//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass looks for safe point where the prologue and epilogue can be // inserted. // The safe point for the prologue (resp. epilogue) is called Save // (resp. Restore). // A point is safe for prologue (resp. epilogue) if and only if // it 1) dominates (resp. post-dominates) all the frame related operations and // between 2) two executions of the Save (resp. Restore) point there is an // execution of the Restore (resp. Save) point. // // For instance, the following points are safe: // for (int i = 0; i < 10; ++i) { // Save // ... // Restore // } // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... // And the following points are not: // for (int i = 0; i < 10; ++i) { // Save // ... // } // for (int i = 0; i < 10; ++i) { // ... // Restore // } // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. // // This pass also ensures that the safe points are 3) cheaper than the regular // entry and exits blocks. // // Property #1 is ensured via the use of MachineDominatorTree and // MachinePostDominatorTree. // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both // points must be in the same loop. // Property #3 is ensured via the MachineBlockFrequencyInfo. // // If this pass found points matching all these properties, then // MachineFrameInfo is updated with this information. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "shrink-wrap" STATISTIC(NumFunc, "Number of functions"); STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); STATISTIC(NumCandidatesDropped, "Number of shrink-wrapping candidates dropped because of frequency"); static cl::opt EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, cl::desc("enable the shrink-wrapping pass")); static cl::opt EnablePostShrinkWrapOpt( "enable-shrink-wrap-region-split", cl::init(true), cl::Hidden, cl::desc("enable splitting of the restore block if possible")); namespace { /// Class to determine where the safe point to insert the /// prologue and epilogue are. /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the /// shrink-wrapping term for prologue/epilogue placement, this pass /// does not rely on expensive data-flow analysis. Instead we use the /// dominance properties and loop information to decide which point /// are safe for such insertion. class ShrinkWrap : public MachineFunctionPass { /// Hold callee-saved information. RegisterClassInfo RCI; MachineDominatorTree *MDT = nullptr; MachinePostDominatorTree *MPDT = nullptr; /// Current safe point found for the prologue. /// The prologue will be inserted before the first instruction /// in this basic block. MachineBasicBlock *Save = nullptr; /// Current safe point found for the epilogue. /// The epilogue will be inserted before the first terminator instruction /// in this basic block. MachineBasicBlock *Restore = nullptr; /// Hold the information of the basic block frequency. /// Use to check the profitability of the new points. MachineBlockFrequencyInfo *MBFI = nullptr; /// Hold the loop information. Used to determine if Save and Restore /// are in the same loop. MachineLoopInfo *MLI = nullptr; // Emit remarks. MachineOptimizationRemarkEmitter *ORE = nullptr; /// Frequency of the Entry block. BlockFrequency EntryFreq; /// Current opcode for frame setup. unsigned FrameSetupOpcode = ~0u; /// Current opcode for frame destroy. unsigned FrameDestroyOpcode = ~0u; /// Stack pointer register, used by llvm.{savestack,restorestack} Register SP; /// Entry block. const MachineBasicBlock *Entry = nullptr; using SetOfRegs = SmallSetVector; /// Registers that need to be saved for the current function. mutable SetOfRegs CurrentCSRs; /// Current MachineFunction. MachineFunction *MachineFunc = nullptr; /// Is `true` for the block numbers where we assume possible stack accesses /// or computation of stack-relative addresses on any CFG path including the /// block itself. Is `false` for basic blocks where we can guarantee the /// opposite. False positives won't lead to incorrect analysis results, /// therefore this approach is fair. BitVector StackAddressUsedBlockInfo; /// Check if \p MI uses or defines a callee-saved register or /// a frame index. If this is the case, this means \p MI must happen /// after