//===- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the custom lowering code required by the shadow-stack GC // strategy. // // This pass implements the code transformation described in this paper: // "Accurate Garbage Collection in an Uncooperative Environment" // Fergus Henderson, ISMM, 2002 // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ShadowStackGCLowering.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Transforms/Utils/EscapeEnumerator.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "shadow-stack-gc-lowering" namespace { class ShadowStackGCLoweringImpl { /// RootChain - This is the global linked-list that contains the chain of GC /// roots. GlobalVariable *Head = nullptr; /// StackEntryTy - Abstract type of a link in the shadow stack. StructType *StackEntryTy = nullptr; StructType *FrameMapTy = nullptr; /// Roots - GC roots in the current function. Each is a pair of the /// intrinsic call and its corresponding alloca. std::vector> Roots; public: ShadowStackGCLoweringImpl() = default; bool doInitialization(Module &M); bool runOnFunction(Function &F, DomTreeUpdater *DTU); private: bool IsNullValue(Value *V); Constant *GetFrameMap(Function &F); Type *GetConcreteStackEntryType(Function &F); void CollectRoots(Function &F); static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B, Type *Ty, Value *BasePtr, int Idx1, const char *Name); static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B, Type *Ty, Value *BasePtr, int Idx1, int Idx2, const char *Name); }; class ShadowStackGCLowering : public FunctionPass { ShadowStackGCLoweringImpl Impl; public: static char ID; ShadowStackGCLowering(); bool doInitialization(Module &M) override { return Impl.doInitialization(M); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); } bool runOnFunction(Function &F) override { std::optional DTU; if (auto *DTWP = getAnalysisIfAvailable()) DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy); return Impl.runOnFunction(F, DTU ? &*DTU : nullptr); } }; } // end anonymous namespace PreservedAnalyses ShadowStackGCLoweringPass::run(Module &M, ModuleAnalysisManager &MAM) { auto &Map = MAM.getResult(M); if (Map.StrategyMap.contains("shadow-stack")) return PreservedAnalyses::all(); ShadowStackGCLoweringImpl Impl; bool Changed = Impl.doInitialization(M); for (auto &F : M) { auto &FAM = MAM.getResult(M).getManager(); auto *DT = FAM.getCachedResult(F); DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); Changed |= Impl.runOnFunction(F, DT ? &DTU : nullptr); } if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; } char ShadowStackGCLowering::ID = 0; char &llvm::ShadowStackGCLoweringID = ShadowStackGCLowering::ID; INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, DEBUG_TYPE, "Shadow Stack GC Lowering", false, false) INITIALIZE_PASS_DEPENDENCY(GCModuleInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(ShadowStackGCLowering, DEBUG_TYPE, "Shadow Stack GC Lowering", false, false) FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); } ShadowStackGCLowering::ShadowStackGCLowering() : FunctionPass(ID) { initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry()); } Constant *ShadowStackGCLoweringImpl::GetFrameMap(Function &F) { // doInitialization creates the abstract type of this value. Type *VoidPtr = PointerType::getUnqual(F.getContext()); // Truncate the ShadowStackDescriptor if some metadata is null. unsigned NumMeta = 0; SmallVector Metadata; for (unsigned I = 0; I != Roots.size(); ++I) { Constant *C = cast(Roots[I].first->getArgOperand(1)); if (!C->isNullValue()) NumMeta = I + 1; Metadata.push_back(C); } Metadata.resize(NumMeta); Type *Int32Ty = Type::getInt32Ty(F.getContext()); Constant *BaseElts[] = { ConstantInt::get(Int32Ty, Roots.size(), false), ConstantInt::get(Int32Ty, NumMeta, false), }; Constant *DescriptorElts[] = { ConstantStruct::get(FrameMapTy, BaseElts), ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)}; Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()}; StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta)); Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts); // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems // that, short of multithreaded LLVM, it should be safe; all that is // necessary is that a simple Module::iterator loop not be invalidated. // Appending to the GlobalVariable list is safe in that sense. // // All of the output passes emit globals last. The ExecutionEngine // explicitly supports adding globals to the module after // initialization. // // Still, if it isn't deemed acceptable, then this transformation needs // to be a ModulePass (which means it cannot be in the 'llc' pipeline // (which uses a FunctionPassManager (which segfaults (not asserts) if // provided a ModulePass))). Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true, GlobalVariable::InternalLinkage, FrameMap, "__gc_" + F.getName()); Constant *GEPIndices[2] = { ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)}; return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices); } Type *ShadowStackGCLoweringImpl::GetConcreteStackEntryType(Function &F) { // doInitialization creates the generic version of this type. std::vector EltTys; EltTys.push_back(StackEntryTy); for (const std::pair &Root : Roots) EltTys.push_back(Root.second->getAllocatedType()); return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str()); } /// doInitialization - If this module uses the GC intrinsics, find them now. If /// not, exit fast. bool ShadowStackGCLoweringImpl::doInitialization(Module &M) { bool Active = false; for (Function &F : M) { if (F.hasGC() && F.getGC() == "shadow-stack") { Active = true; break; } } if (!Active) return false; // struct FrameMap { // int32_t NumRoots; // Number of roots in stack frame. // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots. // void *Meta[]; // May be absent for roots without metadata. // }; std::vector EltTys; // 32 bits is ok up to a 32GB stack frame. :) EltTys.push_back(Type::getInt32Ty(M.getContext())); // Specifies