//===-------------------------- cxa_vector.cpp ---------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // // This file implements the "Array Construction and Destruction APIs" // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#array-ctor // //===----------------------------------------------------------------------===// #include "cxxabi.h" #include "__cxxabi_config.h" #include // for std::terminate #include // for std::bad_alloc #include "abort_message.h" #ifndef __has_builtin #define __has_builtin(x) 0 #endif namespace __cxxabiv1 { #if 0 #pragma mark --Helper routines and classes -- #endif namespace { inline static size_t __get_element_count ( void *p ) { return static_cast (p)[-1]; } inline static void __set_element_count ( void *p, size_t element_count ) { static_cast (p)[-1] = element_count; } // A pair of classes to simplify exception handling and control flow. // They get passed a block of memory in the constructor, and unless the // 'release' method is called, they deallocate the memory in the destructor. // Preferred usage is to allocate some memory, attach it to one of these objects, // and then, when all the operations to set up the memory block have succeeded, // call 'release'. If any of the setup operations fail, or an exception is // thrown, then the block is automatically deallocated. // // The only difference between these two classes is the signature for the // deallocation function (to match new2/new3 and delete2/delete3. class st_heap_block2 { public: typedef void (*dealloc_f)(void *); st_heap_block2 ( dealloc_f dealloc, void *ptr ) : dealloc_ ( dealloc ), ptr_ ( ptr ), enabled_ ( true ) {} ~st_heap_block2 () { if ( enabled_ ) dealloc_ ( ptr_ ) ; } void release () { enabled_ = false; } private: dealloc_f dealloc_; void *ptr_; bool enabled_; }; class st_heap_block3 { public: typedef void (*dealloc_f)(void *, size_t); st_heap_block3 ( dealloc_f dealloc, void *ptr, size_t size ) : dealloc_ ( dealloc ), ptr_ ( ptr ), size_ ( size ), enabled_ ( true ) {} ~st_heap_block3 () { if ( enabled_ ) dealloc_ ( ptr_, size_ ) ; } void release () { enabled_ = false; } private: dealloc_f dealloc_; void *ptr_; size_t size_; bool enabled_; }; class st_cxa_cleanup { public: typedef void (*destruct_f)(void *); st_cxa_cleanup ( void *ptr, size_t &idx, size_t element_size, destruct_f destructor ) : ptr_ ( ptr ), idx_ ( idx ), element_size_ ( element_size ), destructor_ ( destructor ), enabled_ ( true ) {} ~st_cxa_cleanup () { if ( enabled_ ) __cxa_vec_cleanup ( ptr_, idx_, element_size_, destructor_ ); } void release () { enabled_ = false; } private: void *ptr_; size_t &idx_; size_t element_size_; destruct_f destructor_; bool enabled_; }; class st_terminate { public: st_terminate ( bool enabled = true ) : enabled_ ( enabled ) {} ~st_terminate () { if ( enabled_ ) std::terminate (); } void release () { enabled_ = false; } private: bool enabled_ ; }; } #if 0 #pragma mark --Externally visible routines-- #endif namespace { _LIBCXXABI_NORETURN void throw_bad_array_new_length() { #ifndef _LIBCXXABI_NO_EXCEPTIONS throw std::bad_array_new_length(); #else abort_message("__cxa_vec_new failed to allocate memory"); #endif } bool mul_overflow(size_t x, size_t y, size_t *res) { #if (defined(_LIBCXXABI_COMPILER_CLANG) && __has_builtin(__builtin_mul_overflow)) \ || defined(_LIBCXXABI_COMPILER_GCC) return __builtin_mul_overflow(x, y, res); #else *res = x * y; return x && ((*res / x) != y); #endif } bool add_overflow(size_t x, size_t y, size_t *res) { #if (defined(_LIBCXXABI_COMPILER_CLANG) && __has_builtin(__builtin_add_overflow)) \ || defined(_LIBCXXABI_COMPILER_GCC) return __builtin_add_overflow(x, y, res); #else *res = x + y; return *res < y; #endif } size_t calculate_allocation_size_or_throw(size_t element_count, size_t element_size, size_t padding_size) { size_t element_heap_size; if (mul_overflow(element_count, element_size, &element_heap_size)) throw_bad_array_new_length(); size_t allocation_size; if (add_overflow(element_heap_size, padding_size, &allocation_size)) throw_bad_array_new_length(); return allocation_size; } } // namespace extern "C" { // Equivalent to // // __cxa_vec_new2(element_count, element_size, padding_size, constructor, // destructor, &::operator new[], &::operator delete[]) _LIBCXXABI_FUNC_VIS void * __cxa_vec_new(size_t element_count, size_t element_size, size_t padding_size, void (*constructor)(void *), void (*destructor)(void *)) { return __cxa_vec_new2 ( element_count, element_size, padding_size, constructor, destructor, &::operator new [], &::operator delete [] ); } // Given the number and size of elements for an array and the non-negative // size of prefix padding for a cookie, allocate space (using