//===-- Implementation of hypotf function ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/common.h" #include "utils/FPUtil/BasicOperations.h" #include "utils/FPUtil/FPBits.h" namespace __llvm_libc { using namespace fputil; uint32_t findLeadingOne(uint32_t mant, int &shift_length) { shift_length = 0; constexpr int nsteps = 5; constexpr uint32_t bounds[nsteps] = {1 << 16, 1 << 8, 1 << 4, 1 << 2, 1 << 1}; constexpr int shifts[nsteps] = {16, 8, 4, 2, 1}; for (int i = 0; i < nsteps; ++i) { if (mant >= bounds[i]) { shift_length += shifts[i]; mant >>= shifts[i]; } } return 1U << shift_length; } // Correctly rounded IEEE 754 HYPOT(x, y) with round to nearest, ties to even. // // Algorithm: // - Let a = max(|x|, |y|), b = min(|x|, |y|), then we have that: // a <= sqrt(a^2 + b^2) <= min(a + b, a*sqrt(2)) // 1. So if b < eps(a)/2, then HYPOT(x, y) = a. // // - Moreover, the exponent part of HYPOT(x, y) is either the same or 1 more // than the exponent part of a. // // 2. For the remaining cases, we will use the digit-by-digit (shift-and-add) // algorithm to compute SQRT(Z): // // - For Y = y0.y1...yn... = SQRT(Z), // let Y(n) = y0.y1...yn be the first n fractional digits of Y. // // - The nth scaled residual R(n) is defined to be: // R(n) = 2^n * (Z - Y(n)^2) // // - Since Y(n) = Y(n - 1) + yn * 2^(-n), the scaled residual // satisfies the following recurrence formula: // R(n) = 2*R(n - 1) - yn*(2*Y(n - 1) + 2^(-n)), // with the initial conditions: // Y(0) = y0, and R(0) = Z - y0. // // - So the nth fractional digit of Y = SQRT(Z) can be decided by: // yn = 1 if 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n), // 0 otherwise. // // 3. Precision analysis: // // - Notice that in the decision function: // 2*R(n - 1) >= 2*Y(n - 1) + 2^(-n), // the right hand side only uses up to the 2^(-n)-bit, and both sides are // non-negative, so R(n - 1) can be truncated at the 2^(-(n + 1))-bit, so // that 2*R(n - 1) is corrected up to the 2^(-n)-bit. // // - Thus, in order to round SQRT(a^2 + b^2) correctly up to n-fractional // bits, we need to perform the summation (a^2 + b^2) correctly up to (2n + // 2)-fractional bits, and the remaining bits are sticky bits (i.e. we only // care if they are 0 or > 0), and the comparisons, additions/subtractions // can be done in n-fractional bits precision. // // - For single precision (float), we can use uint64_t to store the sum a^2 + // b^2 exact up to (2n + 2)-fractional bits. // // - Then we can feed this sum into the digit-by-digit algorithm for SQRT(Z) // described above. // // // Special cases: // - HYPOT(x, y) is +Inf if x or y is +Inf or -Inf; else // - HYPOT(x, y) is NaN if x or y is NaN. // float LLVM_LIBC_ENTRYPOINT(hypotf)(float x, float y) { FPBits x_bits(x), y_bits(y); if (x_bits.isInf() || y_bits.isInf()) { return FPBits::inf(); } if (x_bits.isNaN()) { return x; } if (y_bits.isNaN()) { return y; } uint16_t a_exp, b_exp, out_exp; uint32_t a_mant, b_mant; uint64_t a_mant_sq, b_mant_sq; bool sticky_bits; if ((x_bits.exponent >= y_bits.exponent + MantissaWidth::value + 2) || (y == 0)) { return abs(x); } else if ((y_bits.exponent >= x_bits.exponent + MantissaWidth::value + 2) || (x == 0)) { y_bits.sign = 0; return abs(y); } if (x >= y) { a_exp = x_bits.exponent; a_mant = x_bits.mantissa; b_exp = y_bits.exponent; b_mant = y_bits.mantissa; } else { a_exp = y_bits.exponent; a_mant = y_bits.mantissa; b_exp = x_bits.exponent; b_mant = x_bits.mantissa; } out_exp = a_exp; // Add an extra bit to simplify the final rounding bit computation. constexpr uint32_t one = 1U << (MantissaWidth::value + 1); a_mant <<= 1; b_mant <<= 1; uint32_t leading_one; int y_mant_width; if (a_exp != 0) { leading_one = one; a_mant |= one; y_mant_width = MantissaWidth::value + 1; } else { leading_one = findLeadingOne(a_mant, y_mant_width); } if (b_exp != 0) { b_mant |= one; } a_mant_sq = static_cast(a_mant) * a_mant; b_mant_sq = static_cast(b_mant) * b_mant; // At this point, a_exp >= b_exp > a_exp - 25, so in order to line up aSqMant // and bSqMant, we need to shift bSqMant to the right by (a_exp - b_exp) bits. // But before that, remember to store the losing bits to sticky. // The shift length is for a^2 and b^2, so it's double of the exponent // difference between a and b. uint16_t shift_length = 2 * (a_exp - b_exp); sticky_bits = ((b_mant_sq & ((1ULL << shift_length) - 1)) != 0); b_mant_sq >>= shift_length; uint64_t sum = a_mant_sq + b_mant_sq; if (sum >= (1ULL << (2 * y_mant_width + 2))) { // a^2 + b^2 >= 4* leading_one^2, so we will need an extra bit to the left. if (leading_one == one) { // For normal result, we discard the last 2 bits of the sum and increase // the exponent. sticky_bits = sticky_bits || ((sum & 0x3U) != 0); sum >>= 2; ++out_exp; if (out_exp >= FPBits::maxExponent) { return FPBits::inf(); } } else { // For denormal result, we simply move the leading bit of the result to // the left by 1. leading_one <<= 1; ++y_mant_width; } } uint32_t Y = leading_one; uint32_t R = static_cast(sum >> y_mant_width) - leading_one; uint32_t tailBits = static_cast(sum) & (leading_one - 1); for (uint32_t current_bit = leading_one >> 1; current_bit; current_bit >>= 1) { R = (R << 1) + ((tailBits & current_bit) ? 1 : 0); uint32_t tmp = (Y << 1) + current_bit; // 2*y(n - 1) + 2^(-n) if (R >= tmp) { R -= tmp; Y += current_bit; } } bool round_bit = Y & 1U; bool lsb = Y & 2U; if (Y >= one) { Y -= one; if (out_exp == 0) { out_exp = 1; } } Y >>= 1; // Round to the nearest, tie to even. if (round_bit && (lsb || sticky_bits || (R != 0))) { ++Y; } if (Y >= (one >> 1)) { Y -= one >> 1; ++out_exp; if (out_exp >= FPBits::maxExponent) { return FPBits::inf(); } } Y |= static_cast(out_exp) << MantissaWidth::value; return *reinterpret_cast(&Y); } } // namespace __llvm_libc