//===- StackProtector.cpp - Stack Protector Insertion ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass inserts stack protectors into functions which need them. A variable // with a random value in it is stored onto the stack before the local variables // are allocated. Upon exiting the block, the stored value is checked. If it's // changed, then there was some sort of violation and the program aborts. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/StackProtector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/EHPersonalities.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include using namespace llvm; #define DEBUG_TYPE "stack-protector" STATISTIC(NumFunProtected, "Number of functions protected"); STATISTIC(NumAddrTaken, "Number of local variables that have their address" " taken."); static cl::opt EnableSelectionDAGSP("enable-selectiondag-sp", cl::init(true), cl::Hidden); static cl::opt DisableCheckNoReturn("disable-check-noreturn-call", cl::init(false), cl::Hidden); /// InsertStackProtectors - Insert code into the prologue and epilogue of the /// function. /// /// - The prologue code loads and stores the stack guard onto the stack. /// - The epilogue checks the value stored in the prologue against the original /// value. It calls __stack_chk_fail if they differ. static bool InsertStackProtectors(const TargetMachine *TM, Function *F, DomTreeUpdater *DTU, bool &HasPrologue, bool &HasIRCheck); /// CreateFailBB - Create a basic block to jump to when the stack protector /// check fails. static BasicBlock *CreateFailBB(Function *F, const Triple &Trip); bool SSPLayoutInfo::shouldEmitSDCheck(const BasicBlock &BB) const { return HasPrologue && !HasIRCheck && isa(BB.getTerminator()); } void SSPLayoutInfo::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { if (Layout.empty()) return; for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { if (MFI.isDeadObjectIndex(I)) continue; const AllocaInst *AI = MFI.getObjectAllocation(I); if (!AI) continue; SSPLayoutMap::const_iterator LI = Layout.find(AI); if (LI == Layout.end()) continue; MFI.setObjectSSPLayout(I, LI->second); } } SSPLayoutInfo SSPLayoutAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { SSPLayoutInfo Info; Info.RequireStackProtector = SSPLayoutAnalysis::requiresStackProtector(&F, &Info.Layout); Info.SSPBufferSize = F.getFnAttributeAsParsedInteger( "stack-protector-buffer-size", SSPLayoutInfo::DefaultSSPBufferSize); return Info; } AnalysisKey SSPLayoutAnalysis::Key; PreservedAnalyses StackProtectorPass::run(Function &F, FunctionAnalysisManager &FAM) { auto &Info = FAM.getResult(F); auto *DT = FAM.getCachedResult(F); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); if (!Info.RequireStackProtector) return PreservedAnalyses::all(); // TODO(etienneb): Functions with funclets are not correctly supported now. // Do nothing if this is funclet-based personality. if (F.hasPersonalityFn()) { EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn()); if (isFuncletEHPersonality(Personality)) return PreservedAnalyses::all(); } ++NumFunProtected; bool Changed = InsertStackProtectors(TM, &F, DT ? &DTU : nullptr, Info.HasPrologue, Info.HasIRCheck); #ifdef EXPENSIVE_CHECKS assert((!DT || DT->verify(DominatorTree::VerificationLevel::Full)) && "Failed to maintain validity of domtree!"); #endif if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; } char StackProtector::ID = 0; StackProtector::StackProtector() : FunctionPass(ID) { initializeStackProtectorPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, "Insert stack protectors", false, true) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, "Insert stack protectors", false, true) FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); } bool StackProtector::runOnFunction(Function &Fn) { F = &Fn; M = F->getParent(); if (auto *DTWP = getAnalysisIfAvailable()) DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy); TM = &getAnalysis().getTM(); LayoutInfo.HasPrologue = false; LayoutInfo.HasIRCheck = false; LayoutInfo.SSPBufferSize = Fn.getFnAttributeAsParsedInteger( "stack-protector-buffer-size", SSPLayoutInfo::DefaultSSPBufferSize); if (!requiresStackProtector(F, &LayoutInfo.Layout)) return false; // TODO(etienneb): Functions with funclets are not correctly supported now. // Do nothing if