alloc) for // the array preceded by the specified padding, initialize the cookie if // the padding is non-zero, and call the given constructor on each element. // Return the address of the array proper, after the padding. // // If alloc throws an exception, rethrow the exception. If alloc returns // NULL, return NULL. If the constructor throws an exception, call // destructor for any already constructed elements, and rethrow the // exception. If the destructor throws an exception, call std::terminate. // // The constructor may be NULL, in which case it must not be called. If the // padding_size is zero, the destructor may be NULL; in that case it must // not be called. // // Neither alloc nor dealloc may be NULL. _LIBCXXABI_FUNC_VIS void * __cxa_vec_new2(size_t element_count, size_t element_size, size_t padding_size, void (*constructor)(void *), void (*destructor)(void *), void *(*alloc)(size_t), void (*dealloc)(void *)) { const size_t heap_size = calculate_allocation_size_or_throw( element_count, element_size, padding_size); char* const heap_block = static_cast(alloc(heap_size)); char* vec_base = heap_block; if (NULL != vec_base) { st_heap_block2 heap(dealloc, heap_block); // put the padding before the array elements if ( 0 != padding_size ) { vec_base += padding_size; __set_element_count ( vec_base, element_count ); } // Construct the elements __cxa_vec_ctor ( vec_base, element_count, element_size, constructor, destructor ); heap.release (); // We're good! } return vec_base; } // Same as __cxa_vec_new2 except that the deallocation function takes both // the object address and its size. _LIBCXXABI_FUNC_VIS void * __cxa_vec_new3(size_t element_count, size_t element_size, size_t padding_size, void (*constructor)(void *), void (*destructor)(void *), void *(*alloc)(size_t), void (*dealloc)(void *, size_t)) { const size_t heap_size = calculate_allocation_size_or_throw( element_count, element_size, padding_size); char* const heap_block = static_cast(alloc(heap_size)); char* vec_base = heap_block; if (NULL != vec_base) { st_heap_block3 heap(dealloc, heap_block, heap_size); // put the padding before the array elements if ( 0 != padding_size ) { vec_base += padding_size; __set_element_count ( vec_base, element_count ); } // Construct the elements __cxa_vec_ctor ( vec_base, element_count, element_size, constructor, destructor ); heap.release (); // We're good! } return vec_base; } // Given the (data) addresses of a destination and a source array, an // element count and an element size, call the given copy constructor to // copy each element from the source array to the destination array. The // copy constructor's arguments are the destination address and source // address, respectively. If an exception occurs, call the given destructor // (if non-NULL) on each copied element and rethrow. If the destructor // throws an exception, call terminate(). The constructor and or destructor // pointers may be NULL. If either is NULL, no action is taken when it // would have been called. _LIBCXXABI_FUNC_VIS void __cxa_vec_cctor(void *dest_array, void *src_array, size_t element_count, size_t element_size, void (*constructor)(void *, void *), void (*destructor)(void *)) { if ( NULL != constructor ) { size_t idx = 0; char *src_ptr = static_cast(src_array); char *dest_ptr = static_cast(dest_array); st_cxa_cleanup cleanup ( dest_array, idx, element_size, destructor ); for ( idx = 0; idx < element_count; ++idx, src_ptr += element_size, dest_ptr += element_size ) constructor ( dest_ptr, src_ptr ); cleanup.release (); // We're good! } } // Given the (data) address of an array, not including any cookie padding, // and the number and size of its elements, call the given constructor on // each element. If the constructor throws an exception, call the given // destructor for any already-constructed elements, and rethrow the // exception. If the destructor throws an exception, call terminate(). The // constructor and/or destructor pointers may be NULL. If either is NULL, // no action is taken when it would have been called. _LIBCXXABI_FUNC_VIS void __cxa_vec_ctor(void *array_address, size_t element_count, size_t element_size, void (*constructor)(void *), void (*destructor)(void *)) { if ( NULL != constructor ) { size_t idx; char *ptr = static_cast ( array_address ); st_cxa_cleanup cleanup ( array_address, idx, element_size, destructor ); // Construct the elements for ( idx = 0; idx < element_count; ++idx, ptr += element_size ) constructor ( ptr ); cleanup.release (); // We're good! } } // Given the (data) address of an array, the number of elements, and the // size of its elements, call the given destructor on each element. If the // destructor throws