//===- InputChunks.cpp ----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "InputChunks.h" #include "Config.h" #include "OutputSegment.h" #include "WriterUtils.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/LLVM.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/xxhash.h" #define DEBUG_TYPE "lld" using namespace llvm; using namespace llvm::wasm; using namespace llvm::support::endian; namespace lld { StringRef relocTypeToString(uint8_t relocType) { switch (relocType) { #define WASM_RELOC(NAME, REL) \ case REL: \ return #NAME; #include "llvm/BinaryFormat/WasmRelocs.def" #undef WASM_RELOC } llvm_unreachable("unknown reloc type"); } bool relocIs64(uint8_t relocType) { switch (relocType) { case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_I64: case R_WASM_TABLE_INDEX_SLEB64: case R_WASM_TABLE_INDEX_I64: case R_WASM_FUNCTION_OFFSET_I64: case R_WASM_TABLE_INDEX_REL_SLEB64: case R_WASM_MEMORY_ADDR_TLS_SLEB64: return true; default: return false; } } std::string toString(const wasm::InputChunk *c) { return (toString(c->file) + ":(" + c->name + ")").str(); } namespace wasm { StringRef InputChunk::getComdatName() const { uint32_t index = getComdat(); if (index == UINT32_MAX) return StringRef(); return file->getWasmObj()->linkingData().Comdats[index]; } uint32_t InputChunk::getSize() const { if (const auto *ms = dyn_cast(this)) return ms->builder.getSize(); if (const auto *f = dyn_cast(this)) { if (config->compressRelocations && f->file) { return f->getCompressedSize(); } } return data().size(); } uint32_t InputChunk::getInputSize() const { if (const auto *f = dyn_cast(this)) return f->function->Size; return getSize(); } // Copy this input chunk to an mmap'ed output file and apply relocations. void InputChunk::writeTo(uint8_t *buf) const { if (const auto *f = dyn_cast(this)) { if (file && config->compressRelocations) return f->writeCompressed(buf); } else if (const auto *ms = dyn_cast(this)) { ms->builder.write(buf + outSecOff); // Apply relocations ms->relocate(buf + outSecOff); return; } // Copy contents memcpy(buf + outSecOff, data().data(), data().size()); // Apply relocations relocate(buf + outSecOff); } void InputChunk::relocate(uint8_t *buf) const { if (relocations.empty()) return; LLVM_DEBUG(dbgs() << "applying relocations: " << toString(this) << " count=" << relocations.size() << "\n"); int32_t inputSectionOffset = getInputSectionOffset(); uint64_t tombstone = getTombstone(); for (const WasmRelocation &rel : relocations) { uint8_t *loc = buf + rel.Offset - inputSectionOffset; LLVM_DEBUG(dbgs() << "apply reloc: type=" << relocTypeToString(rel.Type)); if (rel.Type != R_WASM_TYPE_INDEX_LEB) LLVM_DEBUG(dbgs() << " sym=" << file->getSymbols()[rel.Index]->getName()); LLVM_DEBUG(dbgs() << " addend=" << rel.Addend << " index=" << rel.Index << " offset=" << rel.Offset << "\n"); // TODO(sbc): Check that the value is within the range of the // relocation type below. Most likely we must error out here // if its not with range. uint64_t value = file->calcNewValue(rel, tombstone, this); switch (rel.Type) { case R_WASM_TYPE_INDEX_LEB: case R_WASM_FUNCTION_INDEX_LEB: case R_WASM_GLOBAL_INDEX_LEB: case R_WASM_TAG_INDEX_LEB: case R_WASM_MEMORY_ADDR_LEB: case R_WASM_TABLE_NUMBER_LEB: encodeULEB128(static_cast(value), loc, 5); break; case R_WASM_MEMORY_ADDR_LEB64: encodeULEB128(value, loc, 10); break; case R_WASM_TABLE_INDEX_SLEB: case