//===- OutputSections.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "InputFiles.h" #include "LinkerScript.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/Arrays.h" #include "lld/Common/Memory.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB #include "llvm/Support/Compression.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/Parallel.h" #include "llvm/Support/Path.h" #include "llvm/Support/TimeProfiler.h" #undef in #if LLVM_ENABLE_ZLIB // Avoid introducing max as a macro from Windows headers. #define NOMINMAX #include #endif #if LLVM_ENABLE_ZSTD #include #endif using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; uint32_t OutputSection::getPhdrFlags() const { uint32_t ret = 0; if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE)) ret |= PF_R; if (flags & SHF_WRITE) ret |= PF_W; if (flags & SHF_EXECINSTR) ret |= PF_X; return ret; } template void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) { shdr->sh_entsize = entsize; shdr->sh_addralign = addralign; shdr->sh_type = type; shdr->sh_offset = offset; shdr->sh_flags = flags; shdr->sh_info = info; shdr->sh_link = link; shdr->sh_addr = addr; shdr->sh_size = size; shdr->sh_name = shName; } OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags) : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type, /*Info*/ 0, /*Link*/ 0) {} // We allow sections of types listed below to merged into a // single progbits section. This is typically done by linker // scripts. Merging nobits and progbits will force disk space // to be allocated for nobits sections. Other ones don't require // any special treatment on top of progbits, so there doesn't // seem to be a harm in merging them. // // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). static bool canMergeToProgbits(unsigned type) { return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || type == SHT_NOTE || (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64); } // Record that isec will be placed in the OutputSection. isec does not become // permanent until finalizeInputSections() is called. The function should not be // used after finalizeInputSections() is called. If you need to add an // InputSection post finalizeInputSections(), then you must do the following: // // 1. Find or create an InputSectionDescription to hold InputSection. // 2. Add the InputSection to the InputSectionDescription::sections. // 3. Call commitSection(isec). void OutputSection::recordSection(InputSectionBase *isec) { partition = isec->partition; isec->parent = this; if (commands.empty() || !isa(commands.back())) commands.push_back(make("")); auto *isd = cast(commands.back()); isd->sectionBases.push_back(isec); } // Update fields (type, flags, alignment, etc) according to the InputSection // isec. Also check whether the InputSection flags and type are consistent with // other InputSections. void OutputSection::commitSection(InputSection *isec) { if (LLVM_UNLIKELY(type != isec->type)) { if (!hasInputSections && !typeIsSet) { type = isec->type; } else if (isStaticRelSecType(type) && isStaticRelSecType(isec->type) && (type == SHT_CREL) != (isec->type == SHT_CREL)) { // Combine mixed SHT_REL[A] and SHT_CREL to SHT_CREL. type = SHT_CREL; if (type == SHT_REL) { if (name.consume_front(".rel")) name = saver().save(".crel" + name); } else if (name.consume_front(".rela")) { name = saver().save(".crel" + name); } } else { if (typeIsSet || !canMergeToProgbits(type) || !canMergeToProgbits(isec->type)) { // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is // that the contents at that address is provided by some other means. // Some projects (e.g. // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the // behavior. Other types get an error. if (type != SHT_NOBITS) { errorOrWarn("section type mismatch for " + isec->name + "\n>>> " + toString(isec) + ": " + getELFSectionTypeName(config->emachine, isec->type) + "\n>>> output section " + name + ": " + getELFSectionTypeName(config->emachine, type)); } } if (!typeIsSet) type = SHT_PROGBITS; } } if (!hasInputSections) { // If IS is the first section to be added to this section, // initialize type, entsize and flags from isec. hasInputSections = true; entsize = isec->entsize; flags = isec->flags; } else { // Otherwise, check if new type or flags are compatible with existing ones. if ((flags ^ isec->flags) & SHF_TLS) error("incompatible section flags for " + name + "\n>>> " + toString(isec) + ": 0x" + utohexstr(isec->flags) + "\n>>> output section " + name + ": 0x" + utohexstr(flags)); } isec->parent = this; uint64_t andMask = config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0; uint64_t orMask = ~andMask; uint64_t andFlags = (flags & isec->flags) & andMask; uint64_t orFlags = (flags | isec->flags) & orMask; flags = andFlags | orFlags; if (nonAlloc) flags &= ~(uint64_t)SHF_ALLOC; addralign = std::max(addralign, isec->addralign); // If this section contains a table of fixed-size entries, sh_entsize // holds the element size. If it contains elements of different size we // set sh_entsize to 0. if (entsize != isec->entsize) entsize = 0; } static MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type, uint64_t flags, uint32_t addralign) { if ((flags & SHF_STRINGS) && config->optimize >= 2) return make(name, type, flags, addralign); return make(name, type, flags, addralign); } // This function scans over the InputSectionBase list sectionBases to create // InputSectionDescription::sections. // // It removes MergeInputSections from the input section array and adds // new synthetic sections at the location of the first input section // that it replaces. It then finalizes each synthetic section in order // to compute an output offset for each piece of each input section. void OutputSection::finalizeInputSections(LinkerScript *script) { std::vector mergeSections; for (SectionCommand *cmd : commands) { auto *isd = dyn_cast(cmd); if (!isd) continue; isd->sections.reserve(isd->sectionBases.size()); for (InputSectionBase *s : isd->sectionBases) { MergeInputSection *ms = dyn_cast(s); if (!ms) { isd->sections.push_back(cast(s)); continue; } // We do not want to handle sections that are not alive, so just remove // them instead of trying to merge. if (!ms->isLive()) continue; auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) { // While we could create a single synthetic section for two different // values of Entsize, it is better to take Entsize into consideration. // // With a single synthetic section no two pieces with different Entsize // could be equal, so we may as well have two sections. // // Using Entsize in here also allows us to propagate it to the synthetic // section. // // SHF_STRINGS section with different alignments should not be merged. return sec->flags == ms->flags && sec->entsize == ms->entsize && (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS)); }); if (i == mergeSections.end()) { MergeSyntheticSection *syn = createMergeSynthetic(s->name, ms->type, ms->flags, ms->addralign); mergeSections.push_back(syn); i = std::prev(mergeSections.end()); syn->entsize = ms->entsize; isd->sections.push_back(syn); // The merge synthetic section inherits the potential spill locations of // its first contained section. auto it = script->potentialSpillLists.find(ms); if (it != script->potentialSpillLists.end()) script->potentialSpillLists.try_emplace(syn, it->second); } (*i)->addSection(ms); } // sectionBases should not be used from this point onwards. Clear it to // catch misuses. isd->sectionBases.clear(); // Some input sections may be removed from the list after ICF. for (InputSection *s : isd->sections) commitSection(s); } for (auto *ms : mergeSections) ms->finalizeContents(); } static void sortByOrder(MutableArrayRef in, llvm::function_ref order) { std::vector> v; for (InputSection *s : in) v.emplace_back(order(s), s); llvm::stable_sort(v, less_first()); for (size_t i = 0; i < v.size(); ++i) in[i] = v[i].second; } uint64_t