Save and before Restore. bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, bool StackAddressUsed) const; const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { if (CurrentCSRs.empty()) { BitVector SavedRegs; const TargetFrameLowering *TFI = MachineFunc->getSubtarget().getFrameLowering(); TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); for (int Reg = SavedRegs.find_first(); Reg != -1; Reg = SavedRegs.find_next(Reg)) CurrentCSRs.insert((unsigned)Reg); } return CurrentCSRs; } /// Update the Save and Restore points such that \p MBB is in /// the region that is dominated by Save and post-dominated by Restore /// and Save and Restore still match the safe point definition. /// Such point may not exist and Save and/or Restore may be null after /// this call. void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); // Try to find safe point based on dominance and block frequency without // any change in IR. bool performShrinkWrapping( const ReversePostOrderTraversal &RPOT, RegScavenger *RS); /// This function tries to split the restore point if doing so can shrink the /// save point further. \return True if restore point is split. bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF, RegScavenger *RS); /// This function analyzes if the restore point can split to create a new /// restore point. This function collects /// 1. Any preds of current restore that are reachable by callee save/FI /// blocks /// - indicated by DirtyPreds /// 2. Any preds of current restore that are not DirtyPreds - indicated by /// CleanPreds /// Both sets should be non-empty for considering restore point split. bool checkIfRestoreSplittable( const MachineBasicBlock *CurRestore, const DenseSet &ReachableByDirty, SmallVectorImpl &DirtyPreds, SmallVectorImpl &CleanPreds, const TargetInstrInfo *TII, RegScavenger *RS); /// Initialize the pass for \p MF. void init(MachineFunction &MF) { RCI.runOnMachineFunction(MF); MDT = &getAnalysis().getDomTree(); MPDT = &getAnalysis().getPostDomTree(); Save = nullptr; Restore = nullptr; MBFI = &getAnalysis().getMBFI(); MLI = &getAnalysis().getLI(); ORE = &getAnalysis().getORE(); EntryFreq = MBFI->getEntryFreq(); const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); FrameSetupOpcode = TII.getCallFrameSetupOpcode(); FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); Entry = &MF.front(); CurrentCSRs.clear(); MachineFunc = &MF; ++NumFunc; } /// Check whether or not Save and Restore points are still interesting for /// shrink-wrapping. bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } /// Check if shrink wrapping is enabled for this target and function. static bool isShrinkWrapEnabled(const MachineFunction &MF); public: static char ID; ShrinkWrap() : MachineFunctionPass(ID) { initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "Shrink Wrapping analysis"; } /// Perform the shrink-wrapping analysis and update /// the MachineFrameInfo attached to \p MF with the results. bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace char ShrinkWrap::ID = 0; char &llvm::ShrinkWrapID = ShrinkWrap::ID; INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS, bool StackAddressUsed) const { /// Check if \p Op is known to access an address not on the function's stack . /// At the moment, accesses where the underlying object is a global, function /// argument, or jump table are considered non-stack accesses. Note that the /// caller's stack may get accessed when passing an argument via the stack, /// but not the stack of the current function. /// auto IsKnownNonStackPtr = [](MachineMemOperand *Op) { if (Op->getValue()) { const Value *UO = getUnderlyingObject(Op->getValue()); if (!UO) return false; if (auto *Arg = dyn_cast(UO)) return !Arg->hasPassPointeeByValueCopyAttr(); return isa(UO); } if (const PseudoSourceValue *PSV = Op->getPseudoValue()) return PSV->isJumpTable(); return false; }; // Load/store operations may access the stack indirectly when we previously // computed an address to a stack location. if (StackAddressUsed && MI.mayLoadOrStore() && (MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() || !all_of(MI.memoperands(), IsKnownNonStackPtr))) return true; if (MI.getOpcode() == FrameSetupOpcode || MI.getOpcode() == FrameDestroyOpcode) { LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); return true; } const MachineFunction *MF = MI.getParent()->getParent(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); for (const MachineOperand &MO : MI.operands()) { bool UseOrDefCSR = false; if (MO.isReg()) { // Ignore instructions like DBG_VALUE which don't read/def the register. if (!MO.isDef() && !MO.readsReg()) continue; Register PhysReg = MO.getReg(); if (!PhysReg) continue; assert(PhysReg.isPhysical() && "Unallocated register?!"); // The stack pointer is not normally described as a callee-saved register // in calling convention definitions, so we need to watch for it // separately. An SP mentioned by a call instruction, we can ignore, // though, as it's harmless and we do not want to effectively disable tail // calls by forcing the restore point to post-dominate them. // PPC's LR is also not normally described as a callee-saved register in // calling convention definitions, so we need to watch for it, too. An LR // mentioned implicitly by a return (or "branch to link register") // instruction we can ignore, otherwise we may pessimize shrinkwrapping. UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || RCI.getLastCalleeSavedAlias(PhysReg) || (!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg)); } else if (MO.isRegMask()) { // Check if this regmask clobbers any of the CSRs. for (unsigned Reg : getCurrentCSRs(RS)) { if (MO.clobbersPhysReg(Reg)) { UseOrDefCSR = true; break; } } } // Skip FrameIndex operands in DBG_VALUE instructions. if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" << MO.isFI() << "): " << MI << '\n'); return true; } } return false; } /// Helper function to find the immediate (post) dominator. template static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, DominanceAnalysis &Dom, bool Strict = true) { MachineBasicBlock *IDom = &Block; for (MachineBasicBlock *BB : BBs) { IDom = Dom.findNearestCommonDominator(IDom, BB); if (!IDom) break; } if (Strict && IDom == &Block) return nullptr; return IDom; } static bool isAnalyzableBB(const TargetInstrInfo &TII, MachineBasicBlock &Entry) { // Check if the block is analyzable. MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; return !TII.analyzeBranch(Entry, TBB, FBB, Cond); } /// Determines if any predecessor of MBB is on the path from block that has use /// or def of CSRs/FI to MBB. /// ReachableByDirty: All blocks reachable from block that has use or def of /// CSR/FI. static bool hasDirtyPred(const DenseSet &ReachableByDirty, const MachineBasicBlock &MBB) { for (const MachineBasicBlock *PredBB : MBB.predecessors()) if (ReachableByDirty.count(PredBB)) return true; return false; } /// Derives the list of all the basic blocks reachable from MBB. static void markAllReachable(DenseSet &Visited, const MachineBasicBlock &MBB) { SmallVector Worklist(MBB.succ_begin(), MBB.succ_end()); Visited.insert(&MBB); while (!Worklist.empty()) { MachineBasicBlock *SuccMBB = Worklist.pop_back_val(); if (!Visited.insert(SuccMBB).second) continue; Worklist.append(SuccMBB->succ_begin(), SuccMBB->succ_end()); } } /// Collect blocks reachable by use or def of CSRs/FI. static void collectBlocksReachableByDirty( const DenseSet &DirtyBBs, DenseSet &ReachableByDirty) { for (const MachineBasicBlock *MBB : DirtyBBs) { if (ReachableByDirty.count(MBB)) continue; // Mark all offsprings as reachable. markAllReachable(ReachableByDirty, *MBB); } } /// \return true if there is a clean path from SavePoint to the original /// Restore. static bool isSaveReachableThroughClean(const MachineBasicBlock *SavePoint, ArrayRef CleanPreds) { DenseSet Visited; SmallVector Worklist(CleanPreds.begin(), CleanPreds.end()); while (!Worklist.empty()) { MachineBasicBlock *CleanBB = Worklist.pop_back_val(); if (CleanBB == SavePoint) return true; if (!Visited.insert(CleanBB).second || !CleanBB->pred_size()) continue; Worklist.append(CleanBB->pred_begin(), CleanBB->pred_end()); } return false; } /// This function updates the branches post restore point split. /// /// Restore point has been split. /// Old restore point: MBB /// New restore point: NMBB /// Any basic block(say BBToUpdate) which had a fallthrough to MBB /// previously should /// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the /// block layout OR /// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place. static void updateTerminator(MachineBasicBlock *BBToUpdate, MachineBasicBlock *NMBB, const TargetInstrInfo *TII) { DebugLoc DL = BBToUpdate->findBranchDebugLoc(); // if NMBB isn't the new layout successor for BBToUpdate, insert unconditional // branch to it if (!BBToUpdate->isLayoutSuccessor(NMBB)) TII->insertUnconditionalBranch(*BBToUpdate, NMBB, DL); } /// This function splits the restore point and returns new restore point/BB. /// /// DirtyPreds: Predessors of \p MBB that are ReachableByDirty /// /// Decision has been made to split the restore point. /// old restore point: \p MBB /// new restore point: \p NMBB /// This function makes the necessary block layout changes so that /// 1. \p NMBB points to \p MBB unconditionally /// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB static MachineBasicBlock * tryToSplitRestore(MachineBasicBlock *MBB, ArrayRef DirtyPreds, const TargetInstrInfo *TII) { MachineFunction *MF = MBB->getParent(); // get the list of DirtyPreds who have a fallthrough to MBB // before the block layout change. This is just to ensure that if the NMBB is // inserted after MBB, then we create unconditional branch from // DirtyPred/CleanPred to NMBB SmallPtrSet MBBFallthrough; for (MachineBasicBlock *BB : DirtyPreds) if (BB->getFallThrough(false) == MBB) MBBFallthrough.insert(BB); MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); // Insert this block at the end of the function. Inserting in between may // interfere with control flow optimizer decisions. MF->insert(MF->end(), NMBB); for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins()) NMBB->addLiveIn(LI.PhysReg); TII->insertUnconditionalBranch(*NMBB, MBB, DebugLoc()); // After splitting, all predecessors of the restore point should be dirty // blocks. for (MachineBasicBlock *SuccBB : DirtyPreds) SuccBB->ReplaceUsesOfBlockWith(MBB, NMBB); NMBB->addSuccessor(MBB); for (MachineBasicBlock *BBToUpdate : MBBFallthrough) updateTerminator(BBToUpdate, NMBB, TII); return NMBB; } /// This function undoes the restore point split done earlier. /// /// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty. /// /// Restore point was split and the change needs to be unrolled. Make necessary /// changes to reset restore point from \p NMBB to \p MBB. static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB, MachineBasicBlock *MBB, ArrayRef DirtyPreds, const TargetInstrInfo *TII) { // For a BB, if NMBB is fallthrough in the current layout, then in the new // layout a. BB should fallthrough to MBB OR b. BB should undconditionally // branch to MBB SmallPtrSet NMBBFallthrough; for (MachineBasicBlock *BB : DirtyPreds) if (BB->getFallThrough(false) == NMBB) NMBBFallthrough.insert(BB); NMBB->removeSuccessor(MBB); for (MachineBasicBlock *SuccBB : DirtyPreds) SuccBB->ReplaceUsesOfBlockWith(NMBB, MBB); NMBB->erase(NMBB->begin(), NMBB->end()); NMBB->eraseFromParent(); for (MachineBasicBlock *BBToUpdate : NMBBFallthrough) updateTerminator(BBToUpdate, MBB, TII); } // A block is deemed fit for restore point split iff there exist // 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI // 2. CleanPreds - preds of CurRestore that arent DirtyPreds bool ShrinkWrap::checkIfRestoreSplittable( const MachineBasicBlock *CurRestore, const DenseSet &ReachableByDirty, SmallVectorImpl &DirtyPreds, SmallVectorImpl &CleanPreds, const TargetInstrInfo *TII, RegScavenger *RS) { for (const MachineInstr &MI : *CurRestore) if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) return false; for (MachineBasicBlock *PredBB : CurRestore->predecessors()) { if (!isAnalyzableBB(*TII, *PredBB)) return false; if (ReachableByDirty.count(PredBB)) DirtyPreds.push_back(PredBB); else CleanPreds.push_back(PredBB); } return !