlock, CurFn, /*IsFinished=*/true); return Error::success(); } bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic( const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) { assert(!(AO == AtomicOrdering::NotAtomic || AO == llvm::AtomicOrdering::Unordered) && "Unexpected Atomic Ordering."); bool Flush = false; llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic; switch (AK) { case Read: if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease || AO == AtomicOrdering::SequentiallyConsistent) { FlushAO = AtomicOrdering::Acquire; Flush = true; } break; case Write: case Compare: case Update: if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease || AO == AtomicOrdering::SequentiallyConsistent) { FlushAO = AtomicOrdering::Release; Flush = true; } break; case Capture: switch (AO) { case AtomicOrdering::Acquire: FlushAO = AtomicOrdering::Acquire; Flush = true; break; case AtomicOrdering::Release: FlushAO = AtomicOrdering::Release; Flush = true; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: FlushAO = AtomicOrdering::AcquireRelease; Flush = true; break; default: // do nothing - leave silently. break; } } if (Flush) { // Currently Flush RT call still doesn't take memory_ordering, so for when // that happens, this tries to do the resolution of which atomic ordering // to use with but issue the flush call // TODO: pass `FlushAO` after memory ordering support is added (void)FlushAO; emitFlush(Loc); } // for AO == AtomicOrdering::Monotonic and all other case combinations // do nothing return Flush; } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, AtomicOrdering AO, InsertPointTy AllocaIP) { if (!updateToLocation(Loc)) return Loc.IP; assert(X.Var->getType()->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy() || XElemTy->isStructTy()) && "OMP atomic read expected a scalar type"); Value *XRead = nullptr; if (XElemTy->isIntegerTy()) { LoadInst *XLD = Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read"); XLD->setAtomic(AO); XRead = cast(XLD); } else if (XElemTy->isStructTy()) { // FIXME: Add checks to ensure __atomic_load is emitted iff the // target does not support `atomicrmw` of the size of the struct LoadInst *OldVal = Builder.CreateLoad(XElemTy, X.Var, "omp.atomic.read"); OldVal->setAtomic(AO); const DataLayout &LoadDL = OldVal->getModule()->getDataLayout(); unsigned LoadSize = LoadDL.getTypeStoreSize(OldVal->getPointerOperand()->getType()); OpenMPIRBuilder::AtomicInfo atomicInfo( &Builder, XElemTy, LoadSize * 8, LoadSize * 8, OldVal->getAlign(), OldVal->getAlign(), true /* UseLibcall */, AllocaIP, X.Var); auto AtomicLoadRes = atomicInfo.EmitAtomicLoadLibcall(AO); XRead = AtomicLoadRes.first; OldVal->eraseFromParent(); } else { // We need to perform atomic op as integer IntegerType *IntCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); LoadInst *XLoad = Builder.CreateLoad(IntCastTy, X.Var, X.IsVolatile, "omp.atomic.load"); XLoad->setAtomic(AO); if (XElemTy->isFloatingPointTy()) { XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast"); } else { XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast"); } } checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read); Builder.CreateStore(XRead, V.Var, V.IsVolatile); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc, AtomicOpValue &X, Value *Expr, AtomicOrdering AO, InsertPointTy AllocaIP) { if (!updateToLocation(Loc)) return Loc.IP; assert(X.Var->getType()->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy() || XElemTy->isStructTy()) && "OMP atomic write expected a scalar type"); if (XElemTy->isIntegerTy()) { StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile); XSt->setAtomic(AO); } else if (XElemTy->isStructTy()) { LoadInst *OldVal = Builder.CreateLoad(XElemTy, X.Var, "omp.atomic.read"); const DataLayout &LoadDL = OldVal->getModule()->getDataLayout(); unsigned LoadSize = LoadDL.getTypeStoreSize(OldVal->getPointerOperand()->getType()); OpenMPIRBuilder::AtomicInfo atomicInfo( &Builder, XElemTy, LoadSize * 8, LoadSize * 8, OldVal->getAlign(), OldVal->getAlign(), true /* UseLibcall */, AllocaIP, X.Var); atomicInfo.EmitAtomicStoreLibcall(AO, Expr); OldVal->eraseFromParent(); } else { // We need to bitcast and perform atomic op as integers IntegerType *IntCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); Value *ExprCast = Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast"); StoreInst *XSt = Builder.CreateStore(ExprCast, X.Var, X.IsVolatile); XSt->setAtomic(AO); } checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createAtomicUpdate( const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) { assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous"); if (!updateToLocation(Loc)) return Loc.IP; LLVM_DEBUG({ Type *XTy = X.Var->getType(); assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"); assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && "OpenMP atomic does not support LT or GT operations"); }); Expected> AtomicResult = emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp, X.IsVolatile, IsXBinopExpr); if (!AtomicResult) return AtomicResult.takeError(); checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update); return Builder.saveIP(); } // FIXME: Duplicating AtomicExpand Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2, AtomicRMWInst::BinOp RMWOp) { switch (RMWOp) { case AtomicRMWInst::Add: return Builder.CreateAdd(Src1, Src2); case AtomicRMWInst::Sub: return Builder.CreateSub(Src1, Src2); case AtomicRMWInst::And: return Builder.CreateAnd(Src1, Src2); case AtomicRMWInst::Nand: return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2)); case AtomicRMWInst::Or: return Builder.CreateOr(Src1, Src2); case AtomicRMWInst::Xor: return Builder.CreateXor(Src1, Src2); case AtomicRMWInst::Xchg: case AtomicRMWInst::FAdd: case AtomicRMWInst::FSub: case AtomicRMWInst::BAD_BINOP: case AtomicRMWInst::Max: case AtomicRMWInst::Min: case AtomicRMWInst::UMax: case AtomicRMWInst::UMin: case AtomicRMWInst::FMax: case AtomicRMWInst::FMin: case AtomicRMWInst::FMaximum: case AtomicRMWInst::FMinimum: case AtomicRMWInst::UIncWrap: case AtomicRMWInst::UDecWrap: case AtomicRMWInst::USubCond: case AtomicRMWInst::USubSat: llvm_unreachable("Unsupported atomic update operation"); } llvm_unreachable("Unsupported