elf::getHeaderSize() { if (config->oFormatBinary) return 0; return ctx.out.elfHeader->size + ctx.out.programHeaders->size; } void OutputSection::sort(llvm::function_ref order) { assert(isLive()); for (SectionCommand *b : commands) if (auto *isd = dyn_cast(b)) sortByOrder(isd->sections, order); } static void nopInstrFill(uint8_t *buf, size_t size) { if (size == 0) return; unsigned i = 0; if (size == 0) return; std::vector> nopFiller = *ctx.target->nopInstrs; unsigned num = size / nopFiller.back().size(); for (unsigned c = 0; c < num; ++c) { memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size()); i += nopFiller.back().size(); } unsigned remaining = size - i; if (!remaining) return; assert(nopFiller[remaining - 1].size() == remaining); memcpy(buf + i, nopFiller[remaining - 1].data(), remaining); } // Fill [Buf, Buf + Size) with Filler. // This is used for linker script "=fillexp" command. static void fill(uint8_t *buf, size_t size, const std::array &filler) { size_t i = 0; for (; i + 4 < size; i += 4) memcpy(buf + i, filler.data(), 4); memcpy(buf + i, filler.data(), size - i); } #if LLVM_ENABLE_ZLIB static SmallVector deflateShard(ArrayRef in, int level, int flush) { // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate // data with no zlib header or trailer. z_stream s = {}; auto res = deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); if (res != 0) { errorOrWarn("--compress-sections: deflateInit2 returned " + Twine(res)); return {}; } s.next_in = const_cast(in.data()); s.avail_in = in.size(); // Allocate a buffer of half of the input size, and grow it by 1.5x if // insufficient. SmallVector out; size_t pos = 0; out.resize_for_overwrite(std::max(in.size() / 2, 64)); do { if (pos == out.size()) out.resize_for_overwrite(out.size() * 3 / 2); s.next_out = out.data() + pos; s.avail_out = out.size() - pos; (void)deflate(&s, flush); pos = s.next_out - out.data(); } while (s.avail_out == 0); assert(s.avail_in == 0); out.truncate(pos); deflateEnd(&s); return out; } #endif // Compress certain non-SHF_ALLOC sections: // // * (if --compress-debug-sections is specified) non-empty .debug_* sections // * (if --compress-sections is specified) matched sections template void OutputSection::maybeCompress() { using Elf_Chdr = typename ELFT::Chdr; (void)sizeof(Elf_Chdr); DebugCompressionType ctype = DebugCompressionType::None; size_t compressedSize = sizeof(Elf_Chdr); unsigned level = 0; // default compression level if (!(flags & SHF_ALLOC) && config->compressDebugSections && name.starts_with(".debug_")) ctype = *config->compressDebugSections; for (auto &[glob, t, l] : config->compressSections) if (glob.match(name)) std::tie(ctype, level) = {t, l}; if (ctype == DebugCompressionType::None) return; if (flags & SHF_ALLOC) { errorOrWarn("--compress-sections: section '" + name + "' with the SHF_ALLOC flag cannot be compressed"); return; } llvm::TimeTraceScope timeScope("Compress sections"); auto buf = std::make_unique(size); // Write uncompressed data to a temporary zero-initialized buffer. { parallel::TaskGroup tg; writeTo(buf.get(), tg); } // The generic ABI specifies "The sh_size and sh_addralign fields of the // section header for a compressed section reflect the requirements of the // compressed section." However, 1-byte alignment has been wildly accepted // and utilized for a long time. Removing alignment padding is particularly // useful when there are many compressed output sections. addralign = 1; // Split input into 1-MiB shards. [[maybe_unused]] constexpr size_t shardSize = 1 << 20; auto shardsIn = split(ArrayRef(buf.get(), size), shardSize); const size_t numShards = shardsIn.size(); auto shardsOut = std::make_unique[]>(numShards); #if LLVM_ENABLE_ZSTD // Use ZSTD's streaming compression API. See // http://facebook.github.io/zstd/zstd_manual.html "Streaming compression - // HowTo". if (ctype == DebugCompressionType::Zstd) { parallelFor(0, numShards, [&](size_t i) { SmallVector out; ZSTD_CCtx *cctx = ZSTD_createCCtx(); ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, level); ZSTD_inBuffer zib = {shardsIn[i].data(), shardsIn[i].size(), 0}; ZSTD_outBuffer zob = {nullptr, 0, 0}; size_t size; do { // Allocate a buffer of half of the input size, and grow it by 1.5x if // insufficient. if (zob.pos == zob.size) { out.resize_for_overwrite( zob.size ? zob.size * 3 / 2 : std::max(zib.size / 4, 64)); zob = {out.data(), out.size(), zob.pos}; } size = ZSTD_compressStream2(cctx, &zob, &zib, ZSTD_e_end); assert(!ZSTD_isError(size)); } while (size != 0); out.truncate(zob.pos); ZSTD_freeCCtx(cctx); shardsOut[i] = std::move(out); }); compressed.type = ELFCOMPRESS_ZSTD; for (size_t i = 0; i != numShards; ++i) compressedSize += shardsOut[i].size(); } #endif #if LLVM_ENABLE_ZLIB // We chose 1 (Z_BEST_SPEED) as the default compression level because it is // fast and provides decent compression ratios. if (ctype == DebugCompressionType::Zlib) { if (!level) level = Z_BEST_SPEED; // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all // shards but the last to flush the output to a byte boundary to be // concatenated with the next shard. auto shardsAdler = std::make_unique(numShards); parallelFor(0, numShards, [&](size_t i) { shardsOut[i] = deflateShard(shardsIn[i], level, i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size()); }); // Update section size and combine Alder-32 checksums. uint32_t checksum = 1; // Initial Adler-32 value compressedSize += 2; // Elf_Chdir and zlib header for (size_t i = 0; i != numShards; ++i) { compressedSize += shardsOut[i].size(); checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); } compressedSize += 4; // checksum compressed.type = ELFCOMPRESS_ZLIB; compressed.checksum = checksum; } #endif if (compressedSize >= size) return; compressed.uncompressedSize = size; compressed.shards = std::move(shardsOut); compressed.numShards = numShards; size = compressedSize; flags |= SHF_COMPRESSED; } static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) { if (size == 1) *buf = data; else if (size == 2) write16(buf, data); else if (size == 4) write32(buf, data); else if (size == 8) write64(buf, data); else llvm_unreachable("unsupported Size argument"); } template void OutputSection::writeTo(uint8_t *buf, parallel::TaskGroup &tg) { llvm::TimeTraceScope timeScope("Write sections", name); if (type == SHT_NOBITS) return; if (type == SHT_CREL && !(flags & SHF_ALLOC)) { buf += encodeULEB128(crelHeader, buf); memcpy(buf, crelBody.data(), crelBody.size()); return; } // If the section is compressed due to // --compress-debug-section/--compress-sections, the content is already known. if (compressed.shards) { auto *chdr = reinterpret_cast(buf); chdr->ch_type = compressed.type; chdr->ch_size = compressed.uncompressedSize; chdr->ch_addralign = addralign; buf += sizeof(*chdr); auto offsets = std::make_unique(compressed.numShards); if (compressed.type == ELFCOMPRESS_ZLIB) { buf[0] = 0x78; // CMF buf[1] = 0x01; // FLG: best speed offsets[0] = 2; // zlib header write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum); } // Compute shard offsets. for (size_t i = 1; i != compressed.numShards; ++i) offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); parallelFor(0, compressed.numShards, [&](size_t i) { memcpy(buf + offsets[i], compressed.shards[i].data(), compressed.shards[i].size()); }); return; } // Write leading padding. ArrayRef sections = getInputSections(*this, storage); std::array filler = getFiller(); bool nonZeroFiller = read32(filler.data()) != 0; if (nonZeroFiller) fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler); if (type == SHT_CREL && !