length of variable length array. EltTys.push_back(Type::getInt32Ty(M.getContext())); FrameMapTy = StructType::create(EltTys, "gc_map"); PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); // struct StackEntry { // ShadowStackEntry *Next; // Caller's stack entry. // FrameMap *Map; // Pointer to constant FrameMap. // void *Roots[]; // Stack roots (in-place array, so we pretend). // }; StackEntryTy = StructType::create(M.getContext(), "gc_stackentry"); EltTys.clear(); EltTys.push_back(PointerType::getUnqual(StackEntryTy)); EltTys.push_back(FrameMapPtrTy); StackEntryTy->setBody(EltTys); PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); // Get the root chain if it already exists. Head = M.getGlobalVariable("llvm_gc_root_chain"); if (!Head) { // If the root chain does not exist, insert a new one with linkonce // linkage! Head = new GlobalVariable( M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage, Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain"); } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); Head->setLinkage(GlobalValue::LinkOnceAnyLinkage); } return true; } bool ShadowStackGCLoweringImpl::IsNullValue(Value *V) { if (Constant *C = dyn_cast(V)) return C->isNullValue(); return false; } void ShadowStackGCLoweringImpl::CollectRoots(Function &F) { // FIXME: Account for original alignment. Could fragment the root array. // Approach 1: Null initialize empty slots at runtime. Yuck. // Approach 2: Emit a map of the array instead of just a count. assert(Roots.empty() && "Not cleaned up?"); SmallVector, 16> MetaRoots; for (BasicBlock &BB : F) for (Instruction &I : BB) if (IntrinsicInst *CI = dyn_cast(&I)) if (Function *F = CI->getCalledFunction()) if (F->getIntrinsicID() == Intrinsic::gcroot) { std::pair Pair = std::make_pair( CI, cast(CI->getArgOperand(0)->stripPointerCasts())); if (IsNullValue(CI->getArgOperand(1))) Roots.push_back(Pair); else MetaRoots.push_back(Pair); } // Number roots with metadata (usually empty) at the beginning, so that the // FrameMap::Meta array can be elided. Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); } GetElementPtrInst * ShadowStackGCLoweringImpl::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Type *Ty, Value *BasePtr, int Idx, int Idx2, const char *Name) { Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0), ConstantInt::get(Type::getInt32Ty(Context), Idx), ConstantInt::get(Type::getInt32Ty(Context), Idx2)}; Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name); assert(isa(Val) && "Unexpected folded constant"); return dyn_cast(Val); } GetElementPtrInst *ShadowStackGCLoweringImpl::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Type *Ty, Value *BasePtr, int Idx, const char *Name) { Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0), ConstantInt::get(Type::getInt32Ty(Context), Idx)}; Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name); assert(isa(Val) && "Unexpected folded constant"); return dyn_cast(Val); } /// runOnFunction - Insert code to maintain the shadow stack. bool ShadowStackGCLoweringImpl::runOnFunction(Function &F, DomTreeUpdater *DTU) { // Quick exit for functions that do not use the shadow stack GC. if (!F.hasGC() || F.getGC() != "shadow-stack") return false; LLVMContext &Context = F.getContext(); // Find calls to llvm.gcroot. CollectRoots(F); // If there are no roots in this function, then there is no need to add a // stack map entry for it. if (Roots.empty()) return false; // Build the constant map and figure the type of the shadow stack entry. Value *FrameMap = GetFrameMap(F); Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); // Build the shadow stack entry at the very start of the function. BasicBlock::iterator IP = F.getEntryBlock().begin(); IRBuilder<> AtEntry(IP->getParent(), IP); Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame"); AtEntry.SetInsertPointPastAllocas(&F); IP = AtEntry.GetInsertPoint(); // Initialize the map pointer and load the current head of the shadow stack. Instruction *CurrentHead = AtEntry.CreateLoad(AtEntry.getPtrTy(), Head, "gc_currhead"); Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, StackEntry, 0, 1, "gc_frame.map"); AtEntry.CreateStore(FrameMap, EntryMapPtr); // After all the allocas... for (unsigned I = 0, E = Roots.size(); I != E; ++I) { // For each root, find the corresponding slot in the aggregate... Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, StackEntry, 1 + I, "gc_root"); // And use it in lieu of the alloca. AllocaInst *OriginalAlloca = Roots[I].second; SlotPtr->takeName(OriginalAlloca); OriginalAlloca->replaceAllUsesWith(SlotPtr); } // Move past the original stores inserted by GCStrategy::InitRoots. This isn't // really necessary (the collector would never see the intermediate state at // runtime), but it's nicer not to push the half-initialized entry onto the // shadow stack. while (isa(IP)) ++IP; AtEntry.SetInsertPoint(IP->getParent(), IP); // Push the entry onto the shadow stack. Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, StackEntry, 0, 0, "gc_frame.next"); Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, StackEntry, 0, "gc_newhead"); AtEntry.CreateStore(CurrentHead, EntryNextPtr); AtEntry.CreateStore(NewHeadVal, Head); // For each instruction that escapes... EscapeEnumerator EE(F, "gc_cleanup", /*HandleExceptions=*/true, DTU); while (IRBuilder<> *AtExit = EE.Next()) { // Pop the entry from the shadow stack. Don't reuse CurrentHead from // AtEntry, since that would make the value live for the entire function. Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0, "gc_frame.next"); Value *SavedHead = AtExit->CreateLoad(AtExit->getPtrTy(), EntryNextPtr2, "gc_savedhead"); AtExit->CreateStore(SavedHead, Head); } // Delete the original allocas (which are no longer used) and the intrinsic // calls (which are no longer valid). Doing this last avoids invalidating // iterators. for (std::pair &Root : Roots) { Root.first->eraseFromParent(); Root.second->eraseFromParent(); } Roots.clear(); return true; }