R_WASM_TABLE_INDEX_REL_SLEB: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_REL_SLEB: case R_WASM_MEMORY_ADDR_TLS_SLEB: encodeSLEB128(static_cast(value), loc, 5); break; case R_WASM_TABLE_INDEX_SLEB64: case R_WASM_TABLE_INDEX_REL_SLEB64: case R_WASM_MEMORY_ADDR_SLEB64: case R_WASM_MEMORY_ADDR_REL_SLEB64: case R_WASM_MEMORY_ADDR_TLS_SLEB64: encodeSLEB128(static_cast(value), loc, 10); break; case R_WASM_TABLE_INDEX_I32: case R_WASM_MEMORY_ADDR_I32: case R_WASM_FUNCTION_OFFSET_I32: case R_WASM_FUNCTION_INDEX_I32: case R_WASM_SECTION_OFFSET_I32: case R_WASM_GLOBAL_INDEX_I32: case R_WASM_MEMORY_ADDR_LOCREL_I32: write32le(loc, value); break; case R_WASM_TABLE_INDEX_I64: case R_WASM_MEMORY_ADDR_I64: case R_WASM_FUNCTION_OFFSET_I64: write64le(loc, value); break; default: llvm_unreachable("unknown relocation type"); } } } // Copy relocation entries to a given output stream. // This function is used only when a user passes "-r". For a regular link, // we consume relocations instead of copying them to an output file. void InputChunk::writeRelocations(raw_ostream &os) const { if (relocations.empty()) return; int32_t off = outSecOff - getInputSectionOffset(); LLVM_DEBUG(dbgs() << "writeRelocations: " << file->getName() << " offset=" << Twine(off) << "\n"); for (const WasmRelocation &rel : relocations) { writeUleb128(os, rel.Type, "reloc type"); writeUleb128(os, rel.Offset + off, "reloc offset"); writeUleb128(os, file->calcNewIndex(rel), "reloc index"); if (relocTypeHasAddend(rel.Type)) writeSleb128(os, file->calcNewAddend(rel), "reloc addend"); } } uint64_t InputChunk::getTombstone() const { if (const auto *s = dyn_cast(this)) { return s->tombstoneValue; } return 0; } void InputFunction::setFunctionIndex(uint32_t index) { LLVM_DEBUG(dbgs() << "InputFunction::setFunctionIndex: " << name << " -> " << index << "\n"); assert(!hasFunctionIndex()); functionIndex = index; } void InputFunction::setTableIndex(uint32_t index) { LLVM_DEBUG(dbgs() << "InputFunction::setTableIndex: " << name << " -> " << index << "\n"); assert(!hasTableIndex()); tableIndex = index; } // Write a relocation value without padding and return the number of bytes // witten. static unsigned writeCompressedReloc(uint8_t *buf, const WasmRelocation &rel, uint64_t value) { switch (rel.Type) { case R_WASM_TYPE_INDEX_LEB: case R_WASM_FUNCTION_INDEX_LEB: case R_WASM_GLOBAL_INDEX_LEB: case R_WASM_TAG_INDEX_LEB: case R_WASM_MEMORY_ADDR_LEB: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_TABLE_NUMBER_LEB: return encodeULEB128(value, buf); case R_WASM_TABLE_INDEX_SLEB: case R_WASM_TABLE_INDEX_SLEB64: case R_WASM_MEMORY_ADDR_SLEB: case R_WASM_MEMORY_ADDR_SLEB64: return encodeSLEB128(static_cast(value), buf); default: llvm_unreachable("unexpected relocation type"); } } static unsigned getRelocWidthPadded(const WasmRelocation &rel) { switch (rel.Type) { case R_WASM_TYPE_INDEX_LEB: case R_WASM_FUNCTION_INDEX_LEB: case R_WASM_GLOBAL_INDEX_LEB: case R_WASM_TAG_INDEX_LEB: case R_WASM_MEMORY_ADDR_LEB: case R_WASM_TABLE_NUMBER_LEB: case R_WASM_TABLE_INDEX_SLEB: case R_WASM_MEMORY_ADDR_SLEB: return 5; case R_WASM_TABLE_INDEX_SLEB64: case R_WASM_MEMORY_ADDR_LEB64: case R_WASM_MEMORY_ADDR_SLEB64: return 10; default: llvm_unreachable("unexpected relocation type"); } } static unsigned getRelocWidth(const WasmRelocation &rel, uint64_t value) { uint8_t buf[10]; return writeCompressedReloc(buf, rel, value); } // Relocations of type LEB