(flags & SHF_ALLOC)) { buf += encodeULEB128(crelHeader, buf); memcpy(buf, crelBody.data(), crelBody.size()); return; } auto fn = [=](size_t begin, size_t end) { size_t numSections = sections.size(); for (size_t i = begin; i != end; ++i) { InputSection *isec = sections[i]; if (auto *s = dyn_cast(isec)) s->writeTo(buf + isec->outSecOff); else isec->writeTo(buf + isec->outSecOff); // When in Arm BE8 mode, the linker has to convert the big-endian // instructions to little-endian, leaving the data big-endian. if (config->emachine == EM_ARM && !config->isLE && config->armBe8 && (flags & SHF_EXECINSTR)) convertArmInstructionstoBE8(isec, buf + isec->outSecOff); // Fill gaps between sections. if (nonZeroFiller) { uint8_t *start = buf + isec->outSecOff + isec->getSize(); uint8_t *end; if (i + 1 == numSections) end = buf + size; else end = buf + sections[i + 1]->outSecOff; if (isec->nopFiller) { assert(ctx.target->nopInstrs); nopInstrFill(start, end - start); } else fill(start, end - start, filler); } } }; // If there is any BYTE()-family command (rare), write the section content // first then process BYTE to overwrite the filler content. The write is // serial due to the limitation of llvm/Support/Parallel.h. bool written = false; size_t numSections = sections.size(); for (SectionCommand *cmd : commands) if (auto *data = dyn_cast(cmd)) { if (!std::exchange(written, true)) fn(0, numSections); writeInt(buf + data->offset, data->expression().getValue(), data->size); } if (written || !numSections) return; // There is no data command. Write content asynchronously to overlap the write // time with other output sections. Note, if a linker script specifies // overlapping output sections (needs --noinhibit-exec or --no-check-sections // to supress the error), the output may be non-deterministic. const size_t taskSizeLimit = 4 << 20; for (size_t begin = 0, i = 0, taskSize = 0;;) { taskSize += sections[i]->getSize(); bool done = ++i == numSections; if (done || taskSize >= taskSizeLimit) { tg.spawn([=] { fn(begin, i); }); if (done) break; begin = i; taskSize = 0; } } } static void finalizeShtGroup(OutputSection *os, InputSection *section) { // sh_link field for SHT_GROUP sections should contain the section index of // the symbol table. os->link = ctx.in.symTab->getParent()->sectionIndex; if (!section) return; // sh_info then contain index of an entry in symbol table section which // provides signature of the section group. ArrayRef symbols = section->file->getSymbols(); os->info = ctx.in.symTab->getSymbolIndex(*symbols[section->info]); // Some group members may be combined or discarded, so we need to compute the // new size. The content will be rewritten in InputSection::copyShtGroup. DenseSet seen; ArrayRef sections = section->file->getSections(); for (const uint32_t &idx : section->getDataAs().slice(1)) if (OutputSection *osec = sections[read32(&idx)]->getOutputSection()) seen.insert(osec->sectionIndex); os->size = (1 + seen.size()) * sizeof(uint32_t); } template LLVM_ATTRIBUTE_ALWAYS_INLINE static void encodeOneCrel(raw_svector_ostream &os, Elf_Crel &out, uint offset, const Symbol &sym, uint32_t type, uint addend) { const auto deltaOffset = static_cast(offset - out.r_offset); out.r_offset = offset; int64_t symidx = ctx.in.symTab->getSymbolIndex(sym); if (sym.type == STT_SECTION) { auto *d = dyn_cast(&sym); if (d) { SectionBase *section = d->section; assert(section->isLive()); addend = sym.getVA(addend) - section->getOutputSection()->addr; } else { // Encode R_*_NONE(symidx=0). symidx = type = addend = 0; } } // Similar to llvm::ELF::encodeCrel. uint8_t b = deltaOffset * 8 + (out.r_symidx != symidx) + (out.r_type != type ? 2 : 0) + (uint(out.r_addend) != addend ? 4 : 0); if (deltaOffset < 0x10) { os << char(b); } else { os << char(b | 0x80); encodeULEB128(deltaOffset >> 4, os); } if (b & 1) { encodeSLEB128(static_cast(symidx - out.r_symidx), os); out.r_symidx = symidx; } if (b & 2) { encodeSLEB128(static_cast(type - out.r_type), os); out.r_type = type; } if (b & 4) { encodeSLEB128(std::make_signed_t(addend - out.r_addend), os); out.r_addend = addend; } } template static size_t relToCrel(raw_svector_ostream &os, Elf_Crel &out, InputSection *relSec, InputSectionBase *sec) { const auto &file = *cast(relSec->file); if (relSec->type == SHT_REL) { // REL conversion is