atomic update operation"); } Expected> OpenMPIRBuilder::emitAtomicUpdate( InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) { // TODO: handle the case where XElemTy is not byte-sized or not a power of 2 // or a complex datatype. bool emitRMWOp = false; switch (RMWOp) { case AtomicRMWInst::Add: case AtomicRMWInst::And: case AtomicRMWInst::Nand: case AtomicRMWInst::Or: case AtomicRMWInst::Xor: case AtomicRMWInst::Xchg: emitRMWOp = XElemTy; break; case AtomicRMWInst::Sub: emitRMWOp = (IsXBinopExpr && XElemTy); break; default: emitRMWOp = false; } emitRMWOp &= XElemTy->isIntegerTy(); std::pair Res; if (emitRMWOp) { Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO); // not needed except in case of postfix captures. Generate anyway for // consistency with the else part. Will be removed with any DCE pass. // AtomicRMWInst::Xchg does not have a coressponding instruction. if (RMWOp == AtomicRMWInst::Xchg) Res.second = Res.first; else Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp); } else if (RMWOp == llvm::AtomicRMWInst::BinOp::BAD_BINOP && XElemTy->isStructTy()) { LoadInst *OldVal = Builder.CreateLoad(XElemTy, X, X->getName() + ".atomic.load"); OldVal->setAtomic(AO); const DataLayout &LoadDL = OldVal->getModule()->getDataLayout(); unsigned LoadSize = LoadDL.getTypeStoreSize(OldVal->getPointerOperand()->getType()); OpenMPIRBuilder::AtomicInfo atomicInfo( &Builder, XElemTy, LoadSize * 8, LoadSize * 8, OldVal->getAlign(), OldVal->getAlign(), true /* UseLibcall */, AllocaIP, X); auto AtomicLoadRes = atomicInfo.EmitAtomicLoadLibcall(AO); BasicBlock *CurBB = Builder.GetInsertBlock(); Instruction *CurBBTI = CurBB->getTerminator(); CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); BasicBlock *ExitBB = CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit"); BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(), X->getName() + ".atomic.cont"); ContBB->getTerminator()->eraseFromParent(); Builder.restoreIP(AllocaIP); AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy); NewAtomicAddr->setName(X->getName() + "x.new.val"); Builder.SetInsertPoint(ContBB); llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2); PHI->addIncoming(AtomicLoadRes.first, CurBB); Value *OldExprVal = PHI; Expected CBResult = UpdateOp(OldExprVal, Builder); if (!CBResult) return CBResult.takeError(); Value *Upd = *CBResult; Builder.CreateStore(Upd, NewAtomicAddr); AtomicOrdering Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); auto Result = atomicInfo.EmitAtomicCompareExchangeLibcall( AtomicLoadRes.second, NewAtomicAddr, AO, Failure); LoadInst *PHILoad = Builder.CreateLoad(XElemTy, Result.first); PHI->addIncoming(PHILoad, Builder.GetInsertBlock()); Builder.CreateCondBr(Result.second, ExitBB, ContBB); OldVal->eraseFromParent(); Res.first = OldExprVal; Res.second = Upd; if (UnreachableInst *ExitTI = dyn_cast(ExitBB->getTerminator())) { CurBBTI->eraseFromParent(); Builder.SetInsertPoint(ExitBB); } else { Builder.SetInsertPoint(ExitTI); } } else { IntegerType *IntCastTy = IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); LoadInst *OldVal = Builder.CreateLoad(IntCastTy, X, X->getName() + ".atomic.load"); OldVal->setAtomic(AO); // CurBB // | /---\ // ContBB | // | \---/ // ExitBB BasicBlock *CurBB = Builder.GetInsertBlock(); Instruction *CurBBTI = CurBB->getTerminator(); CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); BasicBlock *ExitBB = CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit"); BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(), X->getName() + ".atomic.cont"); ContBB->getTerminator()->eraseFromParent(); Builder.restoreIP(AllocaIP); AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy); NewAtomicAddr->setName(X->getName() + "x.new.val"); Builder.SetInsertPoint(ContBB); llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2); PHI->addIncoming(OldVal, CurBB); bool IsIntTy = XElemTy->isIntegerTy(); Value *OldExprVal = PHI; if (!IsIntTy) { if (XElemTy->isFloatingPointTy()) { OldExprVal = Builder.CreateBitCast(PHI, XElemTy, X->getName() + ".atomic.fltCast"); } else { OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy, X->getName() + ".atomic.ptrCast"); } } Expected CBResult = UpdateOp(OldExprVal, Builder); if (!CBResult) return CBResult.takeError(); Value *Upd = *CBResult; Builder.CreateStore(Upd, NewAtomicAddr); LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicAddr); AtomicOrdering Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg( X, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure); Result->setVolatile(VolatileX); Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0); Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); PHI->addIncoming(PreviousVal, Builder.GetInsertBlock()); Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB); Res.first = OldExprVal; Res.second = Upd; // set Insertion point in exit block if (UnreachableInst *ExitTI = dyn_cast(ExitBB->getTerminator())) { CurBBTI->eraseFromParent(); Builder.SetInsertPoint(ExitBB); } else { Builder.SetInsertPoint(ExitTI); } } return Res; } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createAtomicCapture( const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, AtomicOpValue &V, Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) { if (!updateToLocation(Loc)) return Loc.IP; LLVM_DEBUG({ Type *XTy = X.Var->getType(); assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); Type *XElemTy = X.ElemTy; assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"); assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"); }); // If UpdateExpr is 'x' updated with some `expr` not based on 'x', // 'x' is simply atomically rewritten with 'expr'. AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg); Expected> AtomicResult = emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp, X.IsVolatile, IsXBinopExpr); if (!AtomicResult) return AtomicResult.takeError(); Value *CapturedVal = (IsPostfixUpdate ? AtomicResult->first : AtomicResult->second); Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile); checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare( const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO, omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate, bool