//===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a `-dot-cfg` analysis pass, which emits the // `..dot` file for each function in the program, with a graph // of the CFG for that function. The default value for `` is `cfg` but // can be customized as needed. // // The other main feature of this file is that it implements the // Function::viewCFG method, which is useful for debugging passes which operate // on the CFG. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CFGPrinter.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/GraphWriter.h" using namespace llvm; static cl::opt CFGFuncName("cfg-func-name", cl::Hidden, cl::desc("The name of a function (or its substring)" " whose CFG is viewed/printed.")); static cl::opt CFGDotFilenamePrefix( "cfg-dot-filename-prefix", cl::Hidden, cl::desc("The prefix used for the CFG dot file names.")); static cl::opt HideUnreachablePaths("cfg-hide-unreachable-paths", cl::init(false)); static cl::opt HideDeoptimizePaths("cfg-hide-deoptimize-paths", cl::init(false)); static cl::opt HideColdPaths( "cfg-hide-cold-paths", cl::init(0.0), cl::desc("Hide blocks with relative frequency below the given value")); static cl::opt ShowHeatColors("cfg-heat-colors", cl::init(true), cl::Hidden, cl::desc("Show heat colors in CFG")); static cl::opt UseRawEdgeWeight("cfg-raw-weights", cl::init(false), cl::Hidden, cl::desc("Use raw weights for labels. " "Use percentages as default.")); static cl::opt ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden, cl::desc("Show edges labeled with weights")); static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, uint64_t MaxFreq, bool CFGOnly = false) { std::string Filename = (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str(); errs() << "Writing '" << Filename << "'..."; std::error_code EC; raw_fd_ostream File(Filename, EC, sys::fs::OF_Text); DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); CFGInfo.setHeatColors(ShowHeatColors); CFGInfo.setEdgeWeights(ShowEdgeWeight); CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); if (!EC) WriteGraph(File, &CFGInfo, CFGOnly); else errs() << " error opening file for writing!"; errs() << "\n"; } static void viewCFG(Function &F, const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI, uint64_t MaxFreq, bool CFGOnly = false) { DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); CFGInfo.setHeatColors(ShowHeatColors); CFGInfo.setEdgeWeights(ShowEdgeWeight); CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly); } DOTFuncInfo::DOTFuncInfo(const Function *F, const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI, uint64_t MaxFreq) : F(F), BFI(BFI), BPI(BPI), MaxFreq(MaxFreq) { ShowHeat = false; EdgeWeights = !!BPI; // Print EdgeWeights when BPI is available. RawWeights = !!BFI; // Print RawWeights when BFI is available. } DOTFuncInfo::~DOTFuncInfo() = default; ModuleSlotTracker *DOTFuncInfo::getModuleSlotTracker() { if (!MSTStorage) MSTStorage = std::make_unique(F->getParent()); return &*MSTStorage; } PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); return PreservedAnalyses::all(); } PreservedAnalyses CFGOnlyViewerPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); return PreservedAnalyses::all(); } PreservedAnalyses CFGPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); return PreservedAnalyses::all(); } PreservedAnalyses CFGOnlyPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); return PreservedAnalyses::all(); } /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function. This depends on there /// being a 'dot' and 'gv' program in your path. /// void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); } void Function::viewCFG(const char *OutputFileName) const { viewCFG(false, nullptr, nullptr, OutputFileName); } void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI, const char *OutputFileName) const { if (!CFGFuncName.empty() && !getName().contains(CFGFuncName)) return; DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0); ViewGraph(&CFGInfo, OutputFileName ? OutputFileName : "cfg" + getName(), ViewCFGOnly); } /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); } void Function::viewCFGOnly(const char *OutputFileName) const { viewCFG(true, nullptr, nullptr, OutputFileName); } void Function::viewCFGOnly(const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI) const { viewCFG(true, BFI, BPI); } /// Find all blocks on the paths which terminate with a deoptimize or /// unreachable (i.e. all blocks which are post-dominated by a deoptimize /// or unreachable). These paths are hidden if the corresponding cl::opts /// are enabled. void DOTGraphTraits::computeDeoptOrUnreachablePaths( const Function *F) { auto evaluateBB = [&](const BasicBlock *Node) { if (succ_empty(Node)) { const Instruction *TI = Node->getTerminator(); isOnDeoptOrUnreachablePath[Node] = (HideUnreachablePaths && isa(TI)) || (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall()); return; } isOnDeoptOrUnreachablePath[Node] = llvm::all_of(successors(Node), [this](const BasicBlock *BB) { return isOnDeoptOrUnreachablePath[BB]; }); }; /// The post order traversal iteration is done to know the status of /// isOnDeoptOrUnreachablePath for all the successors on the current BB. llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB); } bool DOTGraphTraits::isNodeHidden(const BasicBlock *Node, const DOTFuncInfo *CFGInfo) { if (HideColdPaths.getNumOccurrences() > 0) if (auto *BFI = CFGInfo->getBFI()) { BlockFrequency NodeFreq = BFI->getBlockFreq(Node); BlockFrequency EntryFreq = BFI->getEntryFreq(); // Hide blocks with relative frequency below HideColdPaths threshold. if ((double)NodeFreq.getFrequency() / EntryFreq.getFrequency() < HideColdPaths) return true; } if (HideUnreachablePaths || HideDeoptimizePaths) { if (!isOnDeoptOrUnreachablePath.contains(Node)) computeDeoptOrUnreachablePaths(Node->getParent()); return isOnDeoptOrUnreachablePath[Node]; } return false; } std::string DOTGraphTraits::getCompleteNodeLabel( const BasicBlock *Node, DOTFuncInfo *CFGInfo, function_ref HandleBasicBlock, function_ref HandleComment) { if (HandleBasicBlock) return CompleteNodeLabelString(Node, HandleBasicBlock, HandleComment); // Default basic block printing std::optional MSTStorage; ModuleSlotTracker *MST = nullptr; if (CFGInfo) { MST = CFGInfo->getModuleSlotTracker(); } else { MSTStorage.emplace(Node->getModule()); MST = &*MSTStorage; } return CompleteNodeLabelString( Node, function_ref( [MST](raw_string_ostream &OS, const BasicBlock &Node) -> void { // Prepend label name Node.printAsOperand(OS, false, *MST); OS << ":\n"; for (const Instruction &Inst : Node) { Inst.print(OS, *MST, /* IsForDebug */ false); OS << '\n'; } }), HandleComment); }