//===-- lib/Semantics/check-declarations.cpp ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Static declaration checking #include "check-declarations.h" #include "definable.h" #include "pointer-assignment.h" #include "flang/Evaluate/check-expression.h" #include "flang/Evaluate/fold.h" #include "flang/Evaluate/tools.h" #include "flang/Parser/characters.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/semantics.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include #include #include namespace Fortran::semantics { namespace characteristics = evaluate::characteristics; using characteristics::DummyArgument; using characteristics::DummyDataObject; using characteristics::DummyProcedure; using characteristics::FunctionResult; using characteristics::Procedure; class CheckHelper { public: explicit CheckHelper(SemanticsContext &c) : context_{c} {} SemanticsContext &context() { return context_; } void Check() { Check(context_.globalScope()); } void Check(const ParamValue &, bool canBeAssumed); void Check(const Bound &bound) { CheckSpecExpr(bound.GetExplicit()); } void Check(const ShapeSpec &spec) { Check(spec.lbound()); Check(spec.ubound()); } void Check(const ArraySpec &); void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters); void Check(const Symbol &); void CheckCommonBlock(const Symbol &); void Check(const Scope &); const Procedure *Characterize(const Symbol &); private: template void CheckSpecExpr(const A &x) { evaluate::CheckSpecificationExpr(x, DEREF(scope_), foldingContext_); } void CheckValue(const Symbol &, const DerivedTypeSpec *); void CheckVolatile(const Symbol &, const DerivedTypeSpec *); void CheckContiguous(const Symbol &); void CheckPointer(const Symbol &); void CheckPassArg( const Symbol &proc, const Symbol *interface, const WithPassArg &); void CheckProcBinding(const Symbol &, const ProcBindingDetails &); void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &); void CheckPointerInitialization(const Symbol &); void CheckArraySpec(const Symbol &, const ArraySpec &); void CheckProcEntity(const Symbol &, const ProcEntityDetails &); void CheckSubprogram(const Symbol &, const SubprogramDetails &); void CheckExternal(const Symbol &); void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &); void CheckDerivedType(const Symbol &, const DerivedTypeDetails &); bool CheckFinal( const Symbol &subroutine, SourceName, const Symbol &derivedType); bool CheckDistinguishableFinals(const Symbol &f1, SourceName f1name, const Symbol &f2, SourceName f2name, const Symbol &derivedType); void CheckGeneric(const Symbol &, const GenericDetails &); void CheckHostAssoc(const Symbol &, const HostAssocDetails &); bool CheckDefinedOperator( SourceName, GenericKind, const Symbol &, const Procedure &); std::optional CheckNumberOfArgs( const GenericKind &, std::size_t); bool CheckDefinedOperatorArg( const SourceName &, const Symbol &, const Procedure &, std::size_t); bool CheckDefinedAssignment(const Symbol &, const Procedure &); bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int); void CheckSpecifics(const Symbol &, const GenericDetails &); void CheckEquivalenceSet(const EquivalenceSet &); void CheckBlockData(const Scope &); void CheckGenericOps(const Scope &); bool CheckConflicting(const Symbol &, Attr, Attr); void WarnMissingFinal(const Symbol &); void CheckSymbolType(const Symbol &); // C702 bool InPure() const { return innermostSymbol_ && IsPureProcedure(*innermostSymbol_); } bool InElemental() const { return innermostSymbol_ && IsElementalProcedure(*innermostSymbol_); } bool InFunction() const { return innermostSymbol_ && IsFunction(*innermostSymbol_); } bool InInterface() const { const SubprogramDetails *subp{innermostSymbol_ ? innermostSymbol_->detailsIf() : nullptr}; return subp && subp->isInterface(); } template parser::Message *SayWithDeclaration(const Symbol &symbol, A &&...x) { parser::Message *msg{messages_.Say(std::forward(x)...)}; if (msg && messages_.at().begin() != symbol.name().begin()) { evaluate::AttachDeclaration(*msg, symbol); } return msg; } template parser::Message *WarnIfNotInModuleFile(A &&...x) { if (FindModuleFileContaining(context_.FindScope(messages_.at()))) { return nullptr; } return messages_.Say(std::forward(x)...); } template parser::Message *WarnIfNotInModuleFile(parser::CharBlock source, A &&...x) { if (FindModuleFileContaining(context_.FindScope(source))) { return nullptr; } return messages_.Say(source, std::forward(x)...); } bool IsResultOkToDiffer(const FunctionResult &); void CheckGlobalName(const Symbol &); void CheckProcedureAssemblyName(const Symbol &symbol); void CheckExplicitSave(const Symbol &); void CheckBindC(const Symbol &); void CheckBindCFunctionResult(const Symbol &); // Check functions for defined I/O procedures void CheckDefinedIoProc( const Symbol &, const GenericDetails &, common::DefinedIo); bool CheckDioDummyIsData(const Symbol &, const Symbol *, std::size_t); void CheckDioDummyIsDerived( const Symbol &, const Symbol &, common::DefinedIo ioKind, const Symbol &); void CheckDioDummyIsDefaultInteger(const Symbol &, const Symbol &); void CheckDioDummyIsScalar(const Symbol &, const Symbol &); void CheckDioDummyAttrs(const Symbol &, const Symbol &, Attr); void CheckDioDtvArg( const Symbol &, const Symbol *, common::DefinedIo, const Symbol &); void CheckGenericVsIntrinsic(const Symbol &, const GenericDetails &); void CheckDefaultIntegerArg(const Symbol &, const Symbol *, Attr); void CheckDioAssumedLenCharacterArg( const Symbol &, const Symbol *, std::size_t, Attr); void CheckDioVlistArg(const Symbol &, const Symbol *, std::size_t); void CheckDioArgCount(const Symbol &, common::DefinedIo ioKind, std::size_t); struct TypeWithDefinedIo { const DerivedTypeSpec &type; common::DefinedIo ioKind; const Symbol &proc; const Symbol &generic; }; void CheckAlreadySeenDefinedIo(const DerivedTypeSpec &, common::DefinedIo, const Symbol &, const Symbol &generic); void CheckModuleProcedureDef(const Symbol &); SemanticsContext &context_; evaluate::FoldingContext &foldingContext_{context_.foldingContext()}; parser::ContextualMessages &messages_{foldingContext_.messages()}; const Scope *scope_{nullptr}; bool scopeIsUninstantiatedPDT_{false}; // This symbol is the one attached to the innermost enclosing scope // that has a symbol. const Symbol *innermostSymbol_{nullptr}; // Cache of calls to Procedure::Characterize(Symbol) std::map, SymbolAddressCompare> characterizeCache_; // Collection of module procedure symbols with non-BIND(C) // global names, qualified by their module. std::map, SymbolRef> moduleProcs_; // Collection of symbols with global names, BIND(C) or otherwise std::map globalNames_; // Collection of external procedures without global definitions std::map externalNames_; // Collection of target dependent assembly names of external and BIND(C) // procedures. std::map procedureAssemblyNames_; }; class DistinguishabilityHelper { public: DistinguishabilityHelper(SemanticsContext &context) : context_{context} {} void Add(const Symbol &, GenericKind, const Symbol &, const Procedure &); void Check(const Scope &); private: void SayNotDistinguishable(const Scope &, const SourceName &, GenericKind, const Symbol &, const Symbol &, bool isHardConflict); void AttachDeclaration(parser::Message &, const Scope &, const Symbol &); SemanticsContext &context_; struct ProcedureInfo { GenericKind kind; const Procedure &procedure; }; std::map> nameToSpecifics_; }; void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) { if (value.isAssumed()) { if (!canBeAssumed) { // C795, C721, C726 messages_.Say( "An assumed (*) type parameter may be used only for a (non-statement function) dummy argument, associate name, character named constant, or external function result"_err_en_US); } } else { CheckSpecExpr(value.GetExplicit()); } } void CheckHelper::Check(const ArraySpec &shape) { for (const auto &spec : shape) { Check(spec); } } void CheckHelper::Check( const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) { if (type.category() == DeclTypeSpec::Character) { Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters); } else if (const DerivedTypeSpec *derived{type.AsDerived()}) { for (auto &parm : derived->parameters()) { Check(parm.second, canHaveAssumedTypeParameters); } } } void CheckHelper::Check(const Symbol &symbol) { if (symbol.name().size() > common::maxNameLen && &symbol == &symbol.GetUltimate()) { if (context_.ShouldWarn(common::LanguageFeature::LongNames)) { WarnIfNotInModuleFile(symbol.name(), "%s has length %d, which is greater than the maximum name length " "%d"_port_en_US, symbol.name(), symbol.name().size(), common::maxNameLen); } } if (context_.HasError(symbol)) { return; } auto restorer{messages_.SetLocation(symbol.name())}; context_.set_location(symbol.name()); const DeclTypeSpec *type{symbol.GetType()}; const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr}; bool isDone{false}; common::visit( common::visitors{ [&](const UseDetails &x) { isDone = true; }, [&](const HostAssocDetails &x) { CheckHostAssoc(symbol, x); isDone = true; }, [&](const ProcBindingDetails &x) { CheckProcBinding(symbol, x); isDone = true; }, [&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); }, [&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); }, [&](const SubprogramDetails &x) { CheckSubprogram(symbol, x); }, [&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); }, [&](const GenericDetails &x) { CheckGeneric(symbol, x); }, [](const auto &) {}, }, symbol.details()); if (symbol.attrs().test(Attr::VOLATILE)) { CheckVolatile(symbol, derived); } if (symbol.attrs().test(Attr::BIND_C)) { CheckBindC(symbol); } if (symbol.attrs().test(Attr::SAVE) && !symbol.implicitAttrs().test(Attr::SAVE)) { CheckExplicitSave(symbol); } if (symbol.attrs().test(Attr::CONTIGUOUS)) { CheckContiguous(symbol); } CheckGlobalName(symbol); CheckProcedureAssemblyName(symbol); if (symbol.attrs().test(Attr::ASYNCHRONOUS) && !evaluate::IsVariable(symbol)) { messages_.Say( "An entity may not have the ASYNCHRONOUS attribute unless it is a variable"_err_en_US); } if (isDone) { return; // following checks do not apply } if (symbol.attrs().test(Attr::PROTECTED)) { if (symbol.owner().kind() != Scope::Kind::Module) { // C854 messages_.Say( "A PROTECTED entity must be in the specification part of a module"_err_en_US); } if (!evaluate::IsVariable(symbol) && !IsProcedurePointer(symbol)) { // C855 messages_.Say( "A PROTECTED entity must be a variable or pointer"_err_en_US); } if (FindCommonBlockContaining(symbol)) { // C856 messages_.Say( "A PROTECTED entity may not be in a common block"_err_en_US); } } if (IsPointer(symbol)) { CheckPointer(symbol); } if (InPure()) { if (InInterface()) { // Declarations in interface definitions "have no effect" if they // are not pertinent to the characteristics of the procedure. // Restrictions on entities in pure procedure interfaces don't need // enforcement. } else if (!FindCommonBlockContaining(symbol) && IsSaved(symbol)) { if (IsInitialized(symbol)) { messages_.Say( "A pure subprogram may not initialize a variable"_err_en_US); } else { messages_.Say( "A pure subprogram may not have a variable with the SAVE attribute"_err_en_US); } } if (symbol.attrs().test(Attr::VOLATILE) && (IsDummy(symbol) || !InInterface())) { messages_.Say( "A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US); } if (IsProcedure(symbol) && !IsPureProcedure(symbol) && IsDummy(symbol)) { messages_.Say( "A dummy procedure of a pure subprogram must be pure"_err_en_US); } } const auto *object{symbol.detailsIf()}; if (type) { // Section 7.2, paragraph 7; C795 bool isChar{type->category() == DeclTypeSpec::Character}; bool canHaveAssumedParameter{(isChar && IsNamedConstant(symbol)) || (IsAssumedLengthCharacter(symbol) && // C722 (IsExternal(symbol) || ClassifyProcedure(symbol) == ProcedureDefinitionClass::Dummy)) || symbol.test(Symbol::Flag::ParentComp)}; if (!IsStmtFunctionDummy(symbol)) { // C726 if (object) { canHaveAssumedParameter |= object->isDummy() || (isChar && object->isFuncResult()) || IsStmtFunctionResult(symbol); // Avoids multiple messages } else { canHaveAssumedParameter |= symbol.has(); } } if (IsProcedurePointer(symbol) && symbol.HasExplicitInterface()) { // Don't check function result types here } else { Check(*type, canHaveAssumedParameter); } if (InPure() && InFunction() && IsFunctionResult(symbol)) { if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585 messages_.Say( "Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US); } if (derived) { // These cases would be caught be the general validation of local // variables in a pure context, but these messages are more specific. if (HasImpureFinal(symbol)) { // C1584 messages_.Say( "Result of pure function may not have an impure FINAL subroutine"_err_en_US); } if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) { SayWithDeclaration(*bad, "Result of pure function may not have polymorphic ALLOCATABLE ultimate component '%s'"_err_en_US, bad.BuildResultDesignatorName()); } } } } if (IsAssumedLengthCharacter(symbol) && IsFunction(symbol)) { // C723 if (symbol.attrs().test(Attr::RECURSIVE)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US); } if (symbol.Rank() > 0) { messages_.Say( "An assumed-length CHARACTER(*) function cannot return an array"_err_en_US); } if (!IsStmtFunction(symbol)) { if (IsElementalProcedure(symbol)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US); } else if (IsPureProcedure(symbol)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US); } } if (const Symbol *result{FindFunctionResult(symbol)}) { if (IsPointer(*result)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US); } } if (IsProcedurePointer(symbol) && IsDummy(symbol)) { if (context_.ShouldWarn(common::UsageWarning::Portability)) { messages_.Say( "A dummy procedure pointer should not have assumed-length CHARACTER(*) result type"_port_en_US); } // The non-dummy case is a hard error that's caught elsewhere. } } if (symbol.attrs().test(Attr::VALUE)) { CheckValue(symbol, derived); } if (IsDummy(symbol)) { if (IsNamedConstant(symbol)) { messages_.Say( "A dummy argument may not also be a named constant"_err_en_US); } } else if (IsFunctionResult(symbol)) { if (IsNamedConstant(symbol)) { messages_.Say( "A function result may not also be a named constant"_err_en_US); } CheckBindCFunctionResult(symbol); } if (IsAutomatic(symbol)) { if (const Symbol * common{FindCommonBlockContaining(symbol)}) { messages_.Say( "Automatic data object '%s' may not appear in COMMON block /%s/"_err_en_US, symbol.name(), common->name()); } else if (symbol.owner().IsModule()) { messages_.Say( "Automatic data object '%s' may not appear in a module"_err_en_US, symbol.name()); } } if (IsProcedure(symbol) && !symbol.HasExplicitInterface()) { if (IsAllocatable(symbol)) { messages_.Say( "Procedure '%s' may not be ALLOCATABLE without an explicit interface"_err_en_US, symbol.name()); } else if (symbol.Rank() > 0) { messages_.Say( "Procedure '%s' may not be an array without an explicit interface"_err_en_US, symbol.name()); } } } void CheckHelper::CheckCommonBlock(const Symbol &symbol) { CheckGlobalName(symbol); if (symbol.attrs().test(Attr::BIND_C)) { CheckBindC(symbol); } for (MutableSymbolRef ref : symbol.get().objects()) { if (ref->test(Symbol::Flag::CrayPointee)) { messages_.Say(ref->name(), "Cray pointee '%s' may not be a member of a COMMON block"_err_en_US, ref->name()); } } } // C859, C860 void CheckHelper::CheckExplicitSave(const Symbol &symbol) { const Symbol &ultimate{symbol.GetUltimate()}; if (ultimate.test(Symbol::Flag::InDataStmt)) { // checked elsewhere } else if (symbol.has()) { messages_.Say( "The USE-associated name '%s' may not have an explicit SAVE attribute"_err_en_US, symbol.name()); } else if (IsDummy(ultimate)) { messages_.Say( "The dummy argument '%s' may not have an explicit SAVE attribute"_err_en_US, symbol.name()); } else if (IsFunctionResult(ultimate)) { messages_.Say( "The function result variable '%s' may not have an explicit SAVE attribute"_err_en_US, symbol.name()); } else if (const Symbol * common{FindCommonBlockContaining(ultimate)}) { messages_.Say( "The entity '%s' in COMMON block /%s/ may not have an explicit SAVE attribute"_err_en_US, symbol.name(), common->name()); } else if (IsAutomatic(ultimate)) { messages_.Say( "The automatic object '%s' may not have an explicit SAVE attribute"_err_en_US, symbol.name()); } else if (!evaluate::IsVariable(ultimate) && !IsProcedurePointer(ultimate)) { messages_.Say( "The entity '%s' with an explicit SAVE attribute must be a variable, procedure pointer, or COMMON block"_err_en_US, symbol.name()); } } void CheckHelper::CheckBindCFunctionResult(const Symbol &symbol) { // C1553 if (!innermostSymbol_ || !IsBindCProcedure(*innermostSymbol_)) { return; } if (IsPointer(symbol) || IsAllocatable(symbol)) { messages_.Say( "BIND(C) function result cannot have ALLOCATABLE or POINTER attribute"_err_en_US); } if (const DeclTypeSpec * type{symbol.GetType()}; type && type->category() == DeclTypeSpec::Character) { bool isConstOne{false}; // 18.3.1(1) if (const auto &len{type->characterTypeSpec().length().GetExplicit()}) { if (auto constLen{evaluate::ToInt64(*len)}) { isConstOne = constLen == 1; } } if (!isConstOne) { messages_.Say( "BIND(C) character function result must have length one"_err_en_US); } } if (symbol.Rank() > 0) { messages_.Say("BIND(C) function result must be scalar"_err_en_US); } if (symbol.Corank()) { messages_.Say("BIND(C) function result cannot be a coarray"_err_en_US); } } void CheckHelper::CheckValue( const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865 if (!IsDummy(symbol)) { messages_.Say( "VALUE attribute may apply only to a dummy argument"_err_en_US); } if (IsProcedure(symbol)) { messages_.Say( "VALUE attribute may apply only to a dummy data object"_err_en_US); } if (IsAssumedSizeArray(symbol)) { messages_.Say( "VALUE attribute may not apply to an assumed-size array"_err_en_US); } if (evaluate::IsCoarray(symbol)) { messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US); } if (IsAllocatable(symbol)) { messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US); } else if (IsPointer(symbol)) { messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US); } if (IsIntentInOut(symbol)) { messages_.Say( "VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US); } else if (IsIntentOut(symbol)) { messages_.Say( "VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US); } if (symbol.attrs().test(Attr::VOLATILE)) { messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US); } if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_)) { if (IsOptional(symbol)) { messages_.Say( "VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US); } if (symbol.Rank() > 0) { messages_.Say( "VALUE attribute may not apply to an array in a BIND(C) procedure"_err_en_US); } } if (derived) { if (FindCoarrayUltimateComponent(*derived)) { messages_.Say( "VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US); } } if (evaluate::IsAssumedRank(symbol)) { messages_.Say( "VALUE attribute may not apply to an assumed-rank array"_err_en_US); } if (context_.ShouldWarn(common::UsageWarning::Portability) && IsAssumedLengthCharacter(symbol)) { // F'2008 feature not widely implemented messages_.Say( "VALUE attribute on assumed-length CHARACTER may not be portable"_port_en_US); } } void CheckHelper::CheckAssumedTypeEntity( // C709 const Symbol &symbol, const ObjectEntityDetails &details) { if (const DeclTypeSpec *type{symbol.GetType()}; type && type->category() == DeclTypeSpec::TypeStar) { if (!IsDummy(symbol)) { messages_.Say( "Assumed-type entity '%s' must be a dummy argument"_err_en_US, symbol.name()); } else { if (symbol.attrs().test(Attr::ALLOCATABLE)) { messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::POINTER)) { messages_.Say("Assumed-type argument '%s' cannot have the POINTER" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::VALUE)) { messages_.Say("Assumed-type argument '%s' cannot have the VALUE" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::INTENT_OUT)) { messages_.Say( "Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US, symbol.name()); } if (evaluate::IsCoarray(symbol)) { messages_.Say( "Assumed-type argument '%s' cannot be a coarray"_err_en_US, symbol.name()); } if (details.IsArray() && details.shape().IsExplicitShape()) { messages_.Say("Assumed-type array argument '%s' must be assumed shape," " assumed size, or assumed rank"_err_en_US, symbol.name()); } } } } void CheckHelper::CheckObjectEntity( const Symbol &symbol, const ObjectEntityDetails &details) { CheckSymbolType(symbol); CheckArraySpec(symbol, details.shape()); CheckConflicting(symbol, Attr::ALLOCATABLE, Attr::PARAMETER); CheckConflicting(symbol, Attr::ASYNCHRONOUS, Attr::PARAMETER); CheckConflicting(symbol, Attr::SAVE, Attr::PARAMETER); CheckConflicting(symbol, Attr::TARGET, Attr::PARAMETER); CheckConflicting(symbol, Attr::VOLATILE, Attr::PARAMETER); Check(details.shape()); Check(details.coshape()); if (details.shape().Rank() > common::maxRank) { messages_.Say( "'%s' has rank %d, which is greater than the maximum supported rank %d"_err_en_US, symbol.name(), details.shape().Rank(), common::maxRank); } else if (details.shape().Rank() + details.coshape().Rank() > common::maxRank) { messages_.Say( "'%s' has rank %d and corank %d, whose sum is greater than the maximum supported rank %d"_err_en_US, symbol.name(), details.shape().Rank(), details.coshape().Rank(), common::maxRank); } CheckAssumedTypeEntity(symbol, details); WarnMissingFinal(symbol); const DeclTypeSpec *type{details.type()}; const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr}; bool isComponent{symbol.owner().IsDerivedType()}; if (!details.coshape().empty()) { bool isDeferredCoshape{details.coshape().CanBeDeferredShape()}; if (IsAllocatable(symbol)) { if (!isDeferredCoshape) { // C827 messages_.Say("'%s' is an ALLOCATABLE coarray and must have a deferred" " coshape"_err_en_US, symbol.name()); } } else if (isComponent) { // C746 std::string deferredMsg{ isDeferredCoshape ? "" : " and have a deferred coshape"}; messages_.Say("Component '%s' is a coarray and must have the ALLOCATABLE" " attribute%s"_err_en_US, symbol.name(), deferredMsg); } else { if (!details.coshape().CanBeAssumedSize()) { // C828 messages_.Say( "'%s' is a non-ALLOCATABLE coarray and must have an explicit coshape"_err_en_US, symbol.name()); } } if (IsBadCoarrayType(derived)) { // C747 & C824 messages_.Say( "Coarray '%s' may not have type TEAM_TYPE, C_PTR, or C_FUNPTR"_err_en_US, symbol.name()); } if (evaluate::IsAssumedRank(symbol)) { messages_.Say("Coarray '%s' may not be an assumed-rank array"_err_en_US, symbol.name()); } } if (details.isDummy()) { if (IsIntentOut(symbol)) { // Some of these errors would also be caught by the general check // for definability of automatically deallocated local variables, // but these messages are more specific. if (FindUltimateComponent(symbol, [](const Symbol &x) { return evaluate::IsCoarray(x) && IsAllocatable(x); })) { // C846 messages_.Say( "An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US); } if (IsOrContainsEventOrLockComponent(symbol)) { // C847 messages_.Say( "An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US); } if (IsAssumedSizeArray(symbol)) { // C834 if (type && type->IsPolymorphic()) { messages_.Say( "An INTENT(OUT) assumed-size dummy argument array may not be polymorphic"_err_en_US); } if (derived) { if (derived->HasDefaultInitialization()) { messages_.Say( "An INTENT(OUT) assumed-size dummy argument array may not have a derived type with any default component initialization"_err_en_US); } if (IsFinalizable(*derived)) { messages_.Say( "An INTENT(OUT) assumed-size dummy argument array may not be finalizable"_err_en_US); } } } } if (InPure() && !IsStmtFunction(DEREF(innermostSymbol_)) && !IsPointer(symbol) && !IsIntentIn(symbol) && !symbol.attrs().test(Attr::VALUE)) { if (InFunction()) { // C1583 messages_.Say( "non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US); } else if (IsIntentOut(symbol)) { if (type && type->IsPolymorphic()) { // C1588 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not be polymorphic"_err_en_US); } else if (derived) { if (FindUltimateComponent(*derived, [](const Symbol &x) { const DeclTypeSpec *type{x.GetType()}; return type && type->IsPolymorphic(); })) { // C1588 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not have a polymorphic ultimate component"_err_en_US); } if (HasImpureFinal(symbol)) { // C1587 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not have an impure FINAL subroutine"_err_en_US); } } } else if (!IsIntentInOut(symbol)) { // C1586 messages_.Say( "non-POINTER dummy argument of pure subroutine must have INTENT() or VALUE attribute"_err_en_US); } } if (auto ignoreTKR{GetIgnoreTKR(symbol)}; !ignoreTKR.empty()) { const Symbol *ownerSymbol{symbol.owner().symbol()}; const auto *ownerSubp{ownerSymbol->detailsIf()}; bool inInterface{ownerSubp && ownerSubp->isInterface()}; bool inExplicitInterface{ inInterface && !IsSeparateModuleProcedureInterface(ownerSymbol)}; bool inModuleProc{ !inInterface && ownerSymbol && IsModuleProcedure(*ownerSymbol)}; if (!inExplicitInterface && !inModuleProc) { messages_.Say( "!DIR$ IGNORE_TKR may apply only in an interface or a module procedure"_err_en_US); } if (ownerSymbol && ownerSymbol->attrs().test(Attr::ELEMENTAL) && details.ignoreTKR().test(common::IgnoreTKR::Rank)) { messages_.Say( "!DIR$ IGNORE_TKR(R) may not apply in an ELEMENTAL procedure"_err_en_US); } if (IsPassedViaDescriptor(symbol)) { if (IsAllocatableOrObjectPointer(&symbol)) { if (inExplicitInterface) { WarnIfNotInModuleFile( "!DIR$ IGNORE_TKR should not apply to an allocatable or pointer"_warn_en_US); } else { messages_.Say( "!DIR$ IGNORE_TKR may not apply to an allocatable or pointer"_err_en_US); } } else if (ignoreTKR.test(common::IgnoreTKR::Rank)) { if (ignoreTKR.count() == 1 && evaluate::IsAssumedRank(symbol)) { WarnIfNotInModuleFile( "!DIR$ IGNORE_TKR(R) is not meaningful for an assumed-rank array"_warn_en_US); } else if (inExplicitInterface) { WarnIfNotInModuleFile( "!DIR$ IGNORE_TKR(R) should not apply to a dummy argument passed via descriptor"_warn_en_US); } else { messages_.Say( "!DIR$ IGNORE_TKR(R) may not apply to a dummy argument passed via descriptor"_err_en_US); } } } } } else if (symbol.attrs().test(Attr::INTENT_IN) || symbol.attrs().test(Attr::INTENT_OUT) || symbol.attrs().test(Attr::INTENT_INOUT)) { messages_.Say( "INTENT attributes may apply only to a dummy argument"_err_en_US); // C843 } else if (IsOptional(symbol)) { messages_.Say( "OPTIONAL attribute may apply only to a dummy argument"_err_en_US); // C849 } else if (!details.ignoreTKR().empty()) { messages_.Say( "!DIR$ IGNORE_TKR directive may apply only to a dummy data argument"_err_en_US); } if (InElemental()) { if (details.isDummy()) { // C15100 if (details.shape().Rank() > 0) { messages_.Say( "A dummy argument of an ELEMENTAL procedure must be scalar"_err_en_US); } if (IsAllocatable(symbol)) { messages_.Say( "A dummy argument of an ELEMENTAL procedure may not be ALLOCATABLE"_err_en_US); } if (evaluate::IsCoarray(symbol)) { messages_.Say( "A dummy argument of an ELEMENTAL procedure may not be a coarray"_err_en_US); } if (IsPointer(symbol)) { messages_.Say( "A dummy argument of an ELEMENTAL procedure may not be a POINTER"_err_en_US); } if (!symbol.attrs().HasAny(Attrs{Attr::VALUE, Attr::INTENT_IN, Attr::INTENT_INOUT, Attr::INTENT_OUT})) { // C15102 messages_.Say( "A dummy argument of an ELEMENTAL procedure must have an INTENT() or VALUE attribute"_err_en_US); } } else if (IsFunctionResult(symbol)) { // C15101 if (details.shape().Rank() > 0) { messages_.Say( "The result of an ELEMENTAL function must be scalar"_err_en_US); } if (IsAllocatable(symbol)) { messages_.Say( "The result of an ELEMENTAL function may not be ALLOCATABLE"_err_en_US); } if (IsPointer(symbol)) { messages_.Say( "The result of an ELEMENTAL function may not be a POINTER"_err_en_US); } } } if (HasDeclarationInitializer(symbol)) { // C808; ignore DATA initialization CheckPointerInitialization(symbol); if (IsAutomatic(symbol)) { messages_.Say( "An automatic variable or component must not be initialized"_err_en_US); } else if (IsDummy(symbol)) { messages_.Say("A dummy argument must not be initialized"_err_en_US); } else if (IsFunctionResult(symbol)) { messages_.Say("A function result must not be initialized"_err_en_US); } else if (IsInBlankCommon(symbol)) { if (context_.ShouldWarn(common::LanguageFeature::InitBlankCommon)) { WarnIfNotInModuleFile( "A variable in blank COMMON should not be initialized"_port_en_US); } } } if (symbol.owner().kind() == Scope::Kind::BlockData) { if (IsAllocatable(symbol)) { messages_.Say( "An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US); } else if (IsInitialized(symbol) && !FindCommonBlockContaining(symbol)) { messages_.Say( "An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US); } } if (derived && InPure() && !InInterface() && IsAutomaticallyDestroyed(symbol) && !IsIntentOut(symbol) /*has