(CleanPreds.empty() || DirtyPreds.empty()); } bool ShrinkWrap::postShrinkWrapping(bool HasCandidate, MachineFunction &MF, RegScavenger *RS) { if (!EnablePostShrinkWrapOpt) return false; MachineBasicBlock *InitSave = nullptr; MachineBasicBlock *InitRestore = nullptr; if (HasCandidate) { InitSave = Save; InitRestore = Restore; } else { InitRestore = nullptr; InitSave = &MF.front(); for (MachineBasicBlock &MBB : MF) { if (MBB.isEHFuncletEntry()) return false; if (MBB.isReturnBlock()) { // Do not support multiple restore points. if (InitRestore) return false; InitRestore = &MBB; } } } if (!InitSave || !InitRestore || InitRestore == InitSave || !MDT->dominates(InitSave, InitRestore) || !MPDT->dominates(InitRestore, InitSave)) return false; // Bail out of the optimization if any of the basic block is target of // INLINEASM_BR instruction for (MachineBasicBlock &MBB : MF) if (MBB.isInlineAsmBrIndirectTarget()) return false; DenseSet DirtyBBs; for (MachineBasicBlock &MBB : MF) { if (MBB.isEHPad()) { DirtyBBs.insert(&MBB); continue; } for (const MachineInstr &MI : MBB) if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) { DirtyBBs.insert(&MBB); break; } } // Find blocks reachable from the use or def of CSRs/FI. DenseSet ReachableByDirty; collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty); const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); SmallVector DirtyPreds; SmallVector CleanPreds; if (!checkIfRestoreSplittable(InitRestore, ReachableByDirty, DirtyPreds, CleanPreds, TII, RS)) return false; // Trying to reach out to the new save point which dominates all dirty blocks. MachineBasicBlock *NewSave = FindIDom<>(**DirtyPreds.begin(), DirtyPreds, *MDT, false); while (NewSave && (hasDirtyPred(ReachableByDirty, *NewSave) || EntryFreq < MBFI->getBlockFreq(NewSave) || /*Entry freq has been observed more than a loop block in some cases*/ MLI->getLoopFor(NewSave))) NewSave = FindIDom<>(**NewSave->pred_begin(), NewSave->predecessors(), *MDT, false); const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); if (!NewSave || NewSave == InitSave || isSaveReachableThroughClean(NewSave, CleanPreds) || !TFI->canUseAsPrologue(*NewSave)) return false; // Now we know that splitting a restore point can isolate the restore point // from clean blocks and doing so can shrink the save point. MachineBasicBlock *NewRestore = tryToSplitRestore(InitRestore, DirtyPreds, TII); // Make sure if the new restore point is valid as an epilogue, depending on // targets. if (!TFI->canUseAsEpilogue(*NewRestore)) { rollbackRestoreSplit(MF, NewRestore, InitRestore, DirtyPreds, TII); return false; } Save = NewSave; Restore = NewRestore; MDT->recalculate(MF); MPDT->recalculate(MF); assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) && "Incorrect save or restore point due to dominance relations"); assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) && "Unexpected save or restore point in a loop"); assert((EntryFreq >= MBFI->getBlockFreq(Save) && EntryFreq >= MBFI->getBlockFreq(Restore)) && "Incorrect save or restore point based on block frequency"); return true; } void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS) { // Get rid of the easy cases first. if (!Save) Save = &MBB; else Save = MDT->findNearestCommonDominator(Save, &MBB); assert(Save); if (!Restore) Restore = &MBB; else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it // means the block never returns. If that's the // case, we don't want to call // `findNearestCommonDominator`, which will // return `Restore`. Restore = MPDT->findNearestCommonDominator(Restore, &MBB); else Restore = nullptr; // Abort, we can't find a restore point in this case. // Make sure we would be able to insert the restore code before the // terminator. if (Restore == &MBB) { for (const MachineInstr &Terminator : MBB.terminators()) { if (!useOrDefCSROrFI(Terminator, RS, /*StackAddressUsed=*/true)) continue; // One of the terminator needs to happen before the restore point. if (MBB.succ_empty()) { Restore = nullptr; // Abort, we can't find a restore point in this case. break; } // Look for a restore point that post-dominates all the successors. // The immediate post-dominator is what we are looking for. Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); break; } } if (!Restore) { LLVM_DEBUG( dbgs() << "Restore point needs to be spanned on several blocks\n"); return; } // Make sure Save and Restore are suitable for shrink-wrapping: // 1. all path from Save needs to lead to Restore before exiting. // 2. all path to Restore needs to go through Save from Entry. // We achieve that by making sure that: // A. Save dominates Restore. // B. Restore post-dominates Save. // C. Save and Restore are in the same loop. bool SaveDominatesRestore = false; bool RestorePostDominatesSave = false; while (Restore && (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || // Post-dominance is not enough in loops to ensure that all uses/defs // are after the prologue and before the epilogue at runtime. // E.g., // while(1) { // Save // Restore // if (...) // break; // use/def CSRs // } // All the uses/defs of CSRs are dominated by Save and post-dominated // by Restore. However, the CSRs uses are still reachable after // Restore and before Save are executed. // // For now, just push the restore/save points outside of loops. // FIXME: Refine the criteria to still find interesting cases // for loops. MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { // Fix (A). if (!SaveDominatesRestore) { Save = MDT->findNearestCommonDominator(Save, Restore); continue; } // Fix (B). if (!RestorePostDominatesSave) Restore = MPDT->findNearestCommonDominator(Restore, Save); // Fix (C). if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { // Push Save outside of this loop if immediate dominator is different // from save block. If immediate dominator is not different, bail out. Save = FindIDom<>(*Save, Save->predecessors(), *MDT); if (!Save) break; } else { // If the loop does not exit, there is no point in looking // for a post-dominator outside the loop. SmallVector ExitBlocks; MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); // Push Restore outside of this loop. // Look for the immediate post-dominator of the loop exits. MachineBasicBlock *IPdom = Restore; for (MachineBasicBlock *LoopExitBB: ExitBlocks) { IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); if (!IPdom) break; } // If the immediate post-dominator is not in a less nested loop, // then we are stuck in a program with an infinite loop. // In that case, we will not find a safe point, hence, bail out. if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) Restore = IPdom; else { Restore = nullptr; break; } } } } } static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, StringRef RemarkName, StringRef RemarkMessage, const DiagnosticLocation &Loc, const MachineBasicBlock *MBB) { ORE->emit([&]() { return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) << RemarkMessage; }); LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); return false; } bool ShrinkWrap::performShrinkWrapping( const ReversePostOrderTraversal &RPOT, RegScavenger *RS) { for (MachineBasicBlock *MBB : RPOT) { LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n'); if (MBB->isEHFuncletEntry()) return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", "EH Funclets are not supported yet.", MBB->front().getDebugLoc(), MBB); if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) { // Push the prologue and epilogue outside of the region that may throw (or // jump out via inlineasm_br), by making sure that all the landing pads // are at least at the boundary of the save and restore points. The // problem is that a basic block can jump out from the middle in these // cases, which we do not handle. updateSaveRestorePoints(*MBB, RS); if (!ArePointsInteresting()) { LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n"); return false; } continue; } bool StackAddressUsed = false; // Check if we found any stack accesses in the predecessors. We are not // doing a full dataflow analysis here to keep things simple but just // rely on a reverse portorder traversal (RPOT) to guarantee predecessors // are already processed except for loops (and accept the conservative // result for loops). for (const MachineBasicBlock *Pred : MBB->predecessors()) { if (StackAddressUsedBlockInfo.test(Pred->getNumber())) { StackAddressUsed = true; break; } } for (const MachineInstr &MI : *MBB) { if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) { // Save (resp. restore) point must dominate (resp. post dominate) // MI. Look for the proper basic block for those. updateSaveRestorePoints(*MBB, RS); // If we are at a point where we cannot improve the placement of // save/restore instructions, just give up. if (!ArePointsInteresting()) { LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); return false; } // No need to look for other instructions, this basic block // will already be part of the handled region. StackAddressUsed = true; break; } } StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed; } if (!ArePointsInteresting()) { // If the points are not interesting at this point, then they must be null // because it means we did not encounter any frame/CSR related code. // Otherwise, we would have returned from the previous loop. assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); return false; } LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq.getFrequency() << '\n'); const TargetFrameLowering *TFI = MachineFunc->getSubtarget().getFrameLowering(); do { LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " << printMBBReference(*Save) << ' ' << printBlockFreq(*MBFI, *Save) << "\nRestore: " << printMBBReference(*Restore) << ' ' << printBlockFreq(*MBFI, *Restore) << '\n'); bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save)) && EntryFreq >= MBFI->getBlockFreq(Restore)) && ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && TFI->canUseAsEpilogue(*Restore))) break; LLVM_DEBUG( dbgs() << "New points are too expensive or invalid for the target\n"); MachineBasicBlock *NewBB; if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { Save = FindIDom<>(*Save, Save->predecessors(), *MDT); if (!Save) break; NewBB = Save; } else { // Restore is expensive. Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); if (!Restore) break; NewBB = Restore; } updateSaveRestorePoints(*NewBB, RS); } while (Save && Restore); if (!ArePointsInteresting()) { ++NumCandidatesDropped; return false; } return true; } bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) return false; LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); init(MF); ReversePostOrderTraversal RPOT(&*MF.begin()); if (containsIrreducibleCFG(RPOT, *MLI)) { // If MF is irreducible, a block may be in a loop without // MachineLoopInfo reporting it. I.e., we may use the // post-dominance property in loops, which lead to incorrect // results. Moreover, we may miss that the prologue and // epilogue are not in the same loop, leading to unbalanced // construction/deconstruction of the stack frame. return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", "Irreducible CFGs are not supported yet.", MF.getFunction().getSubprogram(), &MF.front()); } const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); std::unique_ptr RS( TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); bool Changed = false; // Initially, conservatively assume that stack addresses can be used in each // basic block and change the state only for those basic blocks for which we // were able to prove the opposite. StackAddressUsedBlockInfo.resize(MF.getNumBlockIDs(), true); bool HasCandidate = performShrinkWrapping(RPOT, RS.get()); StackAddressUsedBlockInfo.clear(); Changed = postShrinkWrapping(HasCandidate, MF, RS.get()); if (!HasCandidate && !Changed) return false; if (!ArePointsInteresting()) return Changed; LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << printMBBReference(*Save) << ' ' << "\nRestore: " << printMBBReference(*Restore) << '\n'); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setSavePoint(Save); MFI.setRestorePoint(Restore); ++NumCandidates; return Changed; } bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); switch (EnableShrinkWrapOpt) { case cl::BOU_UNSET: return TFI->enableShrinkWrapping(MF) && // Windows with CFI has some limitations that make it impossible // to use shrink-wrapping. !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && // Sanitizers look at the value of the stack at the location // of the crash. Since a crash can happen anywhere, the // frame must be lowered before anything else happen for the // sanitizers to be able to get a correct stack frame. !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); // If EnableShrinkWrap is set, it takes precedence on whatever the // target sets. The rational is that we assume we want to test // something related to shrink-wrapping. case cl::BOU_TRUE: return true; case cl::BOU_FALSE: return false; } llvm_unreachable("Invalid shrink-wrapping state"); }