this is funclet-based personality. if (Fn.hasPersonalityFn()) { EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); if (isFuncletEHPersonality(Personality)) return false; } ++NumFunProtected; bool Changed = InsertStackProtectors(TM, F, DTU ? &*DTU : nullptr, LayoutInfo.HasPrologue, LayoutInfo.HasIRCheck); #ifdef EXPENSIVE_CHECKS assert((!DTU || DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) && "Failed to maintain validity of domtree!"); #endif DTU.reset(); return Changed; } /// \param [out] IsLarge is set to true if a protectable array is found and /// it is "large" ( >= ssp-buffer-size). In the case of a structure with /// multiple arrays, this gets set if any of them is large. static bool ContainsProtectableArray(Type *Ty, Module *M, unsigned SSPBufferSize, bool &IsLarge, bool Strong, bool InStruct) { if (!Ty) return false; if (ArrayType *AT = dyn_cast(Ty)) { if (!AT->getElementType()->isIntegerTy(8)) { // If we're on a non-Darwin platform or we're inside of a structure, don't // add stack protectors unless the array is a character array. // However, in strong mode any array, regardless of type and size, // triggers a protector. if (!Strong && (InStruct || !Triple(M->getTargetTriple()).isOSDarwin())) return false; } // If an array has more than SSPBufferSize bytes of allocated space, then we // emit stack protectors. if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { IsLarge = true; return true; } if (Strong) // Require a protector for all arrays in strong mode return true; } const StructType *ST = dyn_cast(Ty); if (!ST) return false; bool NeedsProtector = false; for (Type *ET : ST->elements()) if (ContainsProtectableArray(ET, M, SSPBufferSize, IsLarge, Strong, true)) { // If the element is a protectable array and is large (>= SSPBufferSize) // then we are done. If the protectable array is not large, then // keep looking in case a subsequent element is a large array. if (IsLarge) return true; NeedsProtector = true; } return NeedsProtector; } /// Check whether a stack allocation has its address taken. static bool HasAddressTaken(const Instruction *AI, TypeSize AllocSize, Module *M, SmallPtrSet &VisitedPHIs) { const DataLayout &DL = M->getDataLayout(); for (const User *U : AI->users()) { const auto *I = cast(U); // If this instruction accesses memory make sure it doesn't access beyond // the bounds of the allocated object. std::optional MemLoc = MemoryLocation::getOrNone(I); if (MemLoc && MemLoc->Size.hasValue() && !TypeSize::isKnownGE(AllocSize, MemLoc->Size.getValue())) return true; switch (I->getOpcode()) { case Instruction::Store: if (AI == cast(I)->getValueOperand()) return true; break; case Instruction::AtomicCmpXchg: // cmpxchg conceptually includes both a load and store from the same // location. So, like store, the value being stored is what matters. if (AI == cast(I)->getNewValOperand()) return true; break; case Instruction::PtrToInt: if (AI == cast(I)->getOperand(0)) return true; break; case Instruction::Call: { // Ignore intrinsics that do not become real instructions. // TODO: Narrow this to intrinsics that have store-like effects. const auto *CI = cast(I); if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) return true; break; } case Instruction::Invoke: return true; case Instruction::GetElementPtr: { // If the GEP offset is out-of-bounds, or is non-constant and so has to be // assumed to be potentially out-of-bounds, then any memory access that // would use it could also be out-of-bounds meaning stack protection is // required. const GetElementPtrInst *GEP = cast(I); unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType()); APInt Offset(IndexSize, 0); if (!GEP->accumulateConstantOffset(DL, Offset)) return true; TypeSize OffsetSize = TypeSize::getFixed(Offset.getLimitedValue()); if (!TypeSize::isKnownGT(AllocSize, OffsetSize)) return true; // Adjust AllocSize to be the space remaining after this offset. // We can't subtract a fixed size from a scalable one, so in that case // assume the scalable value is of minimum size. TypeSize NewAllocSize = TypeSize::getFixed(AllocSize.getKnownMinValue()) - OffsetSize; if (HasAddressTaken(I, NewAllocSize, M, VisitedPHIs)) return true; break; } case Instruction::BitCast: case Instruction::Select: case Instruction::AddrSpaceCast: if (HasAddressTaken(I, AllocSize, M, VisitedPHIs)) return true; break; case Instruction::PHI: { // Keep track of what PHI nodes we have already visited to ensure // they are only visited once. const auto *PN = cast(I); if (VisitedPHIs.insert(PN).second) if (HasAddressTaken(PN, AllocSize, M, VisitedPHIs)) return true; break; } case Instruction::Load: case Instruction::AtomicRMW: case Instruction::Ret: // These instructions take an address operand, but have load-like or // other innocuous behavior that should not trigger a stack protector. // atomicrmw conceptually has both load and store semantics, but the // value being stored must be integer; so if a pointer is being stored, // we'll catch it in the PtrToInt case above. break; default: // Conservatively return true for any instruction that takes an address // operand, but is not handled above. return true; } } return false; } /// Search for the first call to the llvm.stackprotector intrinsic and return it /// if present. static const CallInst *findStackProtectorIntrinsic(Function &F) { for (const BasicBlock &BB : F) for (const Instruction &I : BB) if (const auto *II = dyn_cast(&I)) if (II->getIntrinsicID() == Intrinsic::stackprotector) return II; return nullptr; } /// Check whether or not this function needs a stack protector based /// upon the stack protector level. /// /// We use two heuristics: a standard (ssp) and strong (sspstrong). /// The standard heuristic which will add a guard variable to functions that /// call alloca with a either a variable size or a size >= SSPBufferSize, /// functions with character buffers larger than SSPBufferSize, and functions /// with aggregates containing character buffers larger than SSPBufferSize. The /// strong heuristic will add a guard variables to functions that call alloca /// regardless of size, functions with any buffer regardless of type and size, /// functions with aggregates that contain any buffer regardless of type and /// size, and functions that contain stack-based variables that have had their /// address taken. bool SSPLayoutAnalysis::requiresStackProtector(Function *F, SSPLayoutMap *Layout) { Module *M = F->getParent(); bool Strong = false; bool NeedsProtector = false; // The set of PHI nodes visited when determining if a variable's reference has // been taken. This set is maintained to ensure we don't visit the same PHI // node multiple times. SmallPtrSet VisitedPHIs; unsigned SSPBufferSize = F->getFnAttributeAsParsedInteger( "stack-protector-buffer-size", SSPLayoutInfo::DefaultSSPBufferSize); if (F->hasFnAttribute(Attribute::SafeStack)) return false; // We are constructing the OptimizationRemarkEmitter on the fly rather than // using the analysis pass to avoid building DominatorTree and LoopInfo which // are not available this late in the IR pipeline. OptimizationRemarkEmitter ORE(F); if (F->hasFnAttribute(Attribute::StackProtectReq)) { if (!Layout) return true; ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) << "Stack protection applied to function " << ore::NV("Function", F) << " due to a function attribute or command-line switch"; }); NeedsProtector = true; Strong = true; // Use the same heuristic as strong to determine SSPLayout } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) Strong = true; else if (!F->hasFnAttribute(Attribute::StackProtect)) return false; for (const BasicBlock &BB : *F) { for (const Instruction &I : BB) { if (const AllocaInst *AI = dyn_cast(&I)) { if (AI->isArrayAllocation()) { auto RemarkBuilder = [&]() { return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", &I) << "Stack protection applied to function " << ore::NV("Function", F) << " due to a call to alloca or use of a variable length " "array"; }; if (const auto *CI = dyn_cast(AI->getArraySize())) { if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { // A call to alloca with size >= SSPBufferSize requires // stack protectors. if (!Layout) return true; Layout->insert( std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray)); ORE.emit(RemarkBuilder); NeedsProtector = true; } else if (Strong) { // Require protectors for all alloca calls in strong mode. if (!Layout) return true; Layout->insert( std::make_pair(AI, MachineFrameInfo::SSPLK_SmallArray)); ORE.emit(RemarkBuilder); NeedsProtector = true; } } else { // A call to