//===- LiveIntervalCalc.cpp - Calculate live interval --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implementation of the LiveIntervalCalc class. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveIntervalCalc.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; #define DEBUG_TYPE "regalloc" // Reserve an address that indicates a value that is known to be "undef". static VNInfo UndefVNI(0xbad, SlotIndex()); static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, LiveRange &LR, const MachineOperand &MO) { const MachineInstr &MI = *MO.getParent(); SlotIndex DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); // Create the def in LR. This may find an existing def. LR.createDeadDef(DefIdx, Alloc); } void LiveIntervalCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { const MachineRegisterInfo *MRI = getRegInfo(); SlotIndexes *Indexes = getIndexes(); VNInfo::Allocator *Alloc = getVNAlloc(); assert(MRI && Indexes && "call reset() first"); // Step 1: Create minimal live segments for every definition of Reg. // Visit all def operands. If the same instruction has multiple defs of Reg, // createDeadDef() will deduplicate. const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); Register Reg = LI.reg(); for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { if (!MO.isDef() && !MO.readsReg()) continue; unsigned SubReg = MO.getSubReg(); if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) : MRI->getMaxLaneMaskForVReg(Reg); // If this is the first time we see a subregister def, initialize // subranges by creating a copy of the main range. if (!LI.hasSubRanges() && !LI.empty()) { LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); LI.createSubRangeFrom(*Alloc, ClassMask, LI); } LI.refineSubRanges( *Alloc, SubMask, [&MO, Indexes, Alloc](LiveInterval::SubRange &SR) { if (MO.isDef()) createDeadDef(*Indexes, *Alloc, SR, MO); }, *Indexes, TRI); } // Create the def in the main liverange. We do not have to do this if // subranges are tracked as we recreate the main range later in this case. if (MO.isDef() && !LI.hasSubRanges()) createDeadDef(*Indexes, *Alloc, LI, MO); } // We may have created empty live ranges for partially undefined uses, we // can't keep them because we won't find defs in them later. LI.removeEmptySubRanges(); const MachineFunction *MF = getMachineFunction(); MachineDominatorTree *DomTree = getDomTree(); // Step 2: Extend live segments to all uses, constructing SSA form as // necessary. if (LI.hasSubRanges()) { for (LiveInterval::SubRange &S : LI.subranges()) { LiveIntervalCalc SubLIC; SubLIC.reset(MF, Indexes, DomTree, Alloc); SubLIC.extendToUses(S, Reg, S.LaneMask, &LI); } LI.clear(); constructMainRangeFromSubranges(LI); } else { resetLiveOutMap(); extendToUses(LI, Reg, LaneBitmask::getAll()); } } void LiveIntervalCalc::constructMainRangeFromSubranges(LiveInterval &LI) { // First create dead defs at all defs found in subranges. LiveRange &MainRange = LI; assert(MainRange.segments.empty() && MainRange.valnos.empty() && "Expect empty main liverange"); VNInfo::Allocator *Alloc = getVNAlloc(); for (const LiveInterval::SubRange &SR : LI.subranges()) { for (const VNInfo *VNI : SR.valnos) { if (!VNI->isUnused() && !VNI->isPHIDef()) MainRange.createDeadDef(VNI->def, *Alloc); } } resetLiveOutMap(); extendToUses(MainRange, LI.reg(), LaneBitmask::getAll(), &LI); } void LiveIntervalCalc::createDeadDefs(LiveRange &LR, Register Reg) { const MachineRegisterInfo *MRI = getRegInfo(); SlotIndexes *Indexes = getIndexes(); VNInfo::Allocator *Alloc = getVNAlloc(); assert(MRI && Indexes && "call reset() first"); // Visit all def operands. If the same instruction has multiple defs of Reg, // LR.createDeadDef() will deduplicate. for (MachineOperand &MO : MRI->def_operands(Reg)) createDeadDef(*Indexes, *Alloc, LR, MO); } void LiveIntervalCalc::extendToUses(LiveRange &LR, Register Reg, LaneBitmask Mask, LiveInterval *LI) { const MachineRegisterInfo *MRI = getRegInfo(); SlotIndexes *Indexes = getIndexes(); SmallVector Undefs; if (LI != nullptr) LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); // Visit all operands that read Reg. This may include partial defs. bool IsSubRange = !Mask.all(); const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { // Clear all kill flags. They will be reinserted after register allocation // by LiveIntervals::addKillFlags(). if (MO.isUse()) MO.setIsKill(false); // MO::readsReg returns "true" for subregister defs. This is for keeping // liveness of the entire register (i.e. for the main range of the live // interval). For subranges, definitions of non-overlapping subregisters // do not count as uses. if (!MO.readsReg() || (IsSubRange && MO.isDef())) continue; unsigned SubReg = MO.getSubReg(); if (SubReg != 0) { LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); if (MO.isDef()) SLM = ~SLM; // Ignore uses not reading the current (sub)range. if ((SLM & Mask).none()) continue; } // Determine the actual place of the use. const MachineInstr *MI = MO.getParent(); unsigned OpNo = (&MO - &MI->getOperand(0)); SlotIndex UseIdx; if (MI->isPHI()) { assert(!MO.isDef() && "Cannot handle PHI def of partial register."); // The actual place where a phi operand is used is the end of the pred // MBB. PHI operands are paired: (Reg, PredMBB). UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo + 1).getMBB()); } else { // Check for early-clobber redefs. bool isEarlyClobber = false; unsigned DefIdx; if (MO.isDef()) isEarlyClobber = MO.isEarlyClobber(); else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { // FIXME: This would be a lot easier if tied early-clobber uses also // had an early-clobber flag. isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); } UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); } // MI is reading Reg. We may have visited MI before if it happens to be // reading Reg multiple times. That is OK, extend() is idempotent. extend(LR, UseIdx, Reg, Undefs); } }