an exception, rethrow after destroying the remaining // elements if possible. If the destructor throws a second exception, call // terminate(). The destructor pointer may be NULL, in which case this // routine does nothing. _LIBCXXABI_FUNC_VIS void __cxa_vec_dtor(void *array_address, size_t element_count, size_t element_size, void (*destructor)(void *)) { if ( NULL != destructor ) { char *ptr = static_cast (array_address); size_t idx = element_count; st_cxa_cleanup cleanup ( array_address, idx, element_size, destructor ); { st_terminate exception_guard (__cxa_uncaught_exception ()); ptr += element_count * element_size; // one past the last element while ( idx-- > 0 ) { ptr -= element_size; destructor ( ptr ); } exception_guard.release (); // We're good ! } cleanup.release (); // We're still good! } } // Given the (data) address of an array, the number of elements, and the // size of its elements, call the given destructor on each element. If the // destructor throws an exception, call terminate(). The destructor pointer // may be NULL, in which case this routine does nothing. _LIBCXXABI_FUNC_VIS void __cxa_vec_cleanup(void *array_address, size_t element_count, size_t element_size, void (*destructor)(void *)) { if ( NULL != destructor ) { char *ptr = static_cast (array_address); size_t idx = element_count; st_terminate exception_guard; ptr += element_count * element_size; // one past the last element while ( idx-- > 0 ) { ptr -= element_size; destructor ( ptr ); } exception_guard.release (); // We're done! } } // If the array_address is NULL, return immediately. Otherwise, given the // (data) address of an array, the non-negative size of prefix padding for // the cookie, and the size of its elements, call the given destructor on // each element, using the cookie to determine the number of elements, and // then delete the space by calling ::operator delete[](void *). If the // destructor throws an exception, rethrow after (a) destroying the // remaining elements, and (b) deallocating the storage. If the destructor // throws a second exception, call terminate(). If padding_size is 0, the // destructor pointer must be NULL. If the destructor pointer is NULL, no // destructor call is to be made. // // The intent of this function is to permit an implementation to call this // function when confronted with an expression of the form delete[] p in // the source code, provided that the default deallocation function can be // used. Therefore, the semantics of this function are consistent with // those required by the standard. The requirement that the deallocation // function be called even if the destructor throws an exception derives // from the resolution to DR 353 to the C++ standard, which was adopted in // April, 2003. _LIBCXXABI_FUNC_VIS void __cxa_vec_delete(void *array_address, size_t element_size, size_t padding_size, void (*destructor)(void *)) { __cxa_vec_delete2 ( array_address, element_size, padding_size, destructor, &::operator delete [] ); } // Same as __cxa_vec_delete, except that the given function is used for // deallocation instead of the default delete function. If dealloc throws // an exception, the result is undefined. The dealloc pointer may not be // NULL. _LIBCXXABI_FUNC_VIS void __cxa_vec_delete2(void *array_address, size_t element_size, size_t padding_size, void (*destructor)(void *), void (*dealloc)(void *)) { if ( NULL != array_address ) { char *vec_base = static_cast (array_address); char *heap_block = vec_base - padding_size; st_heap_block2 heap ( dealloc, heap_block ); if ( 0 != padding_size && NULL != destructor ) // call the destructors __cxa_vec_dtor ( array_address, __get_element_count ( vec_base ), element_size, destructor ); } } // Same as __cxa_vec_delete, except that the given function is used for // deallocation instead of the default delete function. The deallocation // function takes both the object address and its size. If dealloc throws // an exception, the result is undefined. The dealloc pointer may not be // NULL. _LIBCXXABI_FUNC_VIS void __cxa_vec_delete3(void *array_address, size_t element_size, size_t padding_size, void (*destructor)(void *), void (*dealloc)(void *, size_t)) { if ( NULL != array_address ) { char *vec_base = static_cast (array_address); char *heap_block = vec_base - padding_size; const size_t element_count = padding_size ? __get_element_count ( vec_base ) : 0; const size_t heap_block_size = element_size * element_count + padding_size; st_heap_block3 heap ( dealloc, heap_block, heap_block_size ); if ( 0 != padding_size && NULL != destructor ) // call the destructors __cxa_vec_dtor ( array_address, element_count, element_size, destructor ); } } } // extern "C" } // abi