alloca with a variable size requires protectors. if (!Layout) return true; Layout->insert( std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray)); ORE.emit(RemarkBuilder); NeedsProtector = true; } continue; } bool IsLarge = false; if (ContainsProtectableArray(AI->getAllocatedType(), M, SSPBufferSize, IsLarge, Strong, false)) { if (!Layout) return true; Layout->insert(std::make_pair( AI, IsLarge ? MachineFrameInfo::SSPLK_LargeArray : MachineFrameInfo::SSPLK_SmallArray)); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) << "Stack protection applied to function " << ore::NV("Function", F) << " due to a stack allocated buffer or struct containing a " "buffer"; }); NeedsProtector = true; continue; } if (Strong && HasAddressTaken( AI, M->getDataLayout().getTypeAllocSize(AI->getAllocatedType()), M, VisitedPHIs)) { ++NumAddrTaken; if (!Layout) return true; Layout->insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", &I) << "Stack protection applied to function " << ore::NV("Function", F) << " due to the address of a local variable being taken"; }); NeedsProtector = true; } // Clear any PHIs that we visited, to make sure we examine all uses of // any subsequent allocas that we look at. VisitedPHIs.clear(); } } } return NeedsProtector; } /// Create a stack guard loading and populate whether SelectionDAG SSP is /// supported. static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, IRBuilder<> &B, bool *SupportsSelectionDAGSP = nullptr) { Value *Guard = TLI->getIRStackGuard(B); StringRef GuardMode = M->getStackProtectorGuard(); if ((GuardMode == "tls" || GuardMode.empty()) && Guard) return B.CreateLoad(B.getPtrTy(), Guard, true, "StackGuard"); // Use SelectionDAG SSP handling, since there isn't an IR guard. // // This is more or less weird, since we optionally output whether we // should perform a SelectionDAG SP here. The reason is that it's strictly // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also // mutating. There is no way to get this bit without mutating the IR, so // getting this bit has to happen in this right time. // // We could have define a new function TLI::supportsSelectionDAGSP(), but that // will put more burden on the backends' overriding work, especially when it // actually conveys the same information getIRStackGuard() already gives. if (SupportsSelectionDAGSP) *SupportsSelectionDAGSP = true; TLI->insertSSPDeclarations(*M); return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); } /// Insert code into the entry block that stores the stack guard /// variable onto the stack: /// /// entry: /// StackGuardSlot = alloca i8* /// StackGuard = /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) /// /// Returns true if the platform/triple supports the stackprotectorcreate pseudo /// node. static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc, const TargetLoweringBase *TLI, AllocaInst *&AI) { bool SupportsSelectionDAGSP = false; IRBuilder<> B(&F->getEntryBlock().front()); PointerType *PtrTy = PointerType::getUnqual(CheckLoc->getContext()); AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), {GuardSlot, AI}); return SupportsSelectionDAGSP; } bool InsertStackProtectors(const TargetMachine *TM, Function *F, DomTreeUpdater *DTU, bool &HasPrologue, bool &HasIRCheck) { auto *M = F->getParent(); auto *TLI = TM->getSubtargetImpl(*F)->getTargetLowering(); // If the target wants to XOR the frame pointer into the guard value, it's // impossible to emit the check in IR, so the target *must* support stack // protection in SDAG. bool SupportsSelectionDAGSP = TLI->useStackGuardXorFP() || (EnableSelectionDAGSP && !TM->Options.EnableFastISel); AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. BasicBlock *FailBB = nullptr; for (BasicBlock &BB : llvm::make_early_inc_range(*F)) { // This is stack protector auto generated check BB, skip it. if (&BB == FailBB) continue; Instruction *CheckLoc = dyn_cast(BB.getTerminator()); if (!CheckLoc && !DisableCheckNoReturn) for (auto &Inst : BB) if (auto *CB = dyn_cast(&Inst)) // Do stack check before noreturn calls that aren't nounwind (e.g: // __cxa_throw). if (CB->doesNotReturn() && !CB->doesNotThrow()) { CheckLoc = CB; break; } if (!CheckLoc) continue; // Generate prologue instrumentation if not already generated. if (!HasPrologue) { HasPrologue = true; SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI); } // SelectionDAG based code generation. Nothing else needs to be done here. // The epilogue instrumentation is postponed to SelectionDAG. if (SupportsSelectionDAGSP) break; // Find the stack guard slot if the prologue was not created by this pass // itself via a previous call to CreatePrologue(). if (!AI) { const CallInst *SPCall = findStackProtectorIntrinsic(*F); assert(SPCall && "Call to llvm.stackprotector is missing"); AI = cast(SPCall->getArgOperand(1)); } // Set HasIRCheck to true, so that SelectionDAG will not generate its own // version. SelectionDAG called 'shouldEmitSDCheck' to check whether // instrumentation has already been generated. HasIRCheck = true; // If we're instrumenting a block with a tail call, the check has to be // inserted before the call rather than between it and the return. The // verifier guarantees that a tail call is either directly before the // return or with a single correct bitcast of the return value in between so // we don't need to worry about many situations here. Instruction *Prev = CheckLoc->getPrevNonDebugInstruction(); if (Prev && isa(Prev) && cast(Prev)->isTailCall()) CheckLoc = Prev; else if (Prev) { Prev = Prev->getPrevNonDebugInstruction(); if (Prev && isa(Prev) && cast(Prev)->isTailCall()) CheckLoc = Prev; } // Generate epilogue instrumentation. The epilogue intrumentation can be // function-based or inlined depending on which mechanism the target is // providing. if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { // Generate the function-based epilogue instrumentation. // The target provides a guard check function, generate a call to it. IRBuilder<> B(CheckLoc); LoadInst *Guard = B.CreateLoad(B.getPtrTy(), AI, true, "Guard"); CallInst *Call = B.CreateCall(GuardCheck, {Guard}); Call->setAttributes(GuardCheck->getAttributes()); Call->setCallingConv(GuardCheck->getCallingConv()); } else { // Generate the epilogue with inline instrumentation. // If we do not support SelectionDAG based calls, generate IR level // calls. // // For each block with a return instruction, convert this: // // return: // ... // ret ... // // into this: // // return: // ... // %1 = // %2 = load StackGuardSlot // %3 = icmp ne i1 %1, %2 // br i1 %3, label %CallStackCheckFailBlk, label %SP_return // // SP_return: // ret ... // // CallStackCheckFailBlk: // call void @__stack_chk_fail() // unreachable // Create the FailBB. We duplicate the BB every time since the MI tail // merge pass will merge together all of the various BB into one including // fail BB generated by the stack protector pseudo instruction. if (!FailBB) FailBB = CreateFailBB(F, TM->getTargetTriple()); IRBuilder<> B(CheckLoc); Value *Guard = getStackGuard(TLI, M, B); LoadInst *LI2 = B.CreateLoad(B.getPtrTy(), AI, true); auto *Cmp = cast(B.CreateICmpNE(Guard, LI2)); auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); MDNode *Weights = MDBuilder(F->getContext()) .createBranchWeights(FailureProb.getNumerator(), SuccessProb.getNumerator()); SplitBlockAndInsertIfThen(Cmp, CheckLoc, /*Unreachable=*/false, Weights, DTU, /*LI=*/nullptr, /*ThenBlock=*/FailBB); auto *BI = cast(Cmp->getParent()->getTerminator()); BasicBlock *NewBB = BI->getSuccessor(1); NewBB->setName("SP_return"); NewBB->moveAfter(&BB); Cmp->setPredicate(Cmp->getInversePredicate()); BI->swapSuccessors(); } } // Return if we didn't modify any basic blocks. i.e., there are no return // statements in the function. return HasPrologue; } BasicBlock *CreateFailBB(Function *F, const Triple &Trip) { auto *M = F->getParent(); LLVMContext &Context = F->getContext(); BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); IRBuilder<> B(FailBB); if (F->getSubprogram()) B.SetCurrentDebugLocation( DILocation::get(Context, 0, 0, F->getSubprogram())); FunctionCallee StackChkFail; SmallVector Args; if (Trip.isOSOpenBSD()) { StackChkFail = M->getOrInsertFunction("__stack_smash_handler", Type::getVoidTy(Context), PointerType::getUnqual(Context)); Args.push_back(B.CreateGlobalStringPtr(F->getName(), "SSH")); } else { StackChkFail = M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); } cast(StackChkFail.getCallee())->addFnAttr(Attribute::NoReturn); B.CreateCall(StackChkFail, Args); B.CreateUnreachable(); return FailBB; }