//===-- Half-precision tan(x) function ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. // //===----------------------------------------------------------------------===// #include "src/math/tanf16.h" #include "hdr/errno_macros.h" #include "hdr/fenv_macros.h" #include "sincosf16_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/cast.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/macros/optimization.h" namespace LIBC_NAMESPACE_DECL { #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS constexpr size_t N_EXCEPTS = 9; constexpr fputil::ExceptValues TANF16_EXCEPTS{{ // (input, RZ output, RU offset, RD offset, RN offset) {0x2894, 0x2894, 1, 0, 1}, {0x3091, 0x3099, 1, 0, 0}, {0x3098, 0x30a0, 1, 0, 0}, {0x55ed, 0x3911, 1, 0, 0}, {0x607b, 0xc638, 0, 1, 1}, {0x674e, 0x3b7d, 1, 0, 0}, {0x6807, 0x4014, 1, 0, 1}, {0x6f4d, 0xbe19, 0, 1, 1}, {0x7330, 0xcb62, 0, 1, 0}, }}; #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS LLVM_LIBC_FUNCTION(float16, tanf16, (float16 x)) { using FPBits = fputil::FPBits; FPBits xbits(x); uint16_t x_u = xbits.uintval(); uint16_t x_abs = x_u & 0x7fff; float xf = x; #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS bool x_sign = x_u >> 15; // Handle exceptional values if (auto r = TANF16_EXCEPTS.lookup_odd(x_abs, x_sign); LIBC_UNLIKELY(r.has_value())) return r.value(); #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS // |x| <= 0x1.d1p-5 if (LIBC_UNLIKELY(x_abs <= 0x2b44)) { // |x| <= 0x1.398p-11 if (LIBC_UNLIKELY(x_abs <= 0x10e6)) { // tan(+/-0) = +/-0 if (LIBC_UNLIKELY(x_abs == 0)) return x; int rounding = fputil::quick_get_round(); // Exhaustive tests show that, when: // x > 0, and rounding upward or // x < 0, and rounding downward then, // tan(x) = x * 2^-11 + x if ((xbits.is_pos() && rounding == FE_UPWARD) || (xbits.is_neg() && rounding == FE_DOWNWARD)) return fputil::cast(fputil::multiply_add(xf, 0x1.0p-11f, xf)); return x; } float xsq = xf * xf; // Degree-6 minimax odd polynomial of tan(x) generated by Sollya with: // > P = fpminimax(tan(x)/x, [|0, 2, 4, 6|], [|1, SG...|], [0, pi/32]); float result = fputil::polyeval(xsq, 0x1p0f, 0x1.555556p-2f, 0x1.110ee4p-3f, 0x1.be80f6p-5f); return fputil::cast(xf * result); } // tan(+/-inf) = NaN, and tan(NaN) = NaN if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { if (xbits.is_signaling_nan()) { fputil::raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } // x = +/-inf if (x_abs == 0x7c00) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } // Range reduction: // For |x| > pi/32, we perform range reduction as follows: // Find k and y such that: // x = (k + y) * pi/32; // k is an integer, |y| < 0.5 // // This is done by performing: // k = round(x * 32/pi) // y = x * 32/pi - k // // Once k and y are computed, we then deduce the answer by the formula: // tan(x) = sin(x) / cos(x) // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) float sin_k, cos_k, sin_y, cosm1_y; sincosf16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); // Note that, cosm1_y = cos_y - 1: using fputil::multiply_add; return fputil::cast( multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); } } // namespace LIBC_NAMESPACE_DECL