//===- Target.cpp ---------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Machine-specific things, such as applying relocations, creation of // GOT or PLT entries, etc., are handled in this file. // // Refer the ELF spec for the single letter variables, S, A or P, used // in this file. // // Some functions defined in this file has "relaxTls" as part of their names. // They do peephole optimization for TLS variables by rewriting instructions. // They are not part of the ABI but optional optimization, so you can skip // them if you are not interested in how TLS variables are optimized. // See the following paper for the details. // // Ulrich Drepper, ELF Handling For Thread-Local Storage // http://www.akkadia.org/drepper/tls.pdf // //===----------------------------------------------------------------------===// #include "Target.h" #include "InputFiles.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "lld/Common/ErrorHandler.h" #include "llvm/Object/ELF.h" using namespace llvm; using namespace llvm::object; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; std::string elf::toStr(Ctx &ctx, RelType type) { StringRef s = getELFRelocationTypeName(ctx.arg.emachine, type); if (s == "Unknown") return ("Unknown (" + Twine(type) + ")").str(); return std::string(s); } const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, RelType type) { s << toStr(s.ctx, type); return s; } void elf::setTarget(Ctx &ctx) { switch (ctx.arg.emachine) { case EM_386: case EM_IAMCU: return setX86TargetInfo(ctx); case EM_AARCH64: return setAArch64TargetInfo(ctx); case EM_AMDGPU: return setAMDGPUTargetInfo(ctx); case EM_ARM: return setARMTargetInfo(ctx); case EM_AVR: return setAVRTargetInfo(ctx); case EM_HEXAGON: return setHexagonTargetInfo(ctx); case EM_LOONGARCH: return setLoongArchTargetInfo(ctx); case EM_MIPS: return setMipsTargetInfo(ctx); case EM_MSP430: return setMSP430TargetInfo(ctx); case EM_PPC: return setPPCTargetInfo(ctx); case EM_PPC64: return setPPC64TargetInfo(ctx); case EM_RISCV: return setRISCVTargetInfo(ctx); case EM_SPARCV9: return setSPARCV9TargetInfo(ctx); case EM_S390: return setSystemZTargetInfo(ctx); case EM_X86_64: return setX86_64TargetInfo(ctx); default: Fatal(ctx) << "unsupported e_machine value: " << ctx.arg.emachine; } } ErrorPlace elf::getErrorPlace(Ctx &ctx, const uint8_t *loc) { assert(loc != nullptr); for (InputSectionBase *d : ctx.inputSections) { auto *isec = dyn_cast(d); if (!isec || !isec->getParent() || (isec->type & SHT_NOBITS)) continue; const uint8_t *isecLoc = ctx.bufferStart ? (ctx.bufferStart + isec->getParent()->offset + isec->outSecOff) : isec->contentMaybeDecompress().data(); if (isecLoc == nullptr) { assert(isa(isec) && "No data but not synthetic?"); continue; } if (isecLoc <= loc && loc < isecLoc + isec->getSize()) { std::string objLoc = isec->getLocation(loc - isecLoc); // Return object file location and source file location. Undefined dummy(ctx.internalFile, "", STB_LOCAL, 0, 0); ELFSyncStream msg(ctx, DiagLevel::None); if (isec->file) msg << isec->getSrcMsg(dummy, loc - isecLoc); return {isec, objLoc + ": ", std::string(msg.str())}; } } return {}; } TargetInfo::~TargetInfo() {} int64_t TargetInfo::getImplicitAddend(const uint8_t *buf, RelType type) const { InternalErr(ctx, buf) << "cannot read addend for relocation " << type; return 0; } bool TargetInfo::usesOnlyLowPageBits(RelType type) const { return false; } bool TargetInfo::needsThunk(RelExpr expr, RelType type, const InputFile *file, uint64_t branchAddr, const Symbol &s, int64_t a) const { return false; } bool TargetInfo::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, uint8_t stOther) const { Err(ctx) << "target doesn't support split stacks"; return false; } bool TargetInfo::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { return true; } RelExpr TargetInfo::adjustTlsExpr(RelType type, RelExpr expr) const { return expr; } RelExpr TargetInfo::adjustGotPcExpr(RelType type, int64_t addend, const uint8_t *data) const { return R_GOT_PC; } void TargetInfo::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { const unsigned bits = ctx.arg.is64 ? 64 : 32; uint64_t secAddr = sec.getOutputSection()->addr; if (auto *s = dyn_cast(&sec)) secAddr += s->outSecOff; else if (auto *ehIn = dyn_cast(&sec)) secAddr += ehIn->getParent()->outSecOff; for (const Relocation &rel : sec.relocs()) { uint8_t *loc = buf + rel.offset; const uint64_t val = SignExtend64( sec.getRelocTargetVA(ctx, rel, secAddr + rel.offset), bits); if (rel.expr != R_RELAX_HINT) relocate(loc, rel, val); } } uint64_t TargetInfo::getImageBase() const { // Use --image-base if set. Fall back to the target default if not. if (ctx.arg.imageBase) return *ctx.arg.imageBase; return ctx.arg.isPic ? 0 : defaultImageBase; }