better messages*/ && !IsFunctionResult(symbol) /*ditto*/) { // Check automatically deallocated local variables for possible // problems with finalization in PURE. if (auto whyNot{ WhyNotDefinable(symbol.name(), symbol.owner(), {}, symbol)}) { if (auto *msg{messages_.Say( "'%s' may not be a local variable in a pure subprogram"_err_en_US, symbol.name())}) { msg->Attach(std::move(*whyNot)); } } } if (symbol.attrs().test(Attr::EXTERNAL)) { SayWithDeclaration(symbol, "'%s' is a data object and may not be EXTERNAL"_err_en_US, symbol.name()); } // Check CUDA attributes and special circumstances of being in device // subprograms const Scope &progUnit{GetProgramUnitContaining(symbol)}; const auto *subpDetails{!isComponent && progUnit.symbol() ? progUnit.symbol()->detailsIf() : nullptr}; bool inDeviceSubprogram{IsCUDADeviceContext(&symbol.owner())}; if (inDeviceSubprogram) { if (IsSaved(symbol)) { WarnIfNotInModuleFile( "'%s' should not have the SAVE attribute or initialization in a device subprogram"_warn_en_US, symbol.name()); } if (IsPointer(symbol)) { WarnIfNotInModuleFile( "Pointer '%s' may not be associated in a device subprogram"_warn_en_US, symbol.name()); } if (details.isDummy() && details.cudaDataAttr().value_or(common::CUDADataAttr::Device) != common::CUDADataAttr::Device && details.cudaDataAttr().value_or(common::CUDADataAttr::Device) != common::CUDADataAttr::Managed) { WarnIfNotInModuleFile( "Dummy argument '%s' may not have ATTRIBUTES(%s) in a device subprogram"_warn_en_US, symbol.name(), parser::ToUpperCaseLetters( common::EnumToString(*details.cudaDataAttr()))); } } if (details.cudaDataAttr()) { if (auto dyType{evaluate::DynamicType::From(symbol)}) { if (dyType->category() != TypeCategory::Derived) { if (!IsCUDAIntrinsicType(*dyType)) { messages_.Say( "'%s' has intrinsic type '%s' that is not available on the device"_err_en_US, symbol.name(), dyType->AsFortran()); } } } auto attr{*details.cudaDataAttr()}; switch (attr) { case common::CUDADataAttr::Constant: if (subpDetails && !inDeviceSubprogram) { messages_.Say( "Object '%s' with ATTRIBUTES(CONSTANT) may not be declared in a host subprogram"_err_en_US, symbol.name()); } else if (IsAllocatableOrPointer(symbol) || symbol.attrs().test(Attr::TARGET)) { messages_.Say( "Object '%s' with ATTRIBUTES(CONSTANT) may not be allocatable, pointer, or target"_err_en_US, symbol.name()); } else if (auto shape{evaluate::GetShape(foldingContext_, symbol)}; !shape || !evaluate::AsConstantExtents(foldingContext_, *shape)) { messages_.Say( "Object '%s' with ATTRIBUTES(CONSTANT) must have constant array bounds"_err_en_US, symbol.name()); } break; case common::CUDADataAttr::Device: if (isComponent && !IsAllocatable(symbol)) { messages_.Say( "Component '%s' with ATTRIBUTES(DEVICE) must also be allocatable"_err_en_US, symbol.name()); } if (IsAssumedSizeArray(symbol)) { messages_.Say( "Object '%s' with ATTRIBUTES(DEVICE) may not be assumed size"_err_en_US, symbol.name()); } break; case common::CUDADataAttr::Managed: if (!IsAutomatic(symbol) && !IsAllocatable(symbol) && !details.isDummy() && !evaluate::IsExplicitShape(symbol)) { messages_.Say( "Object '%s' with ATTRIBUTES(MANAGED) must also be allocatable, automatic, explicit shape, or a dummy argument"_err_en_US, symbol.name()); } break; case common::CUDADataAttr::Pinned: if (inDeviceSubprogram) { WarnIfNotInModuleFile( "Object '%s' with ATTRIBUTES(PINNED) may not be declared in a device subprogram"_warn_en_US, symbol.name()); } else if (IsPointer(symbol)) { WarnIfNotInModuleFile( "Object '%s' with ATTRIBUTES(PINNED) may not be a pointer"_warn_en_US, symbol.name()); } else if (!IsAllocatable(symbol)) { WarnIfNotInModuleFile( "Object '%s' with ATTRIBUTES(PINNED) should also be allocatable"_warn_en_US, symbol.name()); } break; case common::CUDADataAttr::Shared: if (IsAllocatableOrPointer(symbol) || symbol.attrs().test(Attr::TARGET)) { messages_.Say( "Object '%s' with ATTRIBUTES(SHARED) may not be allocatable, pointer, or target"_err_en_US, symbol.name()); } else if (!inDeviceSubprogram) { messages_.Say( "Object '%s' with ATTRIBUTES(SHARED) must be declared in a device subprogram"_err_en_US, symbol.name()); } break; case common::CUDADataAttr::Unified: if ((!subpDetails || inDeviceSubprogram) && !isComponent) { messages_.Say( "Object '%s' with ATTRIBUTES(UNIFIED) must be declared in a host subprogram"_err_en_US, symbol.name()); } break; case common::CUDADataAttr::Texture: messages_.Say( "ATTRIBUTES(TEXTURE) is obsolete and no longer supported"_err_en_US); break; } if (attr != common::CUDADataAttr::Pinned) { if (details.commonBlock()) { messages_.Say( "Object '%s' with ATTRIBUTES(%s) may not be in COMMON"_err_en_US, symbol.name(), parser::ToUpperCaseLetters(common::EnumToString(attr))); } else if (FindEquivalenceSet(symbol)) { messages_.Say( "Object '%s' with ATTRIBUTES(%s) may not be in an equivalence group"_err_en_US, symbol.name(), parser::ToUpperCaseLetters(common::EnumToString(attr))); } } if (subpDetails /* not a module variable */ && IsSaved(symbol) && !inDeviceSubprogram && !IsAllocatable(symbol) && attr == common::CUDADataAttr::Device) { messages_.Say( "Saved object '%s' in host code may not have ATTRIBUTES(DEVICE) unless allocatable"_err_en_US, symbol.name(), parser::ToUpperCaseLetters(common::EnumToString(attr))); } if (isComponent) { if (attr == common::CUDADataAttr::Device) { const DeclTypeSpec *type{symbol.GetType()}; if (const DerivedTypeSpec * derived{type ? type->AsDerived() : nullptr}) { DirectComponentIterator directs{*derived}; if (auto iter{std::find_if(directs.begin(), directs.end(), [](const Symbol &) { return false; })}) { messages_.Say( "Derived type component '%s' may not have ATTRIBUTES(DEVICE) as it has a direct device component '%s'"_err_en_US, symbol.name(), iter.BuildResultDesignatorName()); } } } else if (attr == common::CUDADataAttr::Constant || attr == common::CUDADataAttr::Shared) { messages_.Say( "Derived type component '%s' may not have ATTRIBUTES(%s)"_err_en_US, symbol.name(), parser::ToUpperCaseLetters(common::EnumToString(attr))); } } else if (!subpDetails && symbol.owner().kind() != Scope::Kind::Module && symbol.owner().kind() != Scope::Kind::MainProgram && symbol.owner().kind() != Scope::Kind::BlockConstruct) { messages_.Say( "ATTRIBUTES(%s) may apply only to module, host subprogram, block, or device subprogram data"_err_en_US, parser::ToUpperCaseLetters(common::EnumToString(attr))); } } if (derived && derived->IsVectorType()) { CHECK(type); std::string typeName{type->AsFortran()}; if (IsAssumedShape(symbol)) { SayWithDeclaration(symbol, "Assumed-shape entity of %s type is not supported"_err_en_US, typeName); } else if (IsDeferredShape(symbol)) { SayWithDeclaration(symbol, "Deferred-shape entity of %s type is not supported"_err_en_US, typeName); } else if (evaluate::IsAssumedRank(symbol)) { SayWithDeclaration(symbol, "Assumed Rank entity of %s type is not supported"_err_en_US, typeName); } } } void CheckHelper::CheckPointerInitialization(const Symbol &symbol) { if (IsPointer(symbol) && !context_.HasError(symbol) && !scopeIsUninstantiatedPDT_) { if (const auto *object{symbol.detailsIf()}) { if (object->init()) { // C764, C765; C808 if (auto designator{evaluate::AsGenericExpr(symbol)}) { auto restorer{messages_.SetLocation(symbol.name())}; context_.set_location(symbol.name()); CheckInitialDataPointerTarget( context_, *designator, *object->init(), DEREF(scope_)); } } } else if (const auto *proc{symbol.detailsIf()}) { if (proc->init() && *proc->init()) { // C1519 - must be nonelemental external or module procedure, // or an unrestricted specific intrinsic function. const Symbol &ultimate{(*proc->init())->GetUltimate()}; bool checkTarget{true}; if (ultimate.attrs().test(Attr::INTRINSIC)) { if (auto intrinsic{context_.intrinsics().IsSpecificIntrinsicFunction( ultimate.name().ToString())}; !intrinsic || intrinsic->isRestrictedSpecific) { // C1030 context_.Say( "Intrinsic procedure '%s' is not an unrestricted specific " "intrinsic permitted for use as the initializer for procedure " "pointer '%s'"_err_en_US, ultimate.name(), symbol.name()); checkTarget = false; } } else if ((!ultimate.attrs().test(Attr::EXTERNAL) && ultimate.owner().kind() != Scope::Kind::Module) || IsDummy(ultimate) || IsPointer(ultimate)) { context_.Say("Procedure pointer '%s' initializer '%s' is neither " "an external nor a module procedure"_err_en_US, symbol.name(), ultimate.name()); checkTarget = false; } else if (IsElementalProcedure(ultimate)) { context_.Say("Procedure pointer '%s' cannot be initialized with the " "elemental procedure '%s'"_err_en_US, symbol.name(), ultimate.name()); checkTarget = false; } if (checkTarget) { SomeExpr lhs{evaluate::ProcedureDesignator{symbol}}; SomeExpr rhs{evaluate::ProcedureDesignator{**proc->init()}}; CheckPointerAssignment(context_, lhs, rhs, GetProgramUnitOrBlockConstructContaining(symbol), /*isBoundsRemapping=*/false, /*isAssumedRank=*/false); } } } } } // The six different kinds of array-specs: // array-spec -> explicit-shape-list | deferred-shape-list // | assumed-shape-list | implied-shape-list // | assumed-size | assumed-rank // explicit-shape -> [ lb : ] ub // deferred-shape -> : // assumed-shape -> [ lb ] : // implied-shape -> [ lb : ] * // assumed-size -> [ explicit-shape-list , ] [ lb : ] * // assumed-rank -> .. // Note: // - deferred-shape is also an assumed-shape // - A single "*" or "lb:*" might be assumed-size or implied-shape-list void CheckHelper::CheckArraySpec( const Symbol &symbol, const ArraySpec &arraySpec) { if (arraySpec.Rank() == 0) { return; } bool isExplicit{arraySpec.IsExplicitShape()}; bool canBeDeferred{arraySpec.CanBeDeferredShape()}; bool canBeImplied{arraySpec.CanBeImpliedShape()}; bool canBeAssumedShape{arraySpec.CanBeAssumedShape()}; bool canBeAssumedSize{arraySpec.CanBeAssumedSize()}; bool isAssumedRank{arraySpec.IsAssumedRank()}; bool isCUDAShared{ GetCUDADataAttr(&symbol).value_or(common::CUDADataAttr::Device) == common::CUDADataAttr::Shared}; bool isCrayPointee{symbol.test(Symbol::Flag::CrayPointee)}; std::optional msg; if (isCrayPointee && !isExplicit && !canBeAssumedSize) { msg = "Cray pointee '%s' must have explicit shape or assumed size"_err_en_US; } else if (IsAllocatableOrPointer(symbol) && !canBeDeferred && !isAssumedRank) { if (symbol.owner().IsDerivedType()) { // C745 if (IsAllocatable(symbol)) { msg = "Allocatable array component '%s' must have" " deferred shape"_err_en_US; } else { msg = "Array pointer component '%s' must have deferred shape"_err_en_US; } } else { if (IsAllocatable(symbol)) { // C832 msg = "Allocatable array '%s' must have deferred shape or" " assumed rank"_err_en_US; } else { msg = "Array pointer '%s' must have deferred shape or" " assumed rank"_err_en_US; } } } else if (IsDummy(symbol)) { if (canBeImplied && !canBeAssumedSize) { // C836 msg = "Dummy array argument '%s' may not have implied shape"_err_en_US; } } else if (canBeAssumedShape && !canBeDeferred) { msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US; } else if (isAssumedRank) { // C837 msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US; } else if (canBeAssumedSize && !canBeImplied && !isCUDAShared && !isCrayPointee) { // C833 msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US; } else if (canBeImplied) { if (!IsNamedConstant(symbol) && !isCUDAShared && !isCrayPointee) { // C835, C836 msg = "Implied-shape array '%s' must be a named constant or a " "dummy argument"_err_en_US; } } else if (IsNamedConstant(symbol)) { if (!isExplicit && !canBeImplied) { msg = "Named constant '%s' array must have constant or" " implied shape"_err_en_US; } } else if (!isExplicit && !(IsAllocatableOrPointer(symbol) || isCrayPointee)) { if (symbol.owner().IsDerivedType()) { // C749 msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must" " have explicit shape"_err_en_US; } else { // C816 msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have" " explicit shape"_err_en_US; } } if (msg) { context_.Say(std::move(*msg), symbol.name()); } } void CheckHelper::CheckProcEntity( const Symbol &symbol, const ProcEntityDetails &details) { CheckSymbolType(symbol); const Symbol *interface{details.procInterface()}; if (details.isDummy()) { if (!symbol.attrs().test(Attr::POINTER) && // C843 (symbol.attrs().test(Attr::INTENT_IN) || symbol.attrs().test(Attr::INTENT_OUT) || symbol.attrs().test(Attr::INTENT_INOUT))) { messages_.Say("A dummy procedure without the POINTER attribute" " may not have an INTENT attribute"_err_en_US); } if (InElemental()) { // C15100 messages_.Say( "An ELEMENTAL subprogram may not have a dummy procedure"_err_en_US); } if (interface && IsElementalProcedure(*interface)) { // There's no explicit constraint or "shall" that we can find in the // standard for this check, but it seems to be implied in multiple // sites, and ELEMENTAL non-intrinsic actual arguments *are* // explicitly forbidden. But we allow "PROCEDURE(SIN)::dummy" // because it is explicitly legal to *pass* the specific intrinsic // function SIN as an actual argument. if (interface->attrs().test(Attr::INTRINSIC)) { if (context_.ShouldWarn(common::UsageWarning::Portability)) { messages_.Say( "A dummy procedure should not have an ELEMENTAL intrinsic as its interface"_port_en_US); } } else { messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US); } } } else if (symbol.attrs().test(Attr::INTENT_IN) || symbol.attrs().test(Attr::INTENT_OUT) || symbol.attrs().test(Attr::INTENT_INOUT)) { messages_.Say("INTENT attributes may apply only to a dummy " "argument"_err_en_US); // C843 } else if (IsOptional(symbol)) { messages_.Say("OPTIONAL attribute may apply only to a dummy " "argument"_err_en_US); // C849 } else if (IsPointer(symbol)) { CheckPointerInitialization(symbol); if (interface) { if (interface->attrs().test(Attr::INTRINSIC)) { auto intrinsic{context_.intrinsics().IsSpecificIntrinsicFunction( interface->name().ToString())}; if (!intrinsic || intrinsic->isRestrictedSpecific) { // C1515 messages_.Say( "Intrinsic procedure '%s' is not an unrestricted specific " "intrinsic permitted for use as the definition of the interface " "to procedure pointer '%s'"_err_en_US, interface->name(), symbol.name()); } else if (IsElementalProcedure(*interface)) { if (context_.ShouldWarn(common::UsageWarning::Portability)) { messages_.Say( "Procedure pointer '%s' should not have an ELEMENTAL intrinsic as its interface"_port_en_US, symbol.name()); // C1517 } } } else if (IsElementalProcedure(*interface)) { messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US, symbol.name()); // C1517 } } if (symbol.owner().IsDerivedType()) { CheckPassArg(symbol, interface, details); } } else if (symbol.owner().IsDerivedType()) { const auto &name{symbol.name()}; messages_.Say(name, "Procedure component '%s' must have POINTER attribute"_err_en_US, name); } CheckExternal(symbol); } // When a module subprogram has the MODULE prefix the following must match // with the corresponding separate module procedure interface body: // - C1549: characteristics and dummy argument names // - C1550: binding label // - C1551: NON_RECURSIVE prefix class SubprogramMatchHelper { public: explicit SubprogramMatchHelper(CheckHelper &checkHelper) : checkHelper{checkHelper} {} void Check(const Symbol &, const Symbol &); private: SemanticsContext &context() { return checkHelper.context(); } void CheckDummyArg(const Symbol &, const Symbol &, const DummyArgument &, const DummyArgument &); void CheckDummyDataObject(const Symbol &, const Symbol &, const DummyDataObject &, const DummyDataObject &); void CheckDummyProcedure(const Symbol &, const Symbol &, const DummyProcedure &, const DummyProcedure &); bool CheckSameIntent( const Symbol &, const Symbol &, common::Intent, common::Intent); template void Say( const Symbol &, const Symbol &, parser::MessageFixedText &&, A &&...); template bool CheckSameAttrs(const Symbol &, const Symbol &, ATTRS, ATTRS); bool ShapesAreCompatible(const DummyDataObject &, const DummyDataObject &); evaluate::Shape FoldShape(const evaluate::Shape &); std::string AsFortran(DummyDataObject::Attr attr) { return parser::ToUpperCaseLetters(DummyDataObject::EnumToString(attr)); } std::string AsFortran(DummyProcedure::Attr attr) { return parser::ToUpperCaseLetters(DummyProcedure::EnumToString(attr)); } CheckHelper &checkHelper; }; // 15.6.2.6 para 3 - can the result of an ENTRY differ from its function? bool CheckHelper::IsResultOkToDiffer(const FunctionResult &result) { if (result.attrs.test(FunctionResult::Attr::Allocatable) || result.attrs.test(FunctionResult::Attr::Pointer)) { return false; } const auto *typeAndShape{result.GetTypeAndShape()}; if (!typeAndShape || typeAndShape->Rank() != 0) { return false; } auto category{typeAndShape->type().category()}; if (category == TypeCategory::Character || category == TypeCategory::Derived) { return false; } int kind{typeAndShape->type().kind()}; return kind == context_.GetDefaultKind(category) || (category == TypeCategory::Real && kind == context_.doublePrecisionKind()); } void CheckHelper::CheckSubprogram( const Symbol &symbol, const SubprogramDetails &details) { if (const Symbol *iface{FindSeparateModuleSubprogramInterface(&symbol)}) { SubprogramMatchHelper{*this}.Check(symbol, *iface); } if (const Scope *entryScope{details.entryScope()}) { // ENTRY 15.6.2.6, esp. C1571 std::optional error; const Symbol *subprogram{entryScope->symbol()}; const SubprogramDetails *subprogramDetails{nullptr}; if (subprogram) { subprogramDetails = subprogram->detailsIf(); } if (!(entryScope->parent().IsGlobal() || entryScope->parent().IsModule() || entryScope->parent().IsSubmodule())) { error = "ENTRY may not appear in an internal subprogram"_err_en_US; } else if (subprogramDetails && details.isFunction() && subprogramDetails->isFunction() && !context_.HasError(details.result()) && !context_.HasError(subprogramDetails->result())) { auto result{FunctionResult::Characterize( details.result(), context_.foldingContext())}; auto subpResult{FunctionResult::Characterize( subprogramDetails->result(), context_.foldingContext())}; if (result && subpResult && *result != *subpResult && (!IsResultOkToDiffer(*result) || !IsResultOkToDiffer(*subpResult))) { error = "Result of ENTRY is not compatible with result of containing function"_err_en_US; } } if (error) { if (auto *msg{messages_.Say(symbol.name(), *error)}) { if (subprogram) { msg->Attach(subprogram->name(), "Containing subprogram"_en_US); } } } } if (const MaybeExpr & stmtFunction{details.stmtFunction()}) { if (auto msg{evaluate::CheckStatementFunction( symbol, *stmtFunction, context_.foldingContext())}) { SayWithDeclaration(symbol, std::move(*msg)); } else if (IsPointer(symbol)) { SayWithDeclaration(symbol, "A statement function must not have the POINTER attribute"_err_en_US); } else if (details.result().flags().test(Symbol::Flag::Implicit)) { // 15.6.4 p2 weird requirement if (const Symbol * host{symbol.owner().parent().FindSymbol(symbol.name())}) { if (context_.ShouldWarn( common::LanguageFeature::StatementFunctionExtensions)) { evaluate::AttachDeclaration( messages_.Say(symbol.name(), "An implicitly typed statement function should not appear when the same symbol is available in its host scope"_port_en_US), *host); } } } if (GetProgramUnitOrBlockConstructContaining(symbol).kind() == Scope::Kind::BlockConstruct) { // C1107 messages_.Say(symbol.name(), "A statement function definition may not appear in a BLOCK construct"_err_en_US); } } if (IsElementalProcedure(symbol)) { // See comment on the similar check in CheckProcEntity() if (details.isDummy()) { messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US); } else { for (const Symbol *dummy : details.dummyArgs()) { if (!dummy) { // C15100 messages_.Say( "An ELEMENTAL subroutine may not have an alternate return dummy argument"_err_en_US); } } } } if (details.isInterface()) { if (!details.isDummy() && details.isFunction() && IsAssumedLengthCharacter(details.result())) { // C721 messages_.Say(details.result().name(), "A function interface may not declare an assumed-length CHARACTER(*) result"_err_en_US); } } CheckExternal(symbol); CheckModuleProcedureDef(symbol); auto cudaAttrs{details.cudaSubprogramAttrs()}; if (cudaAttrs && (*cudaAttrs == common::CUDASubprogramAttrs::Global || *cudaAttrs == common::CUDASubprogramAttrs::Grid_Global) && details.isFunction()) { messages_.Say(symbol.name(), "A function may not have ATTRIBUTES(GLOBAL) or ATTRIBUTES(GRID_GLOBAL)"_err_en_US); } if (cudaAttrs && *cudaAttrs != common::CUDASubprogramAttrs::Host) { // CUDA device subprogram checks if (symbol.attrs().HasAny({Attr::RECURSIVE, Attr::PURE, Attr::ELEMENTAL})) { messages_.Say(symbol.name(), "A device subprogram may not be RECURSIVE, PURE, or ELEMENTAL"_err_en_US); } if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) { messages_.Say(symbol.name(), "A device subprogram may not be an internal subprogram"_err_en_US); } } if ((!details.cudaLaunchBounds().empty() || !details.cudaClusterDims().empty()) && !(cudaAttrs && (*cudaAttrs == common::CUDASubprogramAttrs::Global || *cudaAttrs == common::CUDASubprogramAttrs::Grid_Global))) { messages_.Say(symbol.name(), "A subroutine may not have LAUNCH_BOUNDS() or CLUSTER_DIMS() unless it has ATTRIBUTES(GLOBAL) or ATTRIBUTES(GRID_GLOBAL)"_err_en_US); } if (!IsStmtFunction(symbol)) { if (const Scope * outerDevice{FindCUDADeviceContext(&symbol.owner())}; outerDevice && outerDevice->symbol()) { if (auto *msg{messages_.Say(symbol.name(), "'%s' may not be an internal procedure of CUDA device subprogram '%s'"_err_en_US, symbol.name(), outerDevice->symbol()->name())}) { msg->Attach(outerDevice->symbol()->name(), "Containing CUDA device subprogram"_en_US); } } } } void CheckHelper::CheckExternal(const Symbol &symbol) { if (IsExternal(symbol)) { std::string interfaceName{symbol.name().ToString()}; if (const auto *bind{symbol.GetBindName()}) { interfaceName = *bind; } if (const Symbol * global{FindGlobal(symbol)}; global && global != &symbol) { std::string definitionName{global->name().ToString()}; if (const auto *bind{global->GetBindName()}) { definitionName = *bind; } if (interfaceName == definitionName) { parser::Message *msg{nullptr}; if (!IsProcedure(*global)) { if ((symbol.flags().test(Symbol::Flag::Function) || symbol.flags().test(Symbol::Flag::Subroutine)) && context_.ShouldWarn(common::UsageWarning::ExternalNameConflict)) { msg = WarnIfNotInModuleFile( "The global entity '%s' corresponding to the local procedure '%s' is not a callable subprogram"_warn_en_US, global->name(), symbol.name()); } } else if (auto chars{Characterize(symbol)}) { if (auto globalChars{Characterize(*global)}) { if (chars->HasExplicitInterface()) { std::string whyNot; if (!chars->IsCompatibleWith(*globalChars, /*ignoreImplicitVsExplicit=*/false, &whyNot)) { msg = WarnIfNotInModuleFile( "The global subprogram '%s' is not compatible with its local procedure declaration (%s)"_warn_en_US, global->name(), whyNot); } } else if (!globalChars->CanBeCalledViaImplicitInterface()) { msg = messages_.Say( "The global subprogram '%s' may not be referenced via the implicit interface '%s'"_err_en_US, global->name(), symbol.name()); } } } if (msg) { if (msg->IsFatal()) { context_.SetError(symbol); } evaluate::AttachDeclaration(msg, *global); evaluate::AttachDeclaration(msg, symbol); } } } else if (auto iter{externalNames_.find(interfaceName)}; iter != externalNames_.end()) { const Symbol &previous{*iter->second}; if (auto chars{Characterize(symbol)}) { if (auto previousChars{Characterize(previous)}) { std::string whyNot; if (!chars->IsCompatibleWith(*previousChars, /*ignoreImplicitVsExplicit=*/false, &whyNot)) { if (auto *msg{WarnIfNotInModuleFile( "The external interface '%s' is not compatible with an earlier definition (%s)"_warn_en_US, symbol.name(), whyNot)}) { evaluate::AttachDeclaration(msg, previous); evaluate::AttachDeclaration(msg, symbol); } } } } } else { externalNames_.emplace(interfaceName, symbol); } } } void CheckHelper::CheckDerivedType( const Symbol &derivedType, const DerivedTypeDetails &details) { if (details.isForwardReferenced() && !context_.HasError(derivedType)) { messages_.Say("The derived type '%s' has not been defined"_err_en_US, derivedType.name()); } const Scope *scope{derivedType.scope()}; if (!scope) { CHECK(details.isForwardReferenced()); return; } CHECK(scope->symbol() == &derivedType); CHECK(scope->IsDerivedType()); if (derivedType.attrs().test(Attr::ABSTRACT) && // C734 (derivedType.attrs().test(Attr::BIND_C) || details.sequence())) { messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US); } if (const DeclTypeSpec *parent{FindParentTypeSpec(derivedType)}) { const DerivedTypeSpec *parentDerived{parent->AsDerived()}; if (!IsExtensibleType(parentDerived)) { // C705 messages_.Say("The parent type is not extensible"_err_en_US); } if (!derivedType.attrs().test(Attr::ABSTRACT) && parentDerived && parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) { ScopeComponentIterator components{*parentDerived}; for (const Symbol &component : components) { if (component.attrs().test(Attr::DEFERRED)) { if (scope->FindComponent(component.name()) == &component) { SayWithDeclaration(component, "Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US, parentDerived->typeSymbol().name(), component.name()); } } } } DerivedTypeSpec derived{derivedType.name(), derivedType}; derived.set_scope(*scope); if (FindCoarrayUltimateComponent(derived) && // C736 !(parentDerived && FindCoarrayUltimateComponent(*parentDerived))) { messages_.Say( "Type '%s' has a coarray ultimate component so the type at the base " "of its type extension chain ('%s') must be a type that has a " "coarray ultimate component"_err_en_US, derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name()); } if (FindEventOrLockPotentialComponent(derived) && // C737 !(FindEventOrLockPotentialComponent(*parentDerived) || IsEventTypeOrLockType(parentDerived))) { messages_.Say( "Type '%s' has an EVENT_TYPE or LOCK_TYPE component, so the type " "at the base of its type extension chain ('%s') must either have an " "EVENT_TYPE or LOCK_TYPE component, or be EVENT_TYPE or " "LOCK_TYPE"_err_en_US, derivedType.name(), scope->GetDerivedTypeBase().GetSymbol()->name()); } } if (HasIntrinsicTypeName(derivedType)) { // C729 messages_.Say("A derived type name cannot be the name of an intrinsic" " type"_err_en_US); } std::map previous; for (const auto &pair : details.finals()) { SourceName source{pair.first}; const Symbol &ref{*pair.second}; if (CheckFinal(ref, source, derivedType) && std::all_of(previous.begin(), previous.end(), [&](std::pair prev) { return CheckDistinguishableFinals( ref, source, *prev.second, prev.first, derivedType); })) { previous.emplace(source, ref); } } } // C786 bool CheckHelper::CheckFinal( const Symbol &subroutine, SourceName finalName, const Symbol &derivedType) { if (!IsModuleProcedure(subroutine)) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must be a module procedure"_err_en_US, subroutine.name(), derivedType.name()); return false; } const Procedure *proc{Characterize(subroutine)}; if (!proc) { return false; // error recovery } if (!proc->IsSubroutine()) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must be a subroutine"_err_en_US, subroutine.name(), derivedType.name()); return false; } if (proc->dummyArguments.size() != 1) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must have a single dummy argument"_err_en_US, subroutine.name(), derivedType.name()); return false; } const auto &arg{proc->dummyArguments[0]}; const Symbol *errSym{&subroutine}; if (const auto *details{subroutine.detailsIf()}) { if (!details->dummyArgs().empty()) { if (const Symbol *argSym{details->dummyArgs()[0]}) { errSym = argSym; } } } const auto *ddo{std::get_if(&arg.u)}; if (!ddo) { SayWithDeclaration(subroutine, finalName, "FINAL subroutine '%s' of derived type '%s' must have a single dummy argument that is a data object"_err_en_US, subroutine.name(), derivedType.name()); return false; } bool ok{true}; if (arg.IsOptional()) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have an OPTIONAL dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->attrs.test(DummyDataObject::Attr::Allocatable)) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have an ALLOCATABLE dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->attrs.test(DummyDataObject::Attr::Pointer)) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a POINTER dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->intent == common::Intent::Out) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with INTENT(OUT)"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->attrs.test(DummyDataObject::Attr::Value)) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a dummy argument with the VALUE attribute"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->type.corank() > 0) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a coarray dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } if (ddo->type.type().IsPolymorphic()) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must not have a polymorphic dummy argument"_err_en_US, subroutine.name(), derivedType.name()); ok = false; } else if (ddo->type.type().category() != TypeCategory::Derived || &ddo->type.type().GetDerivedTypeSpec().typeSymbol() != &derivedType) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must have a TYPE(%s) dummy argument"_err_en_US, subroutine.name(), derivedType.name(), derivedType.name()); ok = false; } else { // check that all LEN type parameters are assumed for (auto ref : OrderParameterDeclarations(derivedType)) { if (IsLenTypeParameter(*ref)) { const auto *value{ ddo->type.type().GetDerivedTypeSpec().FindParameter(ref->name())}; if (!value || !value->isAssumed()) { SayWithDeclaration(*errSym, finalName, "FINAL subroutine '%s' of derived type '%s' must have a dummy argument with an assumed LEN type parameter '%s=*'"_err_en_US, subroutine.name(), derivedType.name(), ref->name()); ok = false; } } } } return ok; } bool CheckHelper::CheckDistinguishableFinals(const Symbol &f1, SourceName f1Name, const Symbol &f2, SourceName f2Name, const Symbol &derivedType) { const Procedure *p1{Characterize(f1)}; const Procedure *p2{Characterize(f2)}; if (p1 && p2) { std::optional areDistinct{characteristics::Distinguishable( context_.languageFeatures(), *p1, *p2)}; if (areDistinct.value_or(false)) { return true; } if (auto *msg{messages_.Say(f1Name, "FINAL subroutines '%s' and '%s' of derived type '%s' cannot be distinguished by rank or KIND type parameter value"_err_en_US, f1Name, f2Name, derivedType.name())}) { msg->Attach(f2Name, "FINAL declaration of '%s'"_en_US, f2.name()) .Attach(f1.name(), "Definition of '%s'"_en_US, f1Name) .Attach(f2.name(), "Definition of '%s'"_en_US, f2Name); } } return false; } void CheckHelper::CheckHostAssoc( const Symbol &symbol, const HostAssocDetails &details) { const Symbol &hostSymbol{details.symbol()}; if (hostSymbol.test(Symbol::Flag::ImplicitOrError)) { if (details.implicitOrSpecExprError) { messages_.Say("Implicitly typed local entity '%s' not allowed in" " specification expression"_err_en_US, symbol.name()); } else if (details.implicitOrExplicitTypeError) { messages_.Say( "No explicit type declared for '%s'"_err_en_US, symbol.name()); } } } void CheckHelper::CheckGeneric( const Symbol &symbol, const GenericDetails &details) { CheckSpecifics(symbol, details); common::visit(common::visitors{ [&](const common::DefinedIo &io) { CheckDefinedIoProc(symbol, details, io); }, [&](const GenericKind::OtherKind &other) { if (other == GenericKind::OtherKind::Name) { CheckGenericVsIntrinsic(symbol, details); } }, [](const auto &) {}, }, details.kind().u); // Ensure that shadowed symbols are checked if (details.specific()) { Check(*details.specific()); } if (details.derivedType()) { Check(*details.derivedType()); } } // Check that the specifics of this generic are distinguishable from each other void CheckHelper::CheckSpecifics( const Symbol &generic, const GenericDetails &details) { GenericKind kind{details.kind()}; DistinguishabilityHelper helper{context_}; for (const Symbol &specific : details.specificProcs()) { if (specific.attrs().test(Attr::ABSTRACT)) { if (auto *msg{messages_.Say(generic.name(), "Generic interface '%s' must not use abstract interface '%s' as a specific procedure"_err_en_US, generic.name(), specific.name())}) { msg->Attach( specific.name(), "Definition of '%s'"_en_US, specific.name()); } continue; } if (specific.attrs().test(Attr::INTRINSIC)) { // GNU Fortran allows INTRINSIC procedures in generics. auto intrinsic{context_.intrinsics().IsSpecificIntrinsicFunction( specific.name().ToString())}; if (intrinsic && !intrinsic->isRestrictedSpecific) { if (context_.ShouldWarn(common::LanguageFeature::IntrinsicAsSpecific)) { if (auto *msg{messages_.Say(specific.name(), "Specific procedure '%s' of generic interface '%s' should not be INTRINSIC"_port_en_US, specific.name(), generic.name())}) { msg->Attach( generic.name(), "Definition of '%s'"_en_US, generic.name()); } } } else { if (context_.ShouldWarn(common::LanguageFeature::IntrinsicAsSpecific)) { if (auto *msg{messages_.Say(specific.name(), "Procedure '%s' of generic interface '%s' is INTRINSIC but not an unrestricted specific intrinsic function"_port_en_US, specific.name(), generic.name())}) { msg->Attach( generic.name(), "Definition of '%s'"_en_US, generic.name()); } } continue; } } if (IsStmtFunction(specific)) { if (auto *msg{messages_.Say(specific.name(), "Specific procedure '%s' of generic interface '%s' may not be a statement function"_err_en_US, specific.name(), generic.name())}) { msg->Attach(generic.name(), "Definition of '%s'"_en_US, generic.name()); } continue; } if (const Procedure *procedure{Characterize(specific)}) { if (procedure->HasExplicitInterface()) { helper.Add(generic, kind, specific, *procedure); } else { if (auto *msg{messages_.Say(specific.name(), "Specific procedure '%s' of generic interface '%s' must have an explicit interface"_err_en_US, specific.name(), generic.name())}) { msg->Attach( generic.name(), "Definition of '%s'"_en_US, generic.name()); } } } } helper.Check(generic.owner()); } static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) { auto lhs{std::get(proc.dummyArguments[0].u).type}; auto rhs{std::get(proc.dummyArguments[1].u).type}; return Tristate::No == IsDefinedAssignment(lhs.type(), lhs.Rank(), rhs.type(), rhs.Rank()); } static bool ConflictsWithIntrinsicOperator( const GenericKind &kind, const Procedure &proc) { if (!kind.IsIntrinsicOperator()) { return false; } auto arg0{std::get(proc.dummyArguments[0].u).type}; auto type0{arg0.type()}; if (proc.dummyArguments.size() == 1) { // unary return common::visit( common::visitors{ [&](common::NumericOperator) { return IsIntrinsicNumeric(type0); }, [&](common::LogicalOperator) { return IsIntrinsicLogical(type0); }, [](const auto &) -> bool { DIE("bad generic kind"); }, }, kind.u); } else { // binary int rank0{arg0.Rank()}; auto arg1{std::get(proc.dummyArguments[1].u).type}; auto type1{arg1.type()}; int rank1{arg1.Rank()}; return common::visit( common::visitors{ [&](common::NumericOperator) { return IsIntrinsicNumeric(type0, rank0, type1, rank1); }, [&](common::LogicalOperator) { return IsIntrinsicLogical(type0, rank0, type1, rank1); }, [&](common::RelationalOperator opr) { return IsIntrinsicRelational(opr, type0, rank0, type1, rank1); }, [&](GenericKind::OtherKind x) { CHECK(x == GenericKind::OtherKind::Concat); return IsIntrinsicConcat(type0, rank0, type1, rank1); }, [](const auto &) -> bool { DIE("bad generic kind"); }, }, kind.u); } } // Check if this procedure can be used for defined operators (see 15.4.3.4.2). bool CheckHelper::CheckDefinedOperator(SourceName opName, GenericKind kind, const Symbol &specific, const Procedure &proc) { if (context_.HasError(specific)) { return false; } std::optional msg; auto checkDefinedOperatorArgs{ [&](SourceName opName, const Symbol &specific, const Procedure &proc) { bool arg0Defined{CheckDefinedOperatorArg(opName, specific, proc, 0)}; bool arg1Defined{CheckDefinedOperatorArg(opName, specific, proc, 1)}; return arg0Defined && arg1Defined; }}; if (specific.attrs().test(Attr::NOPASS)) { // C774 msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US; } else if (!proc.functionResult.has_value()) { msg = "%s procedure '%s' must be a function"_err_en_US; } else if (proc.functionResult->IsAssumedLengthCharacter()) { const auto *subpDetails{specific.detailsIf()}; if (subpDetails && !subpDetails->isDummy() && subpDetails->isInterface()) { // Error is caught by more general test for interfaces with // assumed-length character function results return true; } msg = "%s function '%s' may not have assumed-length CHARACTER(*)" " result"_err_en_US; } else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) { msg = std::move(m); } else if (!checkDefinedOperatorArgs(opName, specific, proc)) { return false; // error was reported } else if (ConflictsWithIntrinsicOperator(kind, proc)) { msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US; } else { return true; // OK } bool isFatal{msg->IsFatal()}; if (isFatal || !FindModuleFileContaining(specific.owner())) { SayWithDeclaration( specific, std::move(*msg), MakeOpName(opName), specific.name()); } if (isFatal) { context_.SetError(specific); } return !isFatal; } // If the number of arguments is wrong for this intrinsic operator, return // false and return the error message in msg. std::optional CheckHelper::CheckNumberOfArgs( const GenericKind &kind, std::size_t nargs) { if (!kind.IsIntrinsicOperator()) { if (nargs < 1 || nargs > 2) { return "%s function '%s' should have 1 or 2 dummy arguments"_warn_en_US; } return std::nullopt; } std::size_t min{2}, max{2}; // allowed number of args; default is binary common::visit(common::visitors{ [&](const common::NumericOperator &x) { if (x == common::NumericOperator::Add || x == common::NumericOperator::Subtract) { min = 1; // + and - are unary or binary } }, [&](const common::LogicalOperator &x) { if (x == common::LogicalOperator::Not) { min = 1; // .NOT. is unary max = 1; } }, [](const common::RelationalOperator &) { // all are binary }, [](const GenericKind::OtherKind &x) { CHECK(x == GenericKind::OtherKind::Concat); }, [](const auto &) { DIE("expected intrinsic operator"); }, }, kind.u); if (nargs >= min && nargs <= max) { return std::nullopt; } else if (max == 1) { return "%s function '%s' must have one dummy argument"_err_en_US; } else if (min == 2) { return "%s function '%s' must have two dummy arguments"_err_en_US; } else { return "%s function '%s' must have one or two dummy arguments"_err_en_US; } } bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName, const Symbol &symbol, const Procedure &proc, std::size_t pos) { if (pos >= proc.dummyArguments.size()) { return true; } auto &arg{proc.dummyArguments.at(pos)}; std::optional msg; if (arg.IsOptional()) { msg = "In %s function '%s', dummy argument '%s' may not be" " OPTIONAL"_err_en_US; } else if (const auto *dataObject{std::get_if(&arg.u)}; dataObject == nullptr) { msg = "In %s function '%s', dummy argument '%s' must be a" " data object"_err_en_US; } else if (dataObject->intent == common::Intent::Out) { msg = "In %s function '%s', dummy argument '%s' may not be INTENT(OUT)"_err_en_US; } else if (dataObject->intent != common::Intent::In && !dataObject->attrs.test(DummyDataObject::Attr::Value)) { msg = "In %s function '%s', dummy argument '%s' should have INTENT(IN) or VALUE attribute"_warn_en_US; } if (msg) { bool isFatal{msg->IsFatal()}; if (isFatal || !FindModuleFileContaining(symbol.owner())) { SayWithDeclaration(symbol, std::move(*msg), parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name); } if (isFatal) { return false; } } return true; } // Check if this procedure can be used for defined assignment (see 15.4.3.4.3). bool CheckHelper::CheckDefinedAssignment( const Symbol &specific, const Procedure &proc) { if (context_.HasError(specific)) { return false; } std::optional msg; if (specific.attrs().test(Attr::NOPASS)) { // C774 msg = "Defined assignment procedure '%s' may not have" " NOPASS attribute"_err_en_US; } else if (!proc.IsSubroutine()) { msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US; } else if (proc.dummyArguments.size() != 2) { msg = "Defined assignment subroutine '%s' must have" " two dummy arguments"_err_en_US; } else { // Check both arguments even if the first has an error. bool ok0{CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0)}; bool ok1{CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)}; if (!(ok0 && ok1)) { return false; // error was reported } else if (ConflictsWithIntrinsicAssignment(proc)) { msg = "Defined assignment subroutine '%s' conflicts with" " intrinsic assignment"_err_en_US; } else { return true; // OK } } SayWithDeclaration(specific, std::move(msg.value()), specific.name()); context_.SetError(specific); return false; } bool CheckHelper::CheckDefinedAssignmentArg( const Symbol &symbol, const DummyArgument &arg, int pos) { std::optional msg; if (arg.IsOptional()) { msg = "In defined assignment subroutine '%s', dummy argument '%s'" " may not be OPTIONAL"_err_en_US; } else if (const auto *dataObject{std::get_if(&arg.u)}) { if (pos == 0) { if (dataObject->intent == common::Intent::In) { msg = "In defined assignment subroutine '%s', first dummy argument '%s'" " may not have INTENT(IN)"_err_en_US; } else if (dataObject->intent != common::Intent::Out && dataObject->intent != common::Intent::InOut) { msg = "In defined assignment subroutine '%s', first dummy argument '%s'" " should have INTENT(OUT) or INTENT(INOUT)"_warn_en_US; } } else if (pos == 1) { if (dataObject->intent == common::Intent::Out) { msg = "In defined assignment subroutine '%s', second dummy" " argument '%s' may not have INTENT(OUT)"_err_en_US; } else if (dataObject->intent != common::Intent::In && !dataObject->attrs.test(DummyDataObject::Attr::Value)) { msg = "In defined assignment subroutine '%s', second dummy" " argument '%s' should have INTENT(IN) or VALUE attribute"_warn_en_US; } else if (dataObject->attrs.test(DummyDataObject::Attr::Pointer)) { msg = "In defined assignment subroutine '%s', second dummy argument '%s' must not be a pointer"_err_en_US; } else if (dataObject->attrs.test(DummyDataObject::Attr::Allocatable)) { msg = "In defined assignment subroutine '%s', second dummy argument '%s' must not be an allocatable"_err_en_US; } } else { DIE("pos must be 0 or 1"); } } else { msg = "In defined assignment subroutine '%s', dummy argument '%s'" " must be a data object"_err_en_US; } if (msg) { bool isFatal{msg->IsFatal()}; if (isFatal || !FindModuleFileContaining(symbol.owner())) { SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name); } if (isFatal) { context_.SetError(symbol); return false; } } return true; } // Report a conflicting attribute error if symbol has both of these attributes bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) { if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) { messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US, symbol.name(), AttrToString(a1), AttrToString(a2)); return true; } else { return false; } } void CheckHelper::WarnMissingFinal(const Symbol &symbol) { const auto *object{symbol.detailsIf()}; if (!object || object->IsAssumedRank() || (!IsAutomaticallyDestroyed(symbol) && symbol.owner().kind() != Scope::Kind::DerivedType)) { return; } const DeclTypeSpec *type{object->type()}; const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr}; const Symbol *derivedSym{derived ? &derived->typeSymbol() : nullptr}; int rank{object->shape().Rank()}; const Symbol *initialDerivedSym{derivedSym}; while (const auto *derivedDetails{ derivedSym ? derivedSym->detailsIf() : nullptr}) { if (!derivedDetails->finals().empty() && !derivedDetails->GetFinalForRank(rank)) { if (auto *msg{derivedSym == initialDerivedSym ? WarnIfNotInModuleFile(symbol.name(), "'%s' of derived type '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US, symbol.name(), derivedSym->name(), rank) : WarnIfNotInModuleFile(symbol.name(), "'%s' of derived type '%s' extended from '%s' does not have a FINAL subroutine for its rank (%d)"_warn_en_US, symbol.name(), initialDerivedSym->name(), derivedSym->name(), rank)}) { msg->Attach(derivedSym->name(), "Declaration of derived type '%s'"_en_US, derivedSym->name()); } return; } derived = derivedSym->GetParentTypeSpec(); derivedSym = derived ? &derived->typeSymbol() : nullptr; } } const Procedure *CheckHelper::Characterize(const Symbol &symbol) { auto it{characterizeCache_.find(symbol)}; if (it == characterizeCache_.end()) { auto pair{characterizeCache_.emplace(SymbolRef{symbol}, Procedure::Characterize(symbol, context_.foldingContext()))}; it = pair.first; } return common::GetPtrFromOptional(it->second); } void CheckHelper::CheckVolatile(const Symbol &symbol, const DerivedTypeSpec *derived) { // C866 - C868 if (IsIntentIn(symbol)) { messages_.Say( "VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US); } if (IsProcedure(symbol)) { messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US); } if (symbol.has() || symbol.has()) { const Symbol &ultimate{symbol.GetUltimate()}; if (evaluate::IsCoarray(ultimate)) { messages_.Say( "VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US); } if (derived) { if (FindCoarrayUltimateComponent(*derived)) { messages_.Say( "VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US); } } } } void CheckHelper::CheckContiguous(const Symbol &symbol) { if (evaluate::IsVariable(symbol) && ((IsPointer(symbol) && symbol.Rank() > 0) || IsAssumedShape(symbol) || evaluate::IsAssumedRank(symbol))) { } else if (!context_.IsEnabled( common::LanguageFeature::RedundantContiguous) || context_.ShouldWarn(common::LanguageFeature::RedundantContiguous)) { parser::MessageFixedText msg{symbol.owner().IsDerivedType() ? "CONTIGUOUS component '%s' should be an array with the POINTER attribute"_port_en_US : "CONTIGUOUS entity '%s' should be an array pointer, assumed-shape, or assumed-rank"_port_en_US}; if (!context_.IsEnabled(common::LanguageFeature::RedundantContiguous)) { msg.set_severity(parser::Severity::Error); } messages_.Say(std::move(msg), symbol.name()); } } void CheckHelper::CheckPointer(const Symbol &symbol) { // C852 CheckConflicting(symbol, Attr::POINTER, Attr::TARGET); CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); // C751 CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC); // Prohibit constant pointers. The standard does not explicitly prohibit // them, but the PARAMETER attribute requires a entity-decl to have an // initialization that is a constant-expr, and the only form of // initialization that allows a constant-expr is the one that's not a "=>" // pointer initialization. See C811, C807, and section 8.5.13. CheckConflicting(symbol, Attr::POINTER, Attr::PARAMETER); if (symbol.Corank() > 0) { messages_.Say( "'%s' may not have the POINTER attribute because it is a coarray"_err_en_US, symbol.name()); } } // C760 constraints on the passed-object dummy argument // C757 constraints on procedure pointer components void CheckHelper::CheckPassArg( const Symbol &proc, const Symbol *interface0, const WithPassArg &details) { if (proc.attrs().test(Attr::NOPASS)) { return; } const auto &name{proc.name()}; const Symbol *interface { interface0 ? FindInterface(*interface0) : nullptr }; if (!interface) { messages_.Say(name, "Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US, name); return; } const auto *subprogram{interface->detailsIf()}; if (!subprogram) { messages_.Say(name, "Procedure component '%s' has invalid interface '%s'"_err_en_US, name, interface->name()); return; } std::optional passName{details.passName()}; const auto &dummyArgs{subprogram->dummyArgs()}; if (!passName) { if (dummyArgs.empty()) { messages_.Say(name, proc.has() ? "Procedure component '%s' with no dummy arguments" " must have NOPASS attribute"_err_en_US : "Procedure binding '%s' with no dummy arguments" " must have NOPASS attribute"_err_en_US, name); context_.SetError(*interface); return; } Symbol *argSym{dummyArgs[0]}; if (!argSym) { messages_.Say(interface->name(), "Cannot use an alternate return as the passed-object dummy " "argument"_err_en_US); return; } passName = dummyArgs[0]->name(); } std::optional passArgIndex{}; for (std::size_t i{0}; i < dummyArgs.size(); ++i) { if (dummyArgs[i] && dummyArgs[i]->name() == *passName) { passArgIndex = i; break; } } if (!passArgIndex) { // C758 messages_.Say(*passName, "'%s' is not a dummy argument of procedure interface '%s'"_err_en_US, *passName, interface->name()); return; } const Symbol &passArg{*dummyArgs[*passArgIndex]}; std::optional msg; if (!passArg.has()) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " must be a data object"_err_en_US; } else if (passArg.attrs().test(Attr::POINTER)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the POINTER attribute"_err_en_US; } else if (passArg.attrs().test(Attr::ALLOCATABLE)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the ALLOCATABLE attribute"_err_en_US; } else if (passArg.attrs().test(Attr::VALUE)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the VALUE attribute"_err_en_US; } else if (passArg.Rank() > 0) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " must be scalar"_err_en_US; } if (msg) { messages_.Say(name, std::move(*msg), passName.value(), name); return; } const DeclTypeSpec *type{passArg.GetType()}; if (!type) { return; // an error already occurred } const Symbol &typeSymbol{*proc.owner().GetSymbol()}; const DerivedTypeSpec *derived{type->AsDerived()}; if (!derived || derived->typeSymbol() != typeSymbol) { messages_.Say(name, "Passed-object dummy argument '%s' of procedure '%s'" " must be of type '%s' but is '%s'"_err_en_US, passName.value(), name, typeSymbol.name(), type->AsFortran()); return; } if (IsExtensibleType(derived) != type->IsPolymorphic()) { messages_.Say(name, type->IsPolymorphic() ? "Passed-object dummy argument '%s' of procedure '%s'" " may not be polymorphic because '%s' is not extensible"_err_en_US : "Passed-object dummy argument '%s' of procedure '%s'" " must be polymorphic because '%s' is extensible"_err_en_US, passName.value(), name, typeSymbol.name()); return; } for (const auto &[paramName, paramValue] : derived->parameters()) { if (paramValue.isLen() && !paramValue.isAssumed()) { messages_.Say(name, "Passed-object dummy argument '%s' of procedure '%s'" " has non-assumed length parameter '%s'"_err_en_US, passName.value(), name, paramName); } } } void CheckHelper::CheckProcBinding( const Symbol &symbol, const ProcBindingDetails &binding) { const Scope &dtScope{symbol.owner()}; CHECK(dtScope.kind() == Scope::Kind::DerivedType); if (symbol.attrs().test(Attr::DEFERRED)) { if (const Symbol *dtSymbol{dtScope.symbol()}) { if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { // C733 SayWithDeclaration(*dtSymbol, "Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US, dtSymbol->name()); } } if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) { messages_.Say( "Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US, symbol.name()); } } if (binding.symbol().attrs().test(Attr::INTRINSIC) && !context_.intrinsics().IsSpecificIntrinsicFunction( binding.symbol().name().ToString())) { messages_.Say( "Intrinsic procedure '%s' is not a specific intrinsic permitted for use in the definition of binding '%s'"_err_en_US, binding.symbol().name(), symbol.name()); } bool isInaccessibleDeferred{false}; if (const Symbol * overridden{FindOverriddenBinding(symbol, isInaccessibleDeferred)}) { if (isInaccessibleDeferred) { SayWithDeclaration(*overridden, "Override of PRIVATE DEFERRED '%s' must appear in its module"_err_en_US, symbol.name()); } if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) { SayWithDeclaration(*overridden, "Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US, symbol.name()); } if (const auto *overriddenBinding{ overridden->detailsIf()}) { if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) { SayWithDeclaration(*overridden, "An overridden pure type-bound procedure binding must also be pure"_err_en_US); return; } if (!IsElementalProcedure(binding.symbol()) && IsElementalProcedure(*overridden)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US); return; } bool isNopass{symbol.attrs().test(Attr::NOPASS)}; if (isNopass != overridden->attrs().test(Attr::NOPASS)) { SayWithDeclaration(*overridden, isNopass ? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US : "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US); } else { const auto *bindingChars{Characterize(binding.symbol())}; const auto *overriddenChars{Characterize(*overridden)}; if (bindingChars && overriddenChars) { if (isNopass) { if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) { SayWithDeclaration(*overridden, "A NOPASS type-bound procedure and its override must have identical interfaces"_err_en_US); } } else if (!context_.HasError(binding.symbol())) { int passIndex{bindingChars->FindPassIndex(binding.passName())}; int overriddenPassIndex{ overriddenChars->FindPassIndex(overriddenBinding->passName())}; if (passIndex != overriddenPassIndex) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must use the same PASS argument"_err_en_US); } else if (!bindingChars->CanOverride( *overriddenChars, passIndex)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must have compatible interfaces"_err_en_US); } } } } if (symbol.attrs().test(Attr::PRIVATE)) { if (FindModuleContaining(dtScope) == FindModuleContaining(overridden->owner())) { // types declared in same madule if (!overridden->attrs().test(Attr::PRIVATE)) { SayWithDeclaration(*overridden, "A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US); } } else { // types declared in distinct madules if (!CheckAccessibleSymbol(dtScope.parent(), *overridden)) { SayWithDeclaration(*overridden, "A PRIVATE procedure may not override an accessible procedure"_err_en_US); } } } } else { SayWithDeclaration(*overridden, "A type-bound procedure binding may not have the same name as a parent component"_err_en_US); } } CheckPassArg(symbol, &binding.symbol(), binding); } void CheckHelper::Check(const Scope &scope) { scope_ = &scope; common::Restorer restorer{innermostSymbol_, innermostSymbol_}; if (const Symbol *symbol{scope.symbol()}) { innermostSymbol_ = symbol; } if (scope.IsParameterizedDerivedTypeInstantiation()) { auto restorer{common::ScopedSet(scopeIsUninstantiatedPDT_, false)}; auto restorer2{context_.foldingContext().messages().SetContext( scope.instantiationContext().get())}; for (const auto &pair : scope) { CheckPointerInitialization(*pair.second); } } else { auto restorer{common::ScopedSet( scopeIsUninstantiatedPDT_, scope.IsParameterizedDerivedType())}; for (const auto &set : scope.equivalenceSets()) { CheckEquivalenceSet(set); } for (const auto &pair : scope) { Check(*pair.second); } if (scope.IsSubmodule() && scope.symbol()) { // Submodule names are not in their parent's scopes Check(*scope.symbol()); } for (const auto &pair : scope.commonBlocks()) { CheckCommonBlock(*pair.second); } int mainProgCnt{0}; for (const Scope &child : scope.children()) { Check(child); // A program shall consist of exactly one main program (5.2.2). if (child.kind() == Scope::Kind::MainProgram) { ++mainProgCnt; if (mainProgCnt > 1) { messages_.Say(child.sourceRange(), "A source file cannot contain more than one main program"_err_en_US); } } } if (scope.kind() == Scope::Kind::BlockData) { CheckBlockData(scope); } if (auto name{scope.GetName()}) { auto iter{scope.find(*name)}; if (iter != scope.end()) { const char *kind{nullptr}; if (context_.ShouldWarn(common::LanguageFeature::BenignNameClash)) { switch (scope.kind()) { case Scope::Kind::Module: kind = scope.symbol()->get().isSubmodule() ? "submodule" : "module"; break; case Scope::Kind::MainProgram: kind = "main program"; break; case Scope::Kind::BlockData: kind = "BLOCK DATA subprogram"; break; default:; } if (kind) { messages_.Say(iter->second->name(), "Name '%s' declared in a %s should not have the same name as the %s"_port_en_US, *name, kind, kind); } } } } CheckGenericOps(scope); } } void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) { auto iter{ std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) { return FindCommonBlockContaining(object.symbol) != nullptr; })}; if (iter != set.end()) { const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))}; for (auto &object : set) { if (&object != &*iter) { if (auto *details{object.symbol.detailsIf()}) { if (details->commonBlock()) { if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1 if (auto *msg{messages_.Say(object.symbol.name(), "Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) { msg->Attach(iter->symbol.name(), "Other object in EQUIVALENCE set"_en_US) .Attach(details->commonBlock()->name(), "COMMON block containing '%s'"_en_US, object.symbol.name()) .Attach(commonBlock.name(), "COMMON block containing '%s'"_en_US, iter->symbol.name()); } } } else { // Mark all symbols in the equivalence set with the same COMMON // block to prevent spurious error messages about initialization // in BLOCK DATA outside COMMON details->set_commonBlock(commonBlock); } } } } } // TODO: Move C8106 (&al.) checks here from resolve-names-utils.cpp for (const EquivalenceObject &object : set) { if (object.symbol.test(Symbol::Flag::CrayPointee)) { messages_.Say(object.symbol.name(), "Cray pointee '%s' may not be a member of an EQUIVALENCE group"_err_en_US, object.symbol.name()); } } } void CheckHelper::CheckBlockData(const Scope &scope) { // BLOCK DATA subprograms should contain only named common blocks. // C1415 presents a list of statements that shouldn't appear in // BLOCK DATA, but so long as the subprogram contains no executable // code and allocates no storage outside named COMMON, we're happy // (e.g., an ENUM is strictly not allowed). for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; if (!