complex and unsupported yet. errorOrWarn(toString(relSec) + ": REL cannot be converted to CREL"); return 0; } auto rels = relSec->getDataAs(); for (auto rel : rels) { encodeOneCrel( os, out, sec->getVA(rel.r_offset), file.getRelocTargetSym(rel), rel.getType(config->isMips64EL), getAddend(rel)); } return rels.size(); } // Compute the content of a non-alloc CREL section due to -r or --emit-relocs. // Input CREL sections are decoded while REL[A] need to be converted. template void OutputSection::finalizeNonAllocCrel() { using uint = typename Elf_Crel_Impl::uint; raw_svector_ostream os(crelBody); uint64_t totalCount = 0; Elf_Crel out{}; assert(commands.size() == 1); auto *isd = cast(commands[0]); for (InputSection *relSec : isd->sections) { const auto &file = *cast(relSec->file); InputSectionBase *sec = relSec->getRelocatedSection(); if (relSec->type == SHT_CREL) { RelocsCrel entries(relSec->content_); totalCount += entries.size(); for (Elf_Crel_Impl r : entries) { encodeOneCrel(os, out, uint(sec->getVA(r.r_offset)), file.getSymbol(r.r_symidx), r.r_type, r.r_addend); } continue; } // Convert REL[A] to CREL. if constexpr (is64) { totalCount += config->isLE ? relToCrel(os, out, relSec, sec) : relToCrel(os, out, relSec, sec); } else { totalCount += config->isLE ? relToCrel(os, out, relSec, sec) : relToCrel(os, out, relSec, sec); } } crelHeader = totalCount * 8 + 4; size = getULEB128Size(crelHeader) + crelBody.size(); } void OutputSection::finalize() { InputSection *first = getFirstInputSection(this); if (flags & SHF_LINK_ORDER) { // We must preserve the link order dependency of sections with the // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We // need to translate the InputSection sh_link to the OutputSection sh_link, // all InputSections in the OutputSection have the same dependency. if (auto *ex = dyn_cast(first)) link = ex->getLinkOrderDep()->getParent()->sectionIndex; else if (first->flags & SHF_LINK_ORDER) if (auto *d = first->getLinkOrderDep()) link = d->getParent()->sectionIndex; } if (type == SHT_GROUP) { finalizeShtGroup(this, first); return; } if (!config->copyRelocs || !isStaticRelSecType(type)) return; // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. // Normally 'type' was changed by 'first' so 'first' should be non-null. // However, if the output section is .rela.dyn, 'type' can be set by the empty // synthetic .rela.plt and first can be null. if (!first || isa(first)) return; link = ctx.in.symTab->getParent()->sectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *s = first->getRelocatedSection(); info = s->getOutputSection()->sectionIndex; flags |= SHF_INFO_LINK; // Finalize the content of non-alloc CREL. if (type == SHT_CREL) { if (config->is64) finalizeNonAllocCrel(); else finalizeNonAllocCrel(); } } // Returns true if S is in one of the many forms the compiler driver may pass // crtbegin files. // // Gcc uses any of crtbegin[|S|T].o. // Clang uses Gcc's plus clang_rt.crtbegin[-|].o. static bool isCrt(StringRef s, StringRef beginEnd) { s = sys::path::filename(s); if (!s.consume_back(".o")) return false; if (s.consume_front("clang_rt.")) return s.consume_front(beginEnd); return s.consume_front(beginEnd) && s.size() <= 1; } // .ctors and .dtors are sorted by this order: // // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). // 2. The section is named ".ctors" or ".dtors" (priority: 65536). // 3. The section has an optional priority value in the form of ".ctors.N" or // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). // // For 2 and 3, the sections are sorted by priority from high to low, e.g. // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's // internal linker scripts, the sorting is by string comparison which can // achieve the same goal given the optional priority values are of the same // length. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. static bool compCtors(const InputSection *a, const InputSection *b) { bool beginA = isCrt(a->file->getName(), "crtbegin"); bool beginB = isCrt(b->file->getName(), "crtbegin"); if (beginA != beginB) return beginA; bool endA = isCrt(a->file->getName(), "crtend"); bool endB = isCrt(b->file->getName(), "crtend"); if (endA != endB) return endB; return getPriority(a->name) > getPriority(b->name); } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. void OutputSection::sortCtorsDtors() { assert(commands.size() == 1); auto *isd = cast(commands[0]); llvm::stable_sort(isd->sections, compCtors); } // If an input string is in the form of "foo.N" where N is a number, return N // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one // greater than the lowest priority. int elf::getPriority(StringRef s) { size_t pos = s.rfind('.'); if (pos == StringRef::npos) return 65536; int v = 65536; if (to_integer(s.substr(pos + 1), v, 10) && (pos == 6 && (s.starts_with(".ctors") || s.starts_with(".dtors")))) v = 65535 - v; return v; } InputSection *elf::getFirstInputSection(const OutputSection *os) { for (SectionCommand *cmd : os->commands) if (auto *isd = dyn_cast(cmd)) if (!isd->sections.empty()) return isd->sections[0]; return nullptr; } ArrayRef elf::getInputSections(const OutputSection &os, SmallVector &storage) { ArrayRef ret; storage.clear(); for (SectionCommand *cmd : os.commands) { auto *isd = dyn_cast(cmd); if (!isd) continue; if (ret.empty()) { ret = isd->sections; } else { if (storage.empty()) storage.assign(ret.begin(), ret.end()); storage.insert(storage.end(), isd->sections.begin(), isd->sections.end()); } } return storage.empty() ? ret : ArrayRef(storage); } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSectionBase *s) { return getPriority(s->name); }); } std::array OutputSection::getFiller() { if (filler) return *filler; if (flags & SHF_EXECINSTR) return ctx.target->trapInstr; return {0, 0, 0, 0}; } void OutputSection::checkDynRelAddends(const uint8_t *bufStart) { assert(config->writeAddends && config->checkDynamicRelocs); assert(isStaticRelSecType(type)); SmallVector storage; ArrayRef sections = getInputSections(*this, storage); parallelFor(0, sections.size(), [&](size_t i) { // When linking with -r or --emit-relocs we might also call this function // for input .rel[a]. sections which we simply pass through to the // output. We skip over those and only look at the synthetic relocation // sections created during linking. const auto *sec = dyn_cast(sections[i]); if (!sec) return; for (const DynamicReloc &rel : sec->relocs) { int64_t addend = rel.addend; const OutputSection *relOsec = rel.inputSec->getOutputSection(); assert(relOsec != nullptr && "missing output section for relocation"); // Some targets have NOBITS synthetic sections with dynamic relocations // with non-zero addends. Skip such sections. if (is_contained({EM_PPC, EM_PPC64}, config->emachine) && (rel.inputSec == ctx.in.ppc64LongBranchTarget.get() || rel.inputSec == ctx.in.igotPlt.get())) continue; const uint8_t *relocTarget = bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec); // For SHT_NOBITS the written addend is always zero. int64_t writtenAddend = relOsec->type == SHT_NOBITS ? 0 : ctx.target->getImplicitAddend(relocTarget, rel.type); if (addend != writtenAddend) internalLinkerError( getErrorLocation(relocTarget), "wrote incorrect addend value 0x" + utohexstr(writtenAddend) + " instead of 0x" + utohexstr(addend) + " for dynamic relocation " + toString(rel.type) + " at offset 0x" + utohexstr(rel.getOffset()) + (rel.sym ? " against symbol " + toString(*rel.sym) : "")); } }); } template void OutputSection::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64BE::Shdr *Shdr); template void OutputSection::writeTo(uint8_t *, llvm::parallel::TaskGroup &); template void OutputSection::writeTo(uint8_t *, llvm::parallel::TaskGroup &); template void OutputSection::writeTo(uint8_t *, llvm::parallel::TaskGroup &); template void OutputSection::writeTo(uint8_t *, llvm::parallel::TaskGroup &); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress();