!===-- module/__fortran_builtins.f90 ---------------------------------------===! ! ! Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. ! See https://llvm.org/LICENSE.txt for license information. ! SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception ! !===------------------------------------------------------------------------===! #include '../include/flang/Runtime/magic-numbers.h' ! These naming shenanigans prevent names from Fortran intrinsic modules ! from being usable on INTRINSIC statements, and force the program ! to USE the standard intrinsic modules in order to access the ! standard names of the procedures. module __fortran_builtins implicit none ! Set PRIVATE by default to explicitly only export what is meant ! to be exported by this MODULE. private intrinsic :: __builtin_c_loc public :: __builtin_c_loc intrinsic :: __builtin_c_f_pointer public :: __builtin_c_f_pointer intrinsic :: sizeof ! extension public :: sizeof intrinsic :: selected_int_kind integer, parameter :: int64 = selected_int_kind(18) type, bind(c), public :: __builtin_c_ptr integer(kind=int64), private :: __address end type type, bind(c), public :: __builtin_c_funptr integer(kind=int64), private :: __address end type type, public :: __builtin_event_type integer(kind=int64), private :: __count end type type, public :: __builtin_notify_type integer(kind=int64), private :: __count end type type, public :: __builtin_lock_type integer(kind=int64), private :: __count end type type, public :: __builtin_ieee_flag_type integer(kind=1), private :: flag = 0 end type type(__builtin_ieee_flag_type), parameter, public :: & __builtin_ieee_invalid = & __builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_INVALID), & __builtin_ieee_overflow = & __builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_OVERFLOW), & __builtin_ieee_divide_by_zero = & __builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_DIVIDE_BY_ZERO), & __builtin_ieee_underflow = & __builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_UNDERFLOW), & __builtin_ieee_inexact = & __builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_INEXACT), & __builtin_ieee_denorm = & ! extension __builtin_ieee_flag_type(_FORTRAN_RUNTIME_IEEE_DENORM) type, public :: __builtin_ieee_round_type integer(kind=1), private :: mode = 0 end type type(__builtin_ieee_round_type), parameter, public :: & __builtin_ieee_to_zero = & __builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_TO_ZERO), & __builtin_ieee_nearest = & __builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_NEAREST), & __builtin_ieee_up = & __builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_UP), & __builtin_ieee_down = & __builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_DOWN), & __builtin_ieee_away = & __builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_AWAY), & __builtin_ieee_other = & __builtin_ieee_round_type(_FORTRAN_RUNTIME_IEEE_OTHER) type, public :: __builtin_team_type integer(kind=int64), private :: __id end type integer, parameter, public :: __builtin_atomic_int_kind = selected_int_kind(18) integer, parameter, public :: & __builtin_atomic_logical_kind = __builtin_atomic_int_kind type, public :: __builtin_dim3 integer :: x=1, y=1, z=1 end type type(__builtin_dim3), public :: & __builtin_threadIdx, __builtin_blockDim, __builtin_blockIdx, & __builtin_gridDim integer, parameter, public :: __builtin_warpsize = 32 type, public, bind(c) :: __builtin_c_devptr type(__builtin_c_ptr) :: cptr end type intrinsic :: __builtin_fma intrinsic :: __builtin_ieee_is_nan, __builtin_ieee_is_negative, & __builtin_ieee_is_normal intrinsic :: __builtin_ieee_next_after, __builtin_ieee_next_down, & __builtin_ieee_next_up intrinsic :: scale ! for ieee_scalb intrinsic :: __builtin_ieee_selected_real_kind intrinsic :: __builtin_ieee_support_datatype, & __builtin_ieee_support_denormal, __builtin_ieee_support_divide, & __builtin_ieee_support_flag, __builtin_ieee_support_halting, & __builtin_ieee_support_inf, __builtin_ieee_support_io, & __builtin_ieee_support_nan, __builtin_ieee_support_rounding, & __builtin_ieee_support_sqrt, & __builtin_ieee_support_standard, __builtin_ieee_support_subnormal, & __builtin_ieee_support_underflow_control public :: __builtin_fma public :: __builtin_ieee_is_nan, __builtin_ieee_is_negative, & __builtin_ieee_is_normal public :: __builtin_ieee_next_after, __builtin_ieee_next_down, & __builtin_ieee_next_up public :: scale ! for ieee_scalb public :: __builtin_ieee_selected_real_kind public :: __builtin_ieee_support_datatype, & __builtin_ieee_support_denormal, __builtin_ieee_support_divide, & __builtin_ieee_support_flag, __builtin_ieee_support_halting, & __builtin_ieee_support_inf, __builtin_ieee_support_io, & __builtin_ieee_support_nan, __builtin_ieee_support_rounding, & __builtin_ieee_support_sqrt, & __builtin_ieee_support_standard, __builtin_ieee_support_subnormal, & __builtin_ieee_support_underflow_control type :: __force_derived_type_instantiations type(__builtin_c_ptr) :: c_ptr type(__builtin_c_funptr) :: c_funptr type(__builtin_event_type) :: event_type type(__builtin_lock_type) :: lock_type type(__builtin_team_type) :: team_type end type intrinsic :: __builtin_compiler_options, __builtin_compiler_version public :: __builtin_compiler_options, __builtin_compiler_version interface operator(==) module procedure __builtin_c_ptr_eq end interface public :: operator(==) interface operator(/=) module procedure __builtin_c_ptr_ne end interface public :: operator(/=) interface __builtin_c_associated module procedure c_associated_c_ptr module procedure c_associated_c_funptr end interface public :: __builtin_c_associated ! private :: c_associated_c_ptr, c_associated_c_funptr type(__builtin_c_ptr), parameter, public :: __builtin_c_null_ptr = __builtin_c_ptr(0) type(__builtin_c_funptr), parameter, public :: & __builtin_c_null_funptr = __builtin_c_funptr(0) public :: __builtin_c_ptr_eq public :: __builtin_c_ptr_ne public :: __builtin_c_funloc contains elemental logical function __builtin_c_ptr_eq(x, y) type(__builtin_c_ptr), intent(in) :: x, y __builtin_c_ptr_eq = x%__address == y%__address end function elemental logical function __builtin_c_ptr_ne(x, y) type(__builtin_c_ptr), intent(in) :: x, y __builtin_c_ptr_ne = x%__address /= y%__address end function ! Semantics has some special-case code that allows c_funloc() ! to appear in a specification expression and exempts it ! from the requirement that "x" be a pure dummy procedure. pure function __builtin_c_funloc(x) type(__builtin_c_funptr) :: __builtin_c_funloc external :: x __builtin_c_funloc = __builtin_c_funptr(loc(x)) end function pure logical function c_associated_c_ptr(c_ptr_1, c_ptr_2) type(__builtin_c_ptr), intent(in) :: c_ptr_1 type(__builtin_c_ptr), intent(in), optional :: c_ptr_2 if (c_ptr_1%__address == __builtin_c_null_ptr%__address) then c_associated_c_ptr = .false. else if (present(c_ptr_2)) then c_associated_c_ptr = c_ptr_1%__address == c_ptr_2%__address else c_associated_c_ptr = .true. end if end function c_associated_c_ptr pure logical function c_associated_c_funptr(c_ptr_1, c_ptr_2) type(__builtin_c_funptr), intent(in) :: c_ptr_1 type(__builtin_c_funptr), intent(in), optional :: c_ptr_2 if (c_ptr_1%__address == __builtin_c_null_ptr%__address) then c_associated_c_funptr = .false. else if (present(c_ptr_2)) then c_associated_c_funptr = c_ptr_1%__address == c_ptr_2%__address else c_associated_c_funptr = .true. end if end function c_associated_c_funptr end module