and SLEB in the code section are padded to 5 bytes // so that a fast linker can blindly overwrite them without needing to worry // about the number of bytes needed to encode the values. // However, for optimal output the code section can be compressed to remove // the padding then outputting non-relocatable files. // In this case we need to perform a size calculation based on the value at each // relocation. At best we end up saving 4 bytes for each relocation entry. // // This function only computes the final output size. It must be called // before getSize() is used to calculate of layout of the code section. void InputFunction::calculateSize() { if (!file || !config->compressRelocations) return; LLVM_DEBUG(dbgs() << "calculateSize: " << name << "\n"); const uint8_t *secStart = file->codeSection->Content.data(); const uint8_t *funcStart = secStart + getInputSectionOffset(); uint32_t functionSizeLength; decodeULEB128(funcStart, &functionSizeLength); uint32_t start = getInputSectionOffset(); uint32_t end = start + function->Size; uint64_t tombstone = getTombstone(); uint32_t lastRelocEnd = start + functionSizeLength; for (const WasmRelocation &rel : relocations) { LLVM_DEBUG(dbgs() << " region: " << (rel.Offset - lastRelocEnd) << "\n"); compressedFuncSize += rel.Offset - lastRelocEnd; compressedFuncSize += getRelocWidth(rel, file->calcNewValue(rel, tombstone, this)); lastRelocEnd = rel.Offset + getRelocWidthPadded(rel); } LLVM_DEBUG(dbgs() << " final region: " << (end - lastRelocEnd) << "\n"); compressedFuncSize += end - lastRelocEnd; // Now we know how long the resulting function is we can add the encoding // of its length uint8_t buf[5]; compressedSize = compressedFuncSize + encodeULEB128(compressedFuncSize, buf); LLVM_DEBUG(dbgs() << " calculateSize orig: " << function->Size << "\n"); LLVM_DEBUG(dbgs() << " calculateSize new: " << compressedSize << "\n"); } // Override the default writeTo method so that we can (optionally) write the // compressed version of the function. void InputFunction::writeCompressed(uint8_t *buf) const { buf += outSecOff; uint8_t *orig = buf; (void)orig; const uint8_t *secStart = file->codeSection->Content.data(); const uint8_t *funcStart = secStart + getInputSectionOffset(); const uint8_t *end = funcStart + function->Size; uint64_t tombstone = getTombstone(); uint32_t count; decodeULEB128(funcStart, &count); funcStart += count; LLVM_DEBUG(dbgs() << "write func: " << name << "\n"); buf += encodeULEB128(compressedFuncSize, buf); const uint8_t *lastRelocEnd = funcStart; for (const WasmRelocation &rel : relocations) { unsigned chunkSize = (secStart + rel.Offset) - lastRelocEnd; LLVM_DEBUG(dbgs() << " write chunk: " << chunkSize << "\n"); memcpy(buf, lastRelocEnd, chunkSize); buf += chunkSize; buf += writeCompressedReloc(buf, rel, file->calcNewValue(rel, tombstone, this)); lastRelocEnd = secStart + rel.Offset + getRelocWidthPadded(rel); } unsigned chunkSize = end - lastRelocEnd; LLVM_DEBUG(dbgs() << " write final chunk: " << chunkSize << "\n"); memcpy(buf, lastRelocEnd, chunkSize); LLVM_DEBUG(dbgs() << " total: " << (buf + chunkSize - orig) << "\n"); } uint64_t InputChunk::getChunkOffset(uint64_t offset) const { if (const auto *ms = dyn_cast(this)) { LLVM_DEBUG(dbgs() << "getChunkOffset(merged): " << name << "\n"); LLVM_DEBUG(dbgs() << "offset: " << offset << "\n"); LLVM_DEBUG(dbgs() << "parentOffset: " << ms->getParentOffset(offset) << "\n"); assert(ms->parent); return ms->parent->getChunkOffset(ms->getParentOffset(offset)); } return outputSegmentOffset + offset; } uint64_t InputChunk::getOffset(uint64_t offset) const { return outSecOff + getChunkOffset(offset); } uint64_t InputChunk::getVA(uint64_t offset) const { return (outputSeg ? outputSeg->startVA : 0) + getChunkOffset(offset); } // Generate code to apply relocations to the data section at runtime. // This is only called when generating shared libraries (PIC) where address are // not known at static link time. void InputChunk::generateRelocationCode(raw_ostream &os) const { LLVM_DEBUG(dbgs() << "generating runtime relocations: " << name << " count=" << relocations.size() << "\n"); bool is64 = config->is64.value_or(false); unsigned opcode_ptr_const = is64 ? WASM_OPCODE_I64_CONST : WASM_OPCODE_I32_CONST; unsigned opcode_ptr_add = is64 ? WASM_OPCODE_I64_ADD : WASM_OPCODE_I32_ADD; uint64_t tombstone = getTombstone(); // TODO(sbc): Encode the relocations in the data section and write a loop // here to apply them. for (const WasmRelocation &rel : relocations) { uint64_t offset = getVA(rel.Offset) - getInputSectionOffset(); Symbol *sym = file->getSymbol(rel); if (!ctx.isPic && sym->isDefined()) continue; LLVM_DEBUG(dbgs() << "gen reloc: type=" << relocTypeToString(rel.Type) << " addend=" << rel.Addend << " index=" << rel.Index << " output offset=" << offset << "\n"); // Calculate the address at which to apply the relocation writeU8(os, opcode_ptr_const, "CONST"); writeSleb128(os, offset, "offset"); // In PIC mode we need to add the __memory_base if (ctx.isPic) { writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET"); if (isTLS()) writeUleb128(os, WasmSym::tlsBase->getGlobalIndex(), "tls_base"); else writeUleb128(os, WasmSym::memoryBase->getGlobalIndex(), "memory_base"); writeU8(os, opcode_ptr_add, "ADD"); } // Now figure out what we want to store at this location bool is64 = relocIs64(rel.Type); unsigned opcode_reloc_const = is64 ? WASM_OPCODE_I64_CONST : WASM_OPCODE_I32_CONST; unsigned opcode_reloc_add = is64 ? WASM_OPCODE_I64_ADD : WASM_OPCODE_I32_ADD; unsigned opcode_reloc_store = is64 ? WASM_OPCODE_I64_STORE : WASM_OPCODE_I32_STORE; if (sym->hasGOTIndex()) { writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET"); writeUleb128(os, sym->getGOTIndex(), "global index"); if (rel.Addend) { writeU8(os, opcode_reloc_const, "CONST"); writeSleb128(os, rel.Addend, "addend"); writeU8(os, opcode_reloc_add, "ADD"); } } else { assert(ctx.isPic); const GlobalSymbol* baseSymbol = WasmSym::memoryBase; if (rel.Type == R_WASM_TABLE_INDEX_I32 || rel.Type == R_WASM_TABLE_INDEX_I64) baseSymbol = WasmSym::tableBase; else if (sym->isTLS()) baseSymbol = WasmSym::tlsBase; writeU8(os, WASM_OPCODE_GLOBAL_GET, "GLOBAL_GET"); writeUleb128(os, baseSymbol->getGlobalIndex(), "base"); writeU8(os, opcode_reloc_const, "CONST"); writeSleb128(os, file->calcNewValue(rel, tombstone, this), "offset"); writeU8(os, opcode_reloc_add, "ADD"); } // Store that value at the virtual address writeU8(os, opcode_reloc_store, "I32_STORE"); writeUleb128(os, 2, "align"); writeUleb128(os, 0, "offset"); } } // Split WASM_SEG_FLAG_STRINGS section. Such a section is a sequence of // null-terminated strings. void MergeInputChunk::splitStrings(ArrayRef data) { LLVM_DEBUG(llvm::dbgs() << "splitStrings\n"); size_t off = 0; StringRef s = toStringRef(data); while (!s.empty()) { size_t end = s.find(0); if (end == StringRef::npos) fatal(toString(this) + ": string is not null terminated"); size_t size = end + 1; pieces.emplace_back(off, xxh3_64bits(s.substr(0, size)), true); s = s.substr(size); off += size; } } // This function is called after we obtain a complete list of input sections // that need to be linked. This is responsible to split section contents // into small chunks for further processing. // // Note that this function is called from parallelForEach. This must be // thread-safe (i.e. no memory allocation from the pools). void MergeInputChunk::splitIntoPieces() { assert(pieces.empty()); // As of now we only support WASM_SEG_FLAG_STRINGS but in the future we // could add other types of splitting (see ELF's splitIntoPieces). assert(flags & WASM_SEG_FLAG_STRINGS); splitStrings(data()); } SectionPiece *MergeInputChunk::getSectionPiece(uint64_t offset) { if (this->data().size() <= offset) fatal(toString(this) + ": offset is outside the section"); // If Offset is not at beginning of a section piece, it is not in the map. // In that case we need to do a binary search of the original section piece // vector. auto it = partition_point( pieces, [=](SectionPiece p) { return p.inputOff <= offset; }); return &it[-1]; } // Returns the offset in an output section for a given input offset. // Because contents of a mergeable section is not contiguous in output, // it is not just an addition to a base output offset. uint64_t MergeInputChunk::getParentOffset(uint64_t offset) const { // If Offset is not at beginning of a section piece, it is not in the map. // In that case we need to search from the original section piece vector. const SectionPiece *piece = getSectionPiece(offset); uint64_t addend = offset - piece->inputOff; return piece->outputOff + addend; } void SyntheticMergedChunk::finalizeContents() { // Add all string pieces to the string table builder to create section // contents. for (MergeInputChunk *sec : chunks) for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) if (sec->pieces[i].live) builder.add(sec->getData(i)); // Fix the string table content. After this, the contents will never change. builder.finalize(); // finalize() fixed tail-optimized strings, so we can now get // offsets of strings. Get an offset for each string and save it // to a corresponding SectionPiece for easy access. for (MergeInputChunk *sec : chunks) for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) if (sec->pieces[i].live) sec->pieces[i].outputOff = builder.getOffset(sec->getData(i)); } uint64_t InputSection::getTombstoneForSection(StringRef name) { // When a function is not live we need to update relocations referring to it. // If they occur in DWARF debug symbols, we want to change the pc of the // function to -1 to avoid overlapping with a valid range. However for the // debug_ranges and debug_loc sections that would conflict with the existing // meaning of -1 so we use -2. if (name == ".debug_ranges" || name == ".debug_loc") return UINT64_C(-2); if (name.starts_with(".debug_")) return UINT64_C(-1); // If the function occurs in an function attribute section change it to -1 since // 0 is a valid function index. if (name.starts_with("llvm.func_attr.")) return UINT64_C(-1); // Returning 0 means there is no tombstone value for this section, and relocation // will just use the addend. return 0; } } // namespace wasm } // namespace lld