IsFailOnly) { AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO); return createAtomicCompare(Loc, X, V, R, E, D, AO, Op, IsXBinopExpr, IsPostfixUpdate, IsFailOnly, Failure); } OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare( const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO, omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate, bool IsFailOnly, AtomicOrdering Failure) { if (!updateToLocation(Loc)) return Loc.IP; assert(X.Var->getType()->isPointerTy() && "OMP atomic expects a pointer to target memory"); // compare capture if (V.Var) { assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type"); assert(V.ElemTy == X.ElemTy && "x and v must be of same type"); } bool IsInteger = E->getType()->isIntegerTy(); if (Op == OMPAtomicCompareOp::EQ) { AtomicCmpXchgInst *Result = nullptr; if (!IsInteger) { IntegerType *IntCastTy = IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits()); Value *EBCast = Builder.CreateBitCast(E, IntCastTy); Value *DBCast = Builder.CreateBitCast(D, IntCastTy); Result = Builder.CreateAtomicCmpXchg(X.Var, EBCast, DBCast, MaybeAlign(), AO, Failure); } else { Result = Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure); } if (V.Var) { Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0); if (!IsInteger) OldValue = Builder.CreateBitCast(OldValue, X.ElemTy); assert(OldValue->getType() == V.ElemTy && "OldValue and V must be of same type"); if (IsPostfixUpdate) { Builder.CreateStore(OldValue, V.Var, V.IsVolatile); } else { Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1); if (IsFailOnly) { // CurBB---- // | | // v | // ContBB | // | | // v | // ExitBB <- // // where ContBB only contains the store of old value to 'v'. BasicBlock *CurBB = Builder.GetInsertBlock(); Instruction *CurBBTI = CurBB->getTerminator(); CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); BasicBlock *ExitBB = CurBB->splitBasicBlock( CurBBTI, X.Var->getName() + ".atomic.exit"); BasicBlock *ContBB = CurBB->splitBasicBlock( CurBB->getTerminator(), X.Var->getName() + ".atomic.cont"); ContBB->getTerminator()->eraseFromParent(); CurBB->getTerminator()->eraseFromParent(); Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB); Builder.SetInsertPoint(ContBB); Builder.CreateStore(OldValue, V.Var); Builder.CreateBr(ExitBB); if (UnreachableInst *ExitTI = dyn_cast(ExitBB->getTerminator())) { CurBBTI->eraseFromParent(); Builder.SetInsertPoint(ExitBB); } else { Builder.SetInsertPoint(ExitTI); } } else { Value *CapturedValue = Builder.CreateSelect(SuccessOrFail, E, OldValue); Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); } } } // The comparison result has to be stored. if (R.Var) { assert(R.Var->getType()->isPointerTy() && "r.var must be of pointer type"); assert(R.ElemTy->isIntegerTy() && "r must be of integral type"); Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); Value *ResultCast = R.IsSigned ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy) : Builder.CreateZExt(SuccessFailureVal, R.ElemTy); Builder.CreateStore(ResultCast, R.Var, R.IsVolatile); } } else { assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) && "Op should be either max or min at this point"); assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is =="); // Reverse the ordop as the OpenMP forms are different from LLVM forms. // Let's take max as example. // OpenMP form: // x = x > expr ? expr : x; // LLVM form: // *ptr = *ptr > val ? *ptr : val; // We need to transform to LLVM form. // x = x <= expr ? x : expr; AtomicRMWInst::BinOp NewOp; if (IsXBinopExpr) { if (IsInteger) { if (X.IsSigned) NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min : AtomicRMWInst::Max; else NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin : AtomicRMWInst::UMax; } else { NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin : AtomicRMWInst::FMax; } } else { if (IsInteger) { if (X.IsSigned) NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max : AtomicRMWInst::Min; else NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax : AtomicRMWInst::UMin; } else { NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax : AtomicRMWInst::FMin; } } AtomicRMWInst *OldValue = Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO); if (V.Var) { Value *CapturedValue = nullptr; if (IsPostfixUpdate) { CapturedValue = OldValue; } else { CmpInst::Predicate Pred; switch (NewOp) { case AtomicRMWInst::Max: Pred = CmpInst::ICMP_SGT; break; case AtomicRMWInst::UMax: Pred = CmpInst::ICMP_UGT; break; case AtomicRMWInst::FMax: Pred = CmpInst::FCMP_OGT; break; case AtomicRMWInst::Min: Pred = CmpInst::ICMP_SLT; break; case AtomicRMWInst::UMin: Pred = CmpInst::ICMP_ULT; break; case AtomicRMWInst::FMin: Pred = CmpInst::FCMP_OLT; break; default: llvm_unreachable("unexpected comparison op"); } Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E); CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue); } Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); } } checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createTeams(const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, Value *NumTeamsLower, Value *NumTeamsUpper, Value *ThreadLimit, Value *IfExpr) { if (!updateToLocation(Loc)) return InsertPointTy(); uint32_t SrcLocStrSize; Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); Function *CurrentFunction = Builder.GetInsertBlock()->getParent(); // Outer allocation basicblock is the entry block of the current function. BasicBlock &OuterAllocaBB = CurrentFunction->getEntryBlock(); if (&OuterAllocaBB == Builder.GetInsertBlock()) { BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "teams.entry"); Builder.SetInsertPoint(BodyBB, BodyBB->begin()); } // The current basic block is split into four basic blocks. After outlining, // they will be mapped as follows: // ``` // def current_fn() { // current_basic_block: // br label %teams.exit // teams.exit: // ; instructions after teams // } // // def outlined_fn() { // teams.alloca: // br label %teams.body // teams.body: // ; instructions within teams body // } // ``` BasicBlock *ExitBB = splitBB(Builder, /*CreateBranch=*/true, "teams.exit"); BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "teams.body"); BasicBlock *AllocaBB = splitBB(Builder, /*CreateBranch=*/true, "teams.alloca"); bool SubClausesPresent = (NumTeamsLower || NumTeamsUpper || ThreadLimit || IfExpr); // Push num_teams if (!Config.isTargetDevice() && SubClausesPresent) { assert((NumTeamsLower == nullptr || NumTeamsUpper != nullptr) && "if lowerbound is non-null, then upperbound must also be non-null " "for bounds on num_teams"); if (NumTeamsUpper == nullptr) NumTeamsUpper = Builder.getInt32(0); if (NumTeamsLower == nullptr) NumTeamsLower = NumTeamsUpper; if (IfExpr) { assert(IfExpr->getType()->isIntegerTy() && "argument to if clause must be an integer value"); // upper = ifexpr ? upper : 1 if (IfExpr->getType() != Int1) IfExpr = Builder.CreateICmpNE(IfExpr, ConstantInt::get(IfExpr->getType(), 0)); NumTeamsUpper = Builder.CreateSelect( IfExpr, NumTeamsUpper, Builder.getInt32(1), "numTeamsUpper"); // lower = ifexpr ? lower : 1 NumTeamsLower = Builder.CreateSelect( IfExpr, NumTeamsLower, Builder.getInt32(1), "numTeamsLower"); } if (ThreadLimit == nullptr) ThreadLimit = Builder.getInt32(0); Value *ThreadNum = getOrCreateThreadID(Ident); Builder.CreateCall( getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_teams_51), {Ident, ThreadNum, NumTeamsLower, NumTeamsUpper, ThreadLimit}); } // Generate the body of teams. InsertPointTy AllocaIP(AllocaBB, AllocaBB->begin()); InsertPointTy CodeGenIP(BodyBB, BodyBB->begin()); if (Error Err = BodyGenCB(AllocaIP, CodeGenIP)) return Err; OutlineInfo OI; OI.EntryBB = AllocaBB; OI.ExitBB = ExitBB; OI.OuterAllocaBB = &OuterAllocaBB; // Insert fake values for global tid and bound tid. SmallVector ToBeDeleted; InsertPointTy OuterAllocaIP(&OuterAllocaBB, OuterAllocaBB.begin()); OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal( Builder, OuterAllocaIP, ToBeDeleted, AllocaIP, "gid", true)); OI.ExcludeArgsFromAggregate.push_back(createFakeIntVal( Builder, OuterAllocaIP, ToBeDeleted, AllocaIP, "tid", true)); auto HostPostOutlineCB = [this, Ident, ToBeDeleted](Function &OutlinedFn) mutable { // The stale call instruction will be replaced with a new call instruction // for runtime call with the outlined function. assert(OutlinedFn.hasOneUse() && "there must be a single user for the outlined function"); CallInst *StaleCI = cast(OutlinedFn.user_back()); ToBeDeleted.push_back(StaleCI); assert((OutlinedFn.arg_size() == 2 || OutlinedFn.arg_size() == 3) && "Outlined function must have two or three arguments only"); bool HasShared = OutlinedFn.arg_size() == 3; OutlinedFn.getArg(0)->setName("global.tid.ptr"); OutlinedFn.getArg(1)->setName("bound.tid.ptr"); if (HasShared) OutlinedFn.getArg(2)->setName("data"); // Call to the runtime function for teams in the current function. assert(StaleCI && "Error while outlining - no CallInst user found for the " "outlined function."); Builder.SetInsertPoint(StaleCI); SmallVector Args = { Ident, Builder.getInt32(StaleCI->arg_size() - 2), &OutlinedFn}; if (HasShared) Args.push_back(StaleCI->getArgOperand(2)); Builder.CreateCall(getOrCreateRuntimeFunctionPtr( omp::RuntimeFunction::OMPRTL___kmpc_fork_teams), Args); for (Instruction *I : llvm::reverse(ToBeDeleted)) I->eraseFromParent(); }; if (!Config.isTargetDevice()) OI.PostOutlineCB = HostPostOutlineCB; addOutlineInfo(std::move(OI)); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); return Builder.saveIP(); } OpenMPIRBuilder::InsertPointOrErrorTy OpenMPIRBuilder::createDistribute(const LocationDescription &Loc, InsertPointTy OuterAllocaIP, BodyGenCallbackTy BodyGenCB) { if (!updateToLocation(Loc)) return InsertPointTy(); BasicBlock *OuterAllocaBB = OuterAllocaIP.getBlock(); if (OuterAllocaBB == Builder.GetInsertBlock()) { BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "distribute.entry"); Builder.SetInsertPoint(BodyBB, BodyBB->begin()); } BasicBlock *ExitBB = splitBB(Builder, /*CreateBranch=*/true, "distribute.exit"); BasicBlock *BodyBB = splitBB(Builder, /*CreateBranch=*/true, "distribute.body"); BasicBlock *AllocaBB = splitBB(Builder, /*CreateBranch=*/true, "distribute.alloca"); // Generate the body of distribute clause InsertPointTy AllocaIP(AllocaBB, AllocaBB->begin()); InsertPointTy CodeGenIP(BodyBB, BodyBB->begin()); if (Error Err = BodyGenCB(AllocaIP, CodeGenIP)) return Err; OutlineInfo OI; OI.OuterAllocaBB = OuterAllocaIP.getBlock(); OI.EntryBB = AllocaBB; OI.ExitBB = ExitBB; addOutlineInfo(std::move(OI)); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); return Builder.saveIP(); } GlobalVariable * OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl &Names, std::string VarName) { llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get( llvm::ArrayType::get(llvm::PointerType::getUnqual(M.getContext()), Names.size()), Names); auto *MapNamesArrayGlobal = new llvm::GlobalVariable( M, MapNamesArrayInit->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit, VarName); return MapNamesArrayGlobal; } // Create all simple and struct types exposed by the runtime and remember // the llvm::PointerTypes of them for easy access later. void OpenMPIRBuilder::initializeTypes(Module &M) { LLVMContext &Ctx = M.getContext(); StructType *T; #define OMP_TYPE(VarName, InitValue) VarName = InitValue; #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \ VarName##Ty = ArrayType::get(ElemTy, ArraySize); \ VarName##PtrTy = PointerType::getUnqual(Ctx); #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \ VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \ VarName##Ptr = PointerType::getUnqual(Ctx); #define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \ T = StructType::getTypeByName(Ctx, StructName); \ if (!T) \ T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \ VarName = T; \ VarName##Ptr = PointerType::getUnqual(Ctx); #include "llvm/Frontend/OpenMP/OMPKinds.def" } void OpenMPIRBuilder::OutlineInfo::collectBlocks( SmallPtrSetImpl &BlockSet, SmallVectorImpl &BlockVector) { SmallVector Worklist; BlockSet.insert(EntryBB); BlockSet.insert(ExitBB); Worklist.push_back(EntryBB); while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); BlockVector.push_back(BB); for (BasicBlock *SuccBB : successors(BB)) if (BlockSet.insert(SuccBB).second) Worklist.push_back(SuccBB); } } void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr, uint64_t Size, int32_t Flags, GlobalValue::LinkageTypes, StringRef Name) { if (!Config.isGPU()) { llvm::offloading::emitOffloadingEntry( M, object::OffloadKind::OFK_OpenMP, ID, Name.empty() ? Addr->getName() : Name, Size, Flags, /*Data=*/0); return; } // TODO: Add support for global variables on the device after declare target // support. Function *Fn = dyn_cast(Addr); if (!Fn) return; // Add a function attribute for the kernel. Fn->addFnAttr("kernel"); if (T.isAMDGCN()) Fn->addFnAttr("uniform-work-group-size", "true"); Fn->addFnAttr(Attribute::MustProgress); } // We only generate metadata for function that contain target regions. void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata( EmitMetadataErrorReportFunctionTy &ErrorFn) { // If there are no entries, we don't need to do anything. if (OffloadInfoManager.empty()) return; LLVMContext &C = M.getContext(); SmallVector, 16> OrderedEntries(OffloadInfoManager.size()); // Auxiliary methods to create metadata values and strings. auto &&GetMDInt = [this](unsigned V) { return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V)); }; auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); }; // Create the offloading info metadata node. NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); auto &&TargetRegionMetadataEmitter = [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString]( const TargetRegionEntryInfo &EntryInfo, const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) { // Generate metadata for target regions. Each entry of this metadata // contains: // - Entry 0 -> Kind of this type of metadata (0). // - Entry 1 -> Device ID of the file where the entry was identified. // - Entry 2 -> File ID of the file where the entry was identified. // - Entry 3 -> Mangled name of the function where the entry was // identified. // - Entry 4 -> Line in the file where the entry was identified. // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line. // - Entry 6 -> Order the entry was created. // The first element of the metadata node is the kind. Metadata *Ops[] = { GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID), GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName), GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count), GetMDInt(E.getOrder())}; // Save this entry in the right position of the ordered entries array. OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo); // Add metadata to the named metadata node. MD->addOperand(MDNode::get(C, Ops)); }; OffloadInfoManager.actOnTargetRegionEntriesInfo(TargetRegionMetadataEmitter); // Create function that emits metadata for each device global variable entry; auto &&DeviceGlobalVarMetadataEmitter = [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD]( StringRef MangledName, const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) { // Generate metadata for global variables. Each entry of this metadata // contains: // - Entry 0 -> Kind of this type of metadata (1). // - Entry 1 -> Mangled name of the variable. // - Entry 2 -> Declare target kind. // - Entry 3 -> Order the entry was created. // The first element of the metadata node is the kind. Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName), GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; // Save this entry in the right position of the ordered entries array. TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0); OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo); // Add metadata to the named metadata node. MD->addOperand(MDNode::get(C, Ops)); }; OffloadInfoManager.actOnDeviceGlobalVarEntriesInfo( DeviceGlobalVarMetadataEmitter); for (const auto &E : OrderedEntries) { assert(E.first && "All ordered entries must exist!"); if (const auto *CE = dyn_cast( E.first)) { if (!CE->getID() || !CE->getAddress()) { // Do not blame the entry if the parent funtion is not emitted. TargetRegionEntryInfo EntryInfo = E.second; StringRef FnName = EntryInfo.ParentName; if (!M.getNamedValue(FnName)) continue; ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo); continue; } createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0, CE->getFlags(), GlobalValue::WeakAnyLinkage); } else if (const auto *CE = dyn_cast< OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>( E.first)) { OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags = static_cast( CE->getFlags()); switch (Flags) { case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter: case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo: if (Config.isTargetDevice() && Config.hasRequiresUnifiedSharedMemory()) continue; if (!CE->getAddress()) { ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second); continue; } // The vaiable has no definition - no need to add the entry. if (CE->getVarSize() == 0) continue; break; case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink: assert(((Config.isTargetDevice() && !CE->getAddress()) || (!Config.isTargetDevice() && CE->getAddress())) && "Declaret target link address is set."); if (Config.isTargetDevice()) continue; if (!CE->getAddress()) { ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo()); continue; } break; default: break; } // Hidden or internal symbols on the device are not externally visible. // We should not attempt to register them by creating an offloading // entry. Indirect variables are handled separately on the device. if (auto *GV = dyn_cast(CE->getAddress())) if ((GV->hasLocalLinkage() || GV->hasHiddenVisibility()) && Flags != OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect) continue; // Indirect globals need to use a special name that doesn't match the name // of the associated host global. if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect) createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(), Flags, CE->getLinkage(), CE->getVarName()); else createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(), Flags, CE->getLinkage()); } else { llvm_unreachable("Unsupported entry kind."); } } // Emit requires directive globals to a special entry so the runtime can // register them when the device image is loaded. // TODO: This reduces the offloading entries to a 32-bit integer. Offloading // entries should be redesigned to better suit this use-case. if (Config.hasRequiresFlags() && !Config.isTargetDevice()) offloading::emitOffloadingEntry( M, object::OffloadKind::OFK_OpenMP, Constant::getNullValue(PointerType::getUnqual(M.getContext())), ".requires", /*Size=*/0, OffloadEntriesInfoManager::OMPTargetGlobalRegisterRequires, Config.getRequiresFlags()); } void TargetRegionEntryInfo::getTargetRegionEntryFnName( SmallVectorImpl &Name, StringRef ParentName, unsigned DeviceID, unsigned FileID, unsigned Line, unsigned Count) { raw_svector_ostream OS(Name); OS << KernelNamePrefix << llvm::format("%x", DeviceID) << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; if (Count) OS << "_" << Count; } void OffloadEntriesInfoManager::getTargetRegionEntryFnName( SmallVectorImpl &Name, const TargetRegionEntryInfo &EntryInfo) { unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo); TargetRegionEntryInfo::getTargetRegionEntryFnName( Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID, EntryInfo.Line, NewCount); } TargetRegionEntryInfo OpenMPIRBuilder::getTargetEntryUniqueInfo(FileIdentifierInfoCallbackTy CallBack, StringRef ParentName) { sys::fs::UniqueID ID(0xdeadf17e, 0); auto FileIDInfo = CallBack(); uint64_t FileID = 0; std::error_code EC = sys::fs::getUniqueID(std::get<0>(FileIDInfo), ID); // If the inode ID could not be determined, create a hash value // the current file name and use that as an ID. if (EC) FileID = hash_value(std::get<0>(FileIDInfo)); else FileID = ID.getFile(); return TargetRegionEntryInfo(ParentName, ID.getDevice(), FileID, std::get<1>(FileIDInfo)); } unsigned OpenMPIRBuilder::getFlagMemberOffset() { unsigned Offset = 0; for (uint64_t Remain = static_cast>( omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF); !(Remain & 1); Remain = Remain >> 1) Offset++; return Offset; } omp::OpenMPOffloadMappingFlags OpenMPIRBuilder::getMemberOfFlag(unsigned Position) { // Rotate by getFlagMemberOffset() bits. return static_cast(((uint64_t)Position + 1) << getFlagMemberOffset()); } void OpenMPIRBuilder::setCorrectMemberOfFlag( omp::OpenMPOffloadMappingFlags &Flags, omp::OpenMPOffloadMappingFlags MemberOfFlag) { // If the entry is PTR_AND_OBJ but has not been marked with the special // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be // marked as MEMBER_OF. if (static_cast>( Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ) && static_cast>( (Flags & omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) != omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF)) return; // Reset the placeholder value to prepare the flag for the assignment of the // proper MEMBER_OF value. Flags &= ~omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF; Flags |= MemberOfFlag; } Constant *OpenMPIRBuilder::getAddrOfDeclareTargetVar( OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause, OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause, bool IsDeclaration, bool IsExternallyVisible, TargetRegionEntryInfo EntryInfo, StringRef MangledName, std::vector &GeneratedRefs, bool OpenMPSIMD, std::vector TargetTriple, Type *LlvmPtrTy, std::function GlobalInitializer, std::function VariableLinkage) { // TODO: convert this to utilise the IRBuilder Config rather than // a passed down argument. if (OpenMPSIMD) return nullptr; if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink || ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo || CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) && Config.hasRequiresUnifiedSharedMemory())) { SmallString<64> PtrName; { raw_svector_ostream OS(PtrName); OS << MangledName; if (!IsExternallyVisible) OS << format("_%x", EntryInfo.FileID); OS << "_decl_tgt_ref_ptr"; } Value *Ptr = M.getNamedValue(PtrName); if (!Ptr) { GlobalValue *GlobalValue = M.getNamedValue(MangledName); Ptr = getOrCreateInternalVariable(LlvmPtrTy, PtrName); auto *GV = cast(Ptr); GV->setLinkage(GlobalValue::WeakAnyLinkage); if (!Config.isTargetDevice()) { if (GlobalInitializer) GV->setInitializer(GlobalInitializer()); else GV->setInitializer(GlobalValue); } registerTargetGlobalVariable( CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible, EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple, GlobalInitializer, VariableLinkage, LlvmPtrTy, cast(Ptr)); } return cast(Ptr); } return nullptr; } void OpenMPIRBuilder::registerTargetGlobalVariable( OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind CaptureClause, OffloadEntriesInfoManager::OMPTargetDeviceClauseKind DeviceClause, bool IsDeclaration, bool IsExternallyVisible, TargetRegionEntryInfo EntryInfo, StringRef MangledName, std::vector &GeneratedRefs, bool OpenMPSIMD, std::vector TargetTriple, std::function GlobalInitializer, std::function VariableLinkage, Type *LlvmPtrTy, Constant *Addr) { if (DeviceClause != OffloadEntriesInfoManager::OMPTargetDeviceClauseAny || (TargetTriple.empty() && !Config.isTargetDevice())) return; OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags; StringRef VarName; int64_t VarSize; GlobalValue::LinkageTypes Linkage; if ((CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo || CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter) && !Config.hasRequiresUnifiedSharedMemory()) { Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo; VarName = MangledName; GlobalValue *LlvmVal = M.getNamedValue(VarName); if (!IsDeclaration) VarSize = divideCeil( M.getDataLayout().getTypeSizeInBits(LlvmVal->getValueType()), 8); else VarSize = 0; Linkage = (VariableLinkage) ? VariableLinkage() : LlvmVal->getLinkage(); // This is a workaround carried over from Clang which prevents undesired // optimisation of internal variables. if (Config.isTargetDevice() && (!IsExternallyVisible || Linkage == GlobalValue::LinkOnceODRLinkage)) { // Do not create a "ref-variable" if the original is not also available // on the host. if (!OffloadInfoManager.hasDeviceGlobalVarEntryInfo(VarName)) return; std::string RefName = createPlatformSpecificName({VarName, "ref"}); if (!M.getNamedValue(RefName)) { Constant *AddrRef = getOrCreateInternalVariable(Addr->getType(), RefName); auto *GvAddrRef = cast(AddrRef); GvAddrRef->setConstant(true); GvAddrRef->setLinkage(GlobalValue::InternalLinkage); GvAddrRef->setInitializer(Addr); GeneratedRefs.push_back(GvAddrRef); } } } else { if (CaptureClause == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink) Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink; else Flags = OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo; if (Config.isTargetDevice()) { VarName = (Addr) ? Addr->getName() : ""; Addr = nullptr; } else { Addr = getAddrOfDeclareTargetVar( CaptureClause, DeviceClause, IsDeclaration, IsExternallyVisible, EntryInfo, MangledName, GeneratedRefs, OpenMPSIMD, TargetTriple, LlvmPtrTy, GlobalInitializer, VariableLinkage); VarName = (Addr) ? Addr->getName() : ""; } VarSize = M.getDataLayout().getPointerSize(); Linkage = GlobalValue::WeakAnyLinkage; } OffloadInfoManager.registerDeviceGlobalVarEntryInfo(VarName, Addr, VarSize, Flags, Linkage); } /// Loads all the offload entries information from the host IR /// metadata. void OpenMPIRBuilder::loadOffloadInfoMetadata(Module &M) { // If we are in target mode, load the metadata from the host IR. This code has // to match the metadata creation in createOffloadEntriesAndInfoMetadata(). NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName); if (!MD) return; for (MDNode *MN : MD->operands()) { auto &&GetMDInt = [MN](unsigned Idx) { auto *V = cast(MN->getOperand(Idx)); return cast(V->getValue())->getZExtValue(); }; auto &&GetMDString = [MN](unsigned Idx) { auto *V = cast(MN->getOperand(Idx)); return V->getString(); }; switch (GetMDInt(0)) { default: llvm_unreachable("Unexpected metadata!"); break; case OffloadEntriesInfoManager::OffloadEntryInfo:: OffloadingEntryInfoTargetRegion: { TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3), /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2), /*Line=*/GetMDInt(4), /*Count=*/GetMDInt(5)); OffloadInfoManager.initializeTargetRegionEntryInfo(EntryInfo, /*Order=*/GetMDInt(6)); break; } case OffloadEntriesInfoManager::OffloadEntryInfo:: OffloadingEntryInfoDeviceGlobalVar: OffloadInfoManager.initializeDeviceGlobalVarEntryInfo( /*MangledName=*/GetMDString(1), static_cast( /*Flags=*/GetMDInt(2)), /*Order=*/GetMDInt(3)); break; } } } void OpenMPIRBuilder::loadOffloadInfoMetadata(StringRef HostFilePath) { if (HostFilePath.empty()) return; auto Buf = MemoryBuffer::getFile(HostFilePath); if (std::error_code Err = Buf.getError()) { report_fatal_error(("error opening host file from host file path inside of " "OpenMPIRBuilder: " + Err.message()) .c_str()); } LLVMContext Ctx; auto M = expectedToErrorOrAndEmitErrors( Ctx, parseBitcodeFile(Buf.get()->getMemBufferRef(), Ctx)); if (std::error_code Err = M.getError()) { report_fatal_error( ("error parsing host file inside of OpenMPIRBuilder: " + Err.message()) .c_str()); } loadOffloadInfoMetadata(*M.get()); } //===----------------------------------------------------------------------===// // OffloadEntriesInfoManager //===----------------------------------------------------------------------===// bool OffloadEntriesInfoManager::empty() const { return OffloadEntriesTargetRegion.empty() && OffloadEntriesDeviceGlobalVar.empty(); } unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount( const TargetRegionEntryInfo &EntryInfo) const { auto It = OffloadEntriesTargetRegionCount.find( getTargetRegionEntryCountKey(EntryInfo)); if (It == OffloadEntriesTargetRegionCount.end()) return 0; return It->second; } void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount( const TargetRegionEntryInfo &EntryInfo) { OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] = EntryInfo.Count + 1; } /// Initialize target region entry. void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo( const TargetRegionEntryInfo &EntryInfo, unsigned Order) { OffloadEntriesTargetRegion[EntryInfo] = OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, OMPTargetRegionEntryTargetRegion); ++OffloadingEntriesNum; } void OffloadEntriesInfoManager::registerTargetRegionEntryInfo( TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID, OMPTargetRegionEntryKind Flags) { assert(EntryInfo.Count == 0 && "expected default EntryInfo"); // Update the EntryInfo with the next available count for this location. EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo); // If we are emitting code for a target, the entry is already initialized, // only has to be registered. if (OMPBuilder->Config.isTargetDevice()) { // This could happen if the device compilation is invoked standalone. if (!hasTargetRegionEntryInfo(EntryInfo)) { return; } auto &Entry = OffloadEntriesTargetRegion[EntryInfo]; Entry.setAddress(Addr); Entry.setID(ID); Entry.setFlags(Flags); } else { if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion && hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true)) return; assert(!hasTargetRegionEntryInfo(EntryInfo) && "Target region entry already registered!"); OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); OffloadEntriesTargetRegion[EntryInfo] = Entry; ++OffloadingEntriesNum; } incrementTargetRegionEntryInfoCount(EntryInfo); } bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo( TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const { // Update the EntryInfo with the next available count for this location. EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo); auto It = OffloadEntriesTargetRegion.find(EntryInfo); if (It == OffloadEntriesTargetRegion.end()) { return false; } // Fail if this entry is already registered. if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID())) return false; return true; } void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo( const OffloadTargetRegionEntryInfoActTy &Action) { // Scan all target region entries and perform the provided action. for (const auto &It : OffloadEntriesTargetRegion) { Action(It.first, It.second); } } void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo( StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) { OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); ++OffloadingEntriesNum; } void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo( StringRef VarName, Constant *Addr, int64_t VarSize, OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) { if (OMPBuilder->Config.isTargetDevice()) { // This could happen if the device compilation is invoked standalone. if (!hasDeviceGlobalVarEntryInfo(VarName)) return; auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { if (Entry.getVarSize() == 0) { Entry.setVarSize(VarSize); Entry.setLinkage(Linkage); } return; } Entry.setVarSize(VarSize); Entry.setLinkage(Linkage); Entry.setAddress(Addr); } else { if (hasDeviceGlobalVarEntryInfo(VarName)) { auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; assert(Entry.isValid() && Entry.getFlags() == Flags && "Entry not initialized!"); if (Entry.getVarSize() == 0) { Entry.setVarSize(VarSize); Entry.setLinkage(Linkage); } return; } if (Flags == OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect) OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage, VarName.str()); else OffloadEntriesDeviceGlobalVar.try_emplace( VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage, ""); ++OffloadingEntriesNum; } } void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo( const OffloadDeviceGlobalVarEntryInfoActTy &Action) { // Scan all target region entries and perform the provided action. for (const auto &E : OffloadEntriesDeviceGlobalVar) Action(E.getKey(), E.getValue()); } //===----------------------------------------------------------------------===// // CanonicalLoopInfo //===----------------------------------------------------------------------===// void CanonicalLoopInfo::collectControlBlocks( SmallVectorImpl &BBs) { // We only count those BBs as control block for which we do not need to // reverse the CFG, i.e. not the loop body which can contain arbitrary control // flow. For consistency, this also means we do not add the Body block, which // is just the entry to the body code. BBs.reserve(BBs.size() + 6); BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()}); } BasicBlock *CanonicalLoopInfo::getPreheader() const { assert(isValid() && "Requires a valid canonical loop"); for (BasicBlock *Pred : predecessors(Header)) { if (Pred != Latch) return Pred; } llvm_unreachable("Missing preheader"); } void CanonicalLoopInfo::setTripCount(Value *TripCount) { assert(isValid() && "Requires a valid canonical loop"); Instruction *CmpI = &getCond()->front(); assert(isa(CmpI) && "First inst must compare IV with TripCount"); CmpI->setOperand(1, TripCount); #ifndef NDEBUG assertOK(); #endif } void CanonicalLoopInfo::mapIndVar( llvm::function_ref Updater) { assert(isValid() && "Requires a valid canonical loop"); Instruction *OldIV = getIndVar(); // Record all uses excluding those introduced by the updater. Uses by the // CanonicalLoopInfo itself to keep track of the number of iterations are // excluded. SmallVector ReplacableUses; for (Use &U : OldIV->uses()) { auto *User = dyn_cast(U.getUser()); if (!User) continue; if (User->getParent() == getCond()) continue; if (User->getParent() == getLatch()) continue; ReplacableUses.push_back(&U); } // Run the updater that may introduce new uses Value *NewIV = Updater(OldIV); // Replace the old uses with the value returned by the updater. for (Use *U : ReplacableUses) U->set(NewIV); #ifndef NDEBUG assertOK(); #endif } void CanonicalLoopInfo::assertOK() const { #ifndef NDEBUG // No constraints if this object currently does not describe a loop. if (!isValid()) return; BasicBlock *Preheader = getPreheader(); BasicBlock *Body = getBody(); BasicBlock *After = getAfter(); // Verify standard control-flow we use for OpenMP loops. assert(Preheader); assert(isa(Preheader->getTerminator()) && "Preheader must terminate with unconditional branch"); assert(Preheader->getSingleSuccessor() == Header && "Preheader must jump to header"); assert(Header); assert(isa(Header->getTerminator()) && "Header must terminate with unconditional branch"); assert(Header->getSingleSuccessor() == Cond && "Header must jump to exiting block"); assert(Cond); assert(Cond->getSinglePredecessor() == Header && "Exiting block only reachable from header"); assert(isa(Cond->getTerminator()) && "Exiting block must terminate with conditional branch"); assert(size(successors(Cond)) == 2 && "Exiting block must have two successors"); assert(cast(Cond->getTerminator())->getSuccessor(0) == Body && "Exiting block's first successor jump to the body"); assert(cast(Cond->getTerminator())->getSuccessor(1) == Exit && "Exiting block's second successor must exit the loop"); assert(Body); assert(Body->getSinglePredecessor() == Cond && "Body only reachable from exiting block"); assert(!isa(Body->front())); assert(Latch); assert(isa(Latch->getTerminator()) && "Latch must terminate with unconditional branch"); assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header"); // TODO: To support simple redirecting of the end of the body code that has // multiple; introduce another auxiliary basic block like preheader and after. assert(Latch->getSinglePredecessor() != nullptr); assert(!isa(Latch->front())); assert(Exit); assert(isa(Exit->getTerminator()) && "Exit block must terminate with unconditional branch"); assert(Exit->getSingleSuccessor() == After && "Exit block must jump to after block"); assert(After); assert(After->getSinglePredecessor() == Exit && "After block only reachable from exit block"); assert(After->empty() || !isa(After->front())); Instruction *IndVar = getIndVar(); assert(IndVar && "Canonical induction variable not found?"); assert(isa(IndVar->getType()) && "Induction variable must be an integer"); assert(cast(IndVar)->getParent() == Header && "Induction variable must be a PHI in the loop header"); assert(cast(IndVar)->getIncomingBlock(0) == Preheader); assert( cast(cast(IndVar)->getIncomingValue(0))->isZero()); assert(cast(IndVar)->getIncomingBlock(1) == Latch); auto *NextIndVar = cast(IndVar)->getIncomingValue(1); assert(cast(NextIndVar)->getParent() == Latch); assert(cast(NextIndVar)->getOpcode() == BinaryOperator::Add); assert(cast(NextIndVar)->getOperand(0) == IndVar); assert(cast(cast(NextIndVar)->getOperand(1)) ->isOne()); Value *TripCount = getTripCount(); assert(TripCount && "Loop trip count not found?"); assert(IndVar->getType() == TripCount->getType() && "Trip count and induction variable must have the same type"); auto *CmpI = cast(&Cond->front()); assert(CmpI->getPredicate() == CmpInst::ICMP_ULT && "Exit condition must be a signed less-than comparison"); assert(CmpI->getOperand(0) == IndVar && "Exit condition must compare the induction variable"); assert(CmpI->getOperand(1) == TripCount && "Exit condition must compare with the trip count"); #endif } void CanonicalLoopInfo::invalidate() { Header = nullptr; Cond = nullptr; Latch = nullptr; Exit = nullptr; }