(symbol.has() || symbol.has() || symbol.has() || symbol.has() || symbol.has() || symbol.has() || (symbol.has() && !symbol.attrs().test(Attr::POINTER)))) { messages_.Say(symbol.name(), "'%s' may not appear in a BLOCK DATA subprogram"_err_en_US, symbol.name()); } } } // Check distinguishability of generic assignment and operators. // For these, generics and generic bindings must be considered together. void CheckHelper::CheckGenericOps(const Scope &scope) { DistinguishabilityHelper helper{context_}; auto addSpecifics{[&](const Symbol &generic) { const auto *details{generic.GetUltimate().detailsIf()}; if (!details) { // Not a generic; ensure characteristics are defined if a function. auto restorer{messages_.SetLocation(generic.name())}; if (IsFunction(generic) && !context_.HasError(generic)) { if (const Symbol *result{FindFunctionResult(generic)}; result && !context_.HasError(*result)) { Characterize(generic); } } return; } GenericKind kind{details->kind()}; if (!kind.IsAssignment() && !kind.IsOperator()) { return; } const SymbolVector &specifics{details->specificProcs()}; const std::vector &bindingNames{details->bindingNames()}; for (std::size_t i{0}; i < specifics.size(); ++i) { const Symbol &specific{*specifics[i]}; auto restorer{messages_.SetLocation(bindingNames[i])}; if (const Procedure *proc{Characterize(specific)}) { if (kind.IsAssignment()) { if (!CheckDefinedAssignment(specific, *proc)) { continue; } } else { if (!CheckDefinedOperator(generic.name(), kind, specific, *proc)) { continue; } } helper.Add(generic, kind, specific, *proc); } } }}; for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; addSpecifics(symbol); const Symbol &ultimate{symbol.GetUltimate()}; if (ultimate.has()) { if (const Scope *typeScope{ultimate.scope()}) { for (const auto &pair2 : *typeScope) { addSpecifics(*pair2.second); } } } } helper.Check(scope); } static bool IsSubprogramDefinition(const Symbol &symbol) { const auto *subp{symbol.detailsIf()}; return subp && !subp->isInterface() && symbol.scope() && symbol.scope()->kind() == Scope::Kind::Subprogram; } static bool IsBlockData(const Symbol &symbol) { return symbol.scope() && symbol.scope()->kind() == Scope::Kind::BlockData; } static bool IsExternalProcedureDefinition(const Symbol &symbol) { return IsBlockData(symbol) || (IsSubprogramDefinition(symbol) && (IsExternal(symbol) || symbol.GetBindName())); } static std::optional DefinesGlobalName(const Symbol &symbol) { if (const auto *module{symbol.detailsIf()}) { if (!module->isSubmodule() && !symbol.owner().IsIntrinsicModules()) { return symbol.name().ToString(); } } else if (IsBlockData(symbol)) { return symbol.name().ToString(); } else { const std::string *bindC{symbol.GetBindName()}; if (symbol.has() || IsExternalProcedureDefinition(symbol) || (symbol.owner().IsGlobal() && IsExternal(symbol))) { return bindC ? *bindC : symbol.name().ToString(); } else if (bindC && (symbol.has() || IsModuleProcedure(symbol))) { return *bindC; } } return std::nullopt; } // 19.2 p2 void CheckHelper::CheckGlobalName(const Symbol &symbol) { if (auto global{DefinesGlobalName(symbol)}) { auto pair{globalNames_.emplace(std::move(*global), symbol)}; if (!pair.second) { const Symbol &other{*pair.first->second}; if (context_.HasError(symbol) || context_.HasError(other)) { // don't pile on } else if (symbol.has() && other.has() && symbol.name() == other.name()) { // Two common blocks can have the same global name so long as // they're not in the same scope. } else if ((IsProcedure(symbol) || IsBlockData(symbol)) && (IsProcedure(other) || IsBlockData(other)) && (!IsExternalProcedureDefinition(symbol) || !IsExternalProcedureDefinition(other))) { // both are procedures/BLOCK DATA, not both definitions } else if (symbol.has()) { if (context_.ShouldWarn(common::LanguageFeature::BenignNameClash)) { messages_.Say(symbol.name(), "Module '%s' conflicts with a global name"_port_en_US, pair.first->first); } } else if (other.has()) { if (context_.ShouldWarn(common::LanguageFeature::BenignNameClash)) { messages_.Say(symbol.name(), "Global name '%s' conflicts with a module"_port_en_US, pair.first->first); } } else if (auto *msg{messages_.Say(symbol.name(), "Two entities have the same global name '%s'"_err_en_US, pair.first->first)}) { msg->Attach(other.name(), "Conflicting declaration"_en_US); context_.SetError(symbol); context_.SetError(other); } } } } void CheckHelper::CheckProcedureAssemblyName(const Symbol &symbol) { if (!IsProcedure(symbol) || symbol != symbol.GetUltimate()) return; const std::string *bindName{symbol.GetBindName()}; const bool hasExplicitBindingLabel{ symbol.GetIsExplicitBindName() && bindName}; if (hasExplicitBindingLabel || IsExternal(symbol)) { const std::string assemblyName{hasExplicitBindingLabel ? *bindName : common::GetExternalAssemblyName( symbol.name().ToString(), context_.underscoring())}; auto pair{procedureAssemblyNames_.emplace(std::move(assemblyName), symbol)}; if (!pair.second) { const Symbol &other{*pair.first->second}; const bool otherHasExplicitBindingLabel{ other.GetIsExplicitBindName() && other.GetBindName()}; if (otherHasExplicitBindingLabel != hasExplicitBindingLabel) { // The BIND(C,NAME="...") binding label is the same as the name that // will be used in LLVM IR for an external procedure declared without // BIND(C) in the same file. While this is not forbidden by the // standard, this name collision would lead to a crash when producing // the IR. if (auto *msg{messages_.Say(symbol.name(), "%s procedure assembly name conflicts with %s procedure assembly name"_err_en_US, hasExplicitBindingLabel ? "BIND(C)" : "Non BIND(C)", hasExplicitBindingLabel ? "non BIND(C)" : "BIND(C)")}) { msg->Attach(other.name(), "Conflicting declaration"_en_US); } context_.SetError(symbol); context_.SetError(other); } // Otherwise, the global names also match and the conflict is analyzed // by CheckGlobalName. } } } void CheckHelper::CheckBindC(const Symbol &symbol) { bool isExplicitBindC{symbol.attrs().test(Attr::BIND_C)}; if (isExplicitBindC) { CheckConflicting(symbol, Attr::BIND_C, Attr::PARAMETER); CheckConflicting(symbol, Attr::BIND_C, Attr::ELEMENTAL); } else { // symbol must be interoperable (e.g., dummy argument of interoperable // procedure interface) but is not itself BIND(C). } if (const std::string * bindName{symbol.GetBindName()}; bindName) { // has a binding name if (!bindName->empty()) { bool ok{bindName->front() == '_' || parser::IsLetter(bindName->front())}; for (char ch : *bindName) { ok &= ch == '_' || parser::IsLetter(ch) || parser::IsDecimalDigit(ch); } if (!ok) { messages_.Say(symbol.name(), "Symbol has a BIND(C) name that is not a valid C language identifier"_err_en_US); context_.SetError(symbol); } } } if (symbol.GetIsExplicitBindName()) { // BIND(C,NAME=...); C1552, C1529 auto defClass{ClassifyProcedure(symbol)}; if (IsProcedurePointer(symbol)) { messages_.Say(symbol.name(), "A procedure pointer may not have a BIND attribute with a name"_err_en_US); context_.SetError(symbol); } else if (defClass == ProcedureDefinitionClass::None || IsExternal(symbol)) { } else if (symbol.attrs().test(Attr::ABSTRACT)) { messages_.Say(symbol.name(), "An ABSTRACT interface may not have a BIND attribute with a name"_err_en_US); context_.SetError(symbol); } else if (defClass == ProcedureDefinitionClass::Internal || defClass == ProcedureDefinitionClass::Dummy) { messages_.Say(symbol.name(), "An internal or dummy procedure may not have a BIND(C,NAME=) binding label"_err_en_US); context_.SetError(symbol); } } if (symbol.has()) { if (isExplicitBindC && !symbol.owner().IsModule()) { messages_.Say(symbol.name(), "A variable with BIND(C) attribute may only appear in the specification part of a module"_err_en_US); context_.SetError(symbol); } auto shape{evaluate::GetShape(foldingContext_, symbol)}; if (shape) { if (evaluate::GetRank(*shape) == 0) { // 18.3.4 if (isExplicitBindC && IsAllocatableOrPointer(symbol)) { messages_.Say(symbol.name(), "A scalar interoperable variable may not be ALLOCATABLE or POINTER"_err_en_US); context_.SetError(symbol); } } else { // 18.3.5 if (auto extents{ evaluate::AsConstantExtents(foldingContext_, *shape)}) { if (evaluate::GetSize(*extents) == 0) { SayWithDeclaration(symbol, symbol.name(), "Interoperable array must have at least one element"_err_en_US); context_.SetError(symbol); } } else if ((isExplicitBindC || symbol.attrs().test(Attr::VALUE)) && !evaluate::IsExplicitShape(symbol) && !IsAssumedSizeArray(symbol)) { SayWithDeclaration(symbol, symbol.name(), "BIND(C) array must have explicit shape or be assumed-size unless a dummy argument without the VALUE attribute"_err_en_US); context_.SetError(symbol); } } } if (const auto *type{symbol.GetType()}) { const auto *derived{type->AsDerived()}; if (derived && !derived->typeSymbol().attrs().test(Attr::BIND_C)) { if (auto *msg{messages_.Say(symbol.name(), "The derived type of a BIND(C) object must also be BIND(C)"_err_en_US)}) { msg->Attach( derived->typeSymbol().name(), "Non-interoperable type"_en_US); } context_.SetError(symbol); } if (type->IsAssumedType() || IsAssumedLengthCharacter(symbol)) { // ok } else if (IsAllocatableOrPointer(symbol) && type->category() == DeclTypeSpec::Character && type->characterTypeSpec().length().isDeferred()) { // ok; F'2023 18.3.7 p2(6) } else if (derived || IsInteroperableIntrinsicType(*type, context_.languageFeatures())) { // F'2023 18.3.7 p2(4,5) } else if (type->category() == DeclTypeSpec::Logical) { if (context_.ShouldWarn(common::UsageWarning::LogicalVsCBool)) { if (IsDummy(symbol)) { WarnIfNotInModuleFile(symbol.name(), "A BIND(C) LOGICAL dummy argument should have the interoperable KIND=C_BOOL"_port_en_US); } else { WarnIfNotInModuleFile(symbol.name(), "A BIND(C) LOGICAL object should have the interoperable KIND=C_BOOL"_port_en_US); } } } else if (symbol.attrs().test(Attr::VALUE)) { messages_.Say(symbol.name(), "A BIND(C) VALUE dummy argument must have an interoperable type"_err_en_US); context_.SetError(symbol); } else { messages_.Say(symbol.name(), "A BIND(C) object must have an interoperable type"_err_en_US); context_.SetError(symbol); } } if (IsOptional(symbol) && !symbol.attrs().test(Attr::VALUE)) { if (context_.ShouldWarn(common::UsageWarning::Portability)) { WarnIfNotInModuleFile(symbol.name(), "An interoperable procedure with an OPTIONAL dummy argument might not be portable"_port_en_US); } } if (IsDescriptor(symbol) && IsPointer(symbol) && symbol.attrs().test(Attr::CONTIGUOUS)) { messages_.Say(symbol.name(), "An interoperable pointer must not be CONTIGUOUS"_err_en_US); } } else if (const auto *proc{symbol.detailsIf()}) { if (!proc->procInterface() || !proc->procInterface()->attrs().test(Attr::BIND_C)) { if (proc->isDummy()) { messages_.Say(symbol.name(), "A dummy procedure to an interoperable procedure must also be interoperable"_err_en_US); context_.SetError(symbol); } else { messages_.Say(symbol.name(), "An interface name with BIND attribute must be specified if the BIND attribute is specified in a procedure declaration statement"_err_en_US); context_.SetError(symbol); } } } else if (const auto *subp{symbol.detailsIf()}) { for (const Symbol *dummy : subp->dummyArgs()) { if (dummy) { CheckBindC(*dummy); } else { messages_.Say(symbol.name(), "A subprogram interface with the BIND attribute may not have an alternate return argument"_err_en_US); context_.SetError(symbol); } } } else if (const auto *derived{symbol.detailsIf()}) { if (derived->sequence()) { // C1801 messages_.Say(symbol.name(), "A derived type with the BIND attribute cannot have the SEQUENCE attribute"_err_en_US); context_.SetError(symbol); } else if (!derived->paramDecls().empty()) { // C1802 messages_.Say(symbol.name(), "A derived type with the BIND attribute has type parameter(s)"_err_en_US); context_.SetError(symbol); } else if (symbol.scope()->GetDerivedTypeParent()) { // C1803 messages_.Say(symbol.name(), "A derived type with the BIND attribute cannot extend from another derived type"_err_en_US); context_.SetError(symbol); } else { for (const auto &pair : *symbol.scope()) { const Symbol *component{&*pair.second}; if (IsProcedure(*component)) { // C1804 messages_.Say(component->name(), "A derived type with the BIND attribute cannot have a type bound procedure"_err_en_US); context_.SetError(symbol); } if (IsAllocatableOrPointer(*component)) { // C1806 messages_.Say(component->name(), "A derived type with the BIND attribute cannot have a pointer or allocatable component"_err_en_US); context_.SetError(symbol); } if (const auto *type{component->GetType()}) { if (const auto *derived{type->AsDerived()}) { if (!derived->typeSymbol().attrs().test(Attr::BIND_C)) { if (auto *msg{messages_.Say(component->name(), "Component '%s' of an interoperable derived type must have the BIND attribute"_err_en_US, component->name())}) { msg->Attach(derived->typeSymbol().name(), "Non-interoperable component type"_en_US); } context_.SetError(symbol); } } else if (!IsInteroperableIntrinsicType( *type, context_.languageFeatures())) { auto maybeDyType{evaluate::DynamicType::From(*type)}; if (type->category() == DeclTypeSpec::Logical) { if (context_.ShouldWarn(common::UsageWarning::LogicalVsCBool)) { WarnIfNotInModuleFile(component->name(), "A LOGICAL component of a BIND(C) type should have the interoperable KIND=C_BOOL"_port_en_US); } } else if (type->category() == DeclTypeSpec::Character && maybeDyType && maybeDyType->kind() == 1) { if (context_.ShouldWarn(common::UsageWarning::BindCCharLength)) { WarnIfNotInModuleFile(component->name(), "A CHARACTER component of a BIND(C) type should have length 1"_port_en_US); } } else { messages_.Say(component->name(), "Each component of an interoperable derived type must have an interoperable type"_err_en_US); context_.SetError(symbol); } } } if (auto extents{ evaluate::GetConstantExtents(foldingContext_, component)}; extents && evaluate::GetSize(*extents) == 0) { messages_.Say(component->name(), "An array component of an interoperable type must have at least one element"_err_en_US); context_.SetError(symbol); } } } if (derived->componentNames().empty()) { // F'2023 C1805 if (context_.ShouldWarn(common::LanguageFeature::EmptyBindCDerivedType)) { WarnIfNotInModuleFile(symbol.name(), "A derived type with the BIND attribute is empty"_port_en_US); } } } } bool CheckHelper::CheckDioDummyIsData( const Symbol &subp, const Symbol *arg, std::size_t position) { if (arg && arg->detailsIf()) { return true; } else { if (arg) { messages_.Say(arg->name(), "Dummy argument '%s' must be a data object"_err_en_US, arg->name()); } else { messages_.Say(subp.name(), "Dummy argument %d of '%s' must be a data object"_err_en_US, position, subp.name()); } return false; } } void CheckHelper::CheckAlreadySeenDefinedIo(const DerivedTypeSpec &derivedType, common::DefinedIo ioKind, const Symbol &proc, const Symbol &generic) { // Check for conflict between non-type-bound defined I/O and type-bound // generics. It's okay to have two or more distinct defined I/O procedures for // the same type if they're coming from distinct non-type-bound interfaces. // (The non-type-bound interfaces would have been merged into a single generic // -- with errors where indistinguishable -- when both were visible from the // same scope.) if (generic.owner().IsDerivedType()) { return; } if (const Scope * dtScope{derivedType.scope()}) { if (auto iter{dtScope->find(generic.name())}; iter != dtScope->end()) { for (auto specRef : iter->second->get().specificProcs()) { const Symbol &specific{specRef->get().symbol()}; if (specific == proc) { // unambiguous, accept continue; } if (const auto *specDT{GetDtvArgDerivedType(specific)}; specDT && evaluate::AreSameDerivedType(derivedType, *specDT)) { SayWithDeclaration(*specRef, proc.name(), "Derived type '%s' has conflicting type-bound input/output procedure '%s'"_err_en_US, derivedType.name(), GenericKind::AsFortran(ioKind)); return; } } } } } void CheckHelper::CheckDioDummyIsDerived(const Symbol &subp, const Symbol &arg, common::DefinedIo ioKind, const Symbol &generic) { if (const DeclTypeSpec *type{arg.GetType()}) { if (const DerivedTypeSpec *derivedType{type->AsDerived()}) { CheckAlreadySeenDefinedIo(*derivedType, ioKind, subp, generic); bool isPolymorphic{type->IsPolymorphic()}; if (isPolymorphic != IsExtensibleType(derivedType)) { messages_.Say(arg.name(), "Dummy argument '%s' of a defined input/output procedure must be %s when the derived type is %s"_err_en_US, arg.name(), isPolymorphic ? "TYPE()" : "CLASS()", isPolymorphic ? "not extensible" : "extensible"); } } else { messages_.Say(arg.name(), "Dummy argument '%s' of a defined input/output procedure must have a" " derived type"_err_en_US, arg.name()); } } } void CheckHelper::CheckDioDummyIsDefaultInteger( const Symbol &subp, const Symbol &arg) { if (const DeclTypeSpec *type{arg.GetType()}; type && type->IsNumeric(TypeCategory::Integer)) { if (const auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())}; kind && *kind == context_.GetDefaultKind(TypeCategory::Integer)) { return; } } messages_.Say(arg.name(), "Dummy argument '%s' of a defined input/output procedure" " must be an INTEGER of default KIND"_err_en_US, arg.name()); } void CheckHelper::CheckDioDummyIsScalar(const Symbol &subp, const Symbol &arg) { if (arg.Rank() > 0 || arg.Corank() > 0) { messages_.Say(arg.name(), "Dummy argument '%s' of a defined input/output procedure" " must be a scalar"_err_en_US, arg.name()); } } void CheckHelper::CheckDioDtvArg(const Symbol &subp, const Symbol *arg, common::DefinedIo ioKind, const Symbol &generic) { // Dtv argument looks like: dtv-type-spec, INTENT(INOUT) :: dtv if (CheckDioDummyIsData(subp, arg, 0)) { CheckDioDummyIsDerived(subp, *arg, ioKind, generic); CheckDioDummyAttrs(subp, *arg, ioKind == common::DefinedIo::ReadFormatted || ioKind == common::DefinedIo::ReadUnformatted ? Attr::INTENT_INOUT : Attr::INTENT_IN); } } // If an explicit INTRINSIC name is a function, so must all the specifics be, // and similarly for subroutines void CheckHelper::CheckGenericVsIntrinsic( const Symbol &symbol, const GenericDetails &generic) { if (symbol.attrs().test(Attr::INTRINSIC)) { const evaluate::IntrinsicProcTable &table{ context_.foldingContext().intrinsics()}; bool isSubroutine{table.IsIntrinsicSubroutine(symbol.name().ToString())}; if (isSubroutine || table.IsIntrinsicFunction(symbol.name().ToString())) { for (const SymbolRef &ref : generic.specificProcs()) { const Symbol &ultimate{ref->GetUltimate()}; bool specificFunc{ultimate.test(Symbol::Flag::Function)}; bool specificSubr{ultimate.test(Symbol::Flag::Subroutine)}; if (!specificFunc && !specificSubr) { if (const auto *proc{ultimate.detailsIf()}) { if (proc->isFunction()) { specificFunc = true; } else { specificSubr = true; } } } if ((specificFunc || specificSubr) && isSubroutine != specificSubr) { // C848 messages_.Say(symbol.name(), "Generic interface '%s' with explicit intrinsic %s of the same name may not have specific procedure '%s' that is a %s"_err_en_US, symbol.name(), isSubroutine ? "subroutine" : "function", ref->name(), isSubroutine ? "function" : "subroutine"); } } } } } void CheckHelper::CheckDefaultIntegerArg( const Symbol &subp, const Symbol *arg, Attr intent) { // Argument looks like: INTEGER, INTENT(intent) :: arg if (CheckDioDummyIsData(subp, arg, 1)) { CheckDioDummyIsDefaultInteger(subp, *arg); CheckDioDummyIsScalar(subp, *arg); CheckDioDummyAttrs(subp, *arg, intent); } } void CheckHelper::CheckDioAssumedLenCharacterArg(const Symbol &subp, const Symbol *arg, std::size_t argPosition, Attr intent) { // Argument looks like: CHARACTER (LEN=*), INTENT(intent) :: (iotype OR iomsg) if (CheckDioDummyIsData(subp, arg, argPosition)) { CheckDioDummyAttrs(subp, *arg, intent); const DeclTypeSpec *type{arg ? arg->GetType() : nullptr}; const IntrinsicTypeSpec *intrinsic{type ? type->AsIntrinsic() : nullptr}; const auto kind{ intrinsic ? evaluate::ToInt64(intrinsic->kind()) : std::nullopt}; if (!IsAssumedLengthCharacter(*arg) || (!kind || *kind != context_.defaultKinds().GetDefaultKind( TypeCategory::Character))) { messages_.Say(arg->name(), "Dummy argument '%s' of a defined input/output procedure" " must be assumed-length CHARACTER of default kind"_err_en_US, arg->name()); } } } void CheckHelper::CheckDioVlistArg( const Symbol &subp, const Symbol *arg, std::size_t argPosition) { // Vlist argument looks like: INTEGER, INTENT(IN) :: v_list(:) if (CheckDioDummyIsData(subp, arg, argPosition)) { CheckDioDummyIsDefaultInteger(subp, *arg); CheckDioDummyAttrs(subp, *arg, Attr::INTENT_IN); const auto *objectDetails{arg->detailsIf()}; if (!objectDetails || !objectDetails->shape().CanBeDeferredShape()) { messages_.Say(arg->name(), "Dummy argument '%s' of a defined input/output procedure must be" " deferred shape"_err_en_US, arg->name()); } } } void CheckHelper::CheckDioArgCount( const Symbol &subp, common::DefinedIo ioKind, std::size_t argCount) { const std::size_t requiredArgCount{ (std::size_t)(ioKind == common::DefinedIo::ReadFormatted || ioKind == common::DefinedIo::WriteFormatted ? 6 : 4)}; if (argCount != requiredArgCount) { SayWithDeclaration(subp, "Defined input/output procedure '%s' must have" " %d dummy arguments rather than %d"_err_en_US, subp.name(), requiredArgCount, argCount); context_.SetError(subp); } } void CheckHelper::CheckDioDummyAttrs( const Symbol &subp, const Symbol &arg, Attr goodIntent) { // Defined I/O procedures can't have attributes other than INTENT Attrs attrs{arg.attrs()}; if (!attrs.test(goodIntent)) { messages_.Say(arg.name(), "Dummy argument '%s' of a defined input/output procedure" " must have intent '%s'"_err_en_US, arg.name(), AttrToString(goodIntent)); } attrs = attrs - Attr::INTENT_IN - Attr::INTENT_OUT - Attr::INTENT_INOUT; if (!attrs.empty()) { messages_.Say(arg.name(), "Dummy argument '%s' of a defined input/output procedure may not have" " any attributes"_err_en_US, arg.name()); } } // Enforce semantics for defined input/output procedures (12.6.4.8.2) and C777 void CheckHelper::CheckDefinedIoProc(const Symbol &symbol, const GenericDetails &details, common::DefinedIo ioKind) { for (auto ref : details.specificProcs()) { const Symbol &ultimate{ref->GetUltimate()}; const auto *binding{ultimate.detailsIf()}; const Symbol &specific{*(binding ? &binding->symbol() : &ultimate)}; if (ultimate.attrs().test(Attr::NOPASS)) { // C774 messages_.Say("Defined input/output procedure '%s' may not have NOPASS " "attribute"_err_en_US, ultimate.name()); context_.SetError(ultimate); } if (const auto *subpDetails{specific.detailsIf()}) { const std::vector &dummyArgs{subpDetails->dummyArgs()}; CheckDioArgCount(specific, ioKind, dummyArgs.size()); int argCount{0}; for (auto *arg : dummyArgs) { switch (argCount++) { case 0: // dtv-type-spec, INTENT(INOUT) :: dtv CheckDioDtvArg(specific, arg, ioKind, symbol); break; case 1: // INTEGER, INTENT(IN) :: unit CheckDefaultIntegerArg(specific, arg, Attr::INTENT_IN); break; case 2: if (ioKind == common::DefinedIo::ReadFormatted || ioKind == common::DefinedIo::WriteFormatted) { // CHARACTER (LEN=*), INTENT(IN) :: iotype CheckDioAssumedLenCharacterArg( specific, arg, argCount, Attr::INTENT_IN); } else { // INTEGER, INTENT(OUT) :: iostat CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT); } break; case 3: if (ioKind == common::DefinedIo::ReadFormatted || ioKind == common::DefinedIo::WriteFormatted) { // INTEGER, INTENT(IN) :: v_list(:) CheckDioVlistArg(specific, arg, argCount); } else { // CHARACTER (LEN=*), INTENT(INOUT) :: iomsg CheckDioAssumedLenCharacterArg( specific, arg, argCount, Attr::INTENT_INOUT); } break; case 4: // INTEGER, INTENT(OUT) :: iostat CheckDefaultIntegerArg(specific, arg, Attr::INTENT_OUT); break; case 5: // CHARACTER (LEN=*), INTENT(INOUT) :: iomsg CheckDioAssumedLenCharacterArg( specific, arg, argCount, Attr::INTENT_INOUT); break; default:; } } } } } void CheckHelper::CheckSymbolType(const Symbol &symbol) { const Symbol *result{FindFunctionResult(symbol)}; const Symbol &relevant{result ? *result : symbol}; if (IsAllocatable(relevant)) { // always ok } else if (IsProcedurePointer(symbol) && result && IsPointer(*result)) { // procedure pointer returning allocatable or pointer: ok } else if (IsPointer(relevant) && !IsProcedure(relevant)) { // object pointers are always ok } else if (auto dyType{evaluate::DynamicType::From(relevant)}) { if (dyType->IsPolymorphic() && !dyType->IsAssumedType() && !(IsDummy(symbol) && !IsProcedure(relevant))) { // C708 messages_.Say( "CLASS entity '%s' must be a dummy argument, allocatable, or object pointer"_err_en_US, symbol.name()); } if (dyType->HasDeferredTypeParameter()) { // C702 messages_.Say( "'%s' has a type %s with a deferred type parameter but is neither an allocatable nor an object pointer"_err_en_US, symbol.name(), dyType->AsFortran()); } } } void CheckHelper::CheckModuleProcedureDef(const Symbol &symbol) { auto procClass{ClassifyProcedure(symbol)}; if (const auto *subprogram{symbol.detailsIf()}; subprogram && (procClass == ProcedureDefinitionClass::Module && symbol.attrs().test(Attr::MODULE)) && !subprogram->bindName() && !subprogram->isInterface()) { const Symbol &interface { subprogram->moduleInterface() ? *subprogram->moduleInterface() : symbol }; if (const Symbol * module{interface.owner().kind() == Scope::Kind::Module ? interface.owner().symbol() : nullptr}; module && module->has()) { std::pair key{symbol.name(), module}; auto iter{moduleProcs_.find(key)}; if (iter == moduleProcs_.end()) { moduleProcs_.emplace(std::move(key), symbol); } else if ( auto *msg{messages_.Say(symbol.name(), "Module procedure '%s' in '%s' has multiple definitions"_err_en_US, symbol.name(), GetModuleOrSubmoduleName(*module))}) { msg->Attach(iter->second->name(), "Previous definition of '%s'"_en_US, symbol.name()); } } } } void SubprogramMatchHelper::Check( const Symbol &symbol1, const Symbol &symbol2) { const auto details1{symbol1.get()}; const auto details2{symbol2.get()}; if (details1.isFunction() != details2.isFunction()) { Say(symbol1, symbol2, details1.isFunction() ? "Module function '%s' was declared as a subroutine in the" " corresponding interface body"_err_en_US : "Module subroutine '%s' was declared as a function in the" " corresponding interface body"_err_en_US); return; } const auto &args1{details1.dummyArgs()}; const auto &args2{details2.dummyArgs()}; int nargs1{static_cast(args1.size())}; int nargs2{static_cast(args2.size())}; if (nargs1 != nargs2) { Say(symbol1, symbol2, "Module subprogram '%s' has %d args but the corresponding interface" " body has %d"_err_en_US, nargs1, nargs2); return; } bool nonRecursive1{symbol1.attrs().test(Attr::NON_RECURSIVE)}; if (nonRecursive1 != symbol2.attrs().test(Attr::NON_RECURSIVE)) { // C1551 Say(symbol1, symbol2, nonRecursive1 ? "Module subprogram '%s' has NON_RECURSIVE prefix but" " the corresponding interface body does not"_err_en_US : "Module subprogram '%s' does not have NON_RECURSIVE prefix but " "the corresponding interface body does"_err_en_US); } const std::string *bindName1{details1.bindName()}; const std::string *bindName2{details2.bindName()}; if (!bindName1 && !bindName2) { // OK - neither has a binding label } else if (!bindName1) { Say(symbol1, symbol2, "Module subprogram '%s' does not have a binding label but the" " corresponding interface body does"_err_en_US); } else if (!bindName2) { Say(symbol1, symbol2, "Module subprogram '%s' has a binding label but the" " corresponding interface body does not"_err_en_US); } else if (*bindName1 != *bindName2) { Say(symbol1, symbol2, "Module subprogram '%s' has binding label '%s' but the corresponding" " interface body has '%s'"_err_en_US, *details1.bindName(), *details2.bindName()); } const Procedure *proc1{checkHelper.Characterize(symbol1)}; const Procedure *proc2{checkHelper.Characterize(symbol2)}; if (!proc1 || !proc2) { return; } if (proc1->attrs.test(Procedure::Attr::Pure) != proc2->attrs.test(Procedure::Attr::Pure)) { Say(symbol1, symbol2, "Module subprogram '%s' and its corresponding interface body are not both PURE"_err_en_US); } if (proc1->attrs.test(Procedure::Attr::Elemental) != proc2->attrs.test(Procedure::Attr::Elemental)) { Say(symbol1, symbol2, "Module subprogram '%s' and its corresponding interface body are not both ELEMENTAL"_err_en_US); } if (proc1->attrs.test(Procedure::Attr::BindC) != proc2->attrs.test(Procedure::Attr::BindC)) { Say(symbol1, symbol2, "Module subprogram '%s' and its corresponding interface body are not both BIND(C)"_err_en_US); } if (proc1->functionResult && proc2->functionResult) { std::string whyNot; if (!proc1->functionResult->IsCompatibleWith( *proc2->functionResult, &whyNot)) { Say(symbol1, symbol2, "Result of function '%s' is not compatible with the result of the corresponding interface body: %s"_err_en_US, whyNot); } } for (int i{0}; i < nargs1; ++i) { const Symbol *arg1{args1[i]}; const Symbol *arg2{args2[i]}; if (arg1 && !arg2) { Say(symbol1, symbol2, "Dummy argument %2$d of '%1$s' is not an alternate return indicator" " but the corresponding argument in the interface body is"_err_en_US, i + 1); } else if (!arg1 && arg2) { Say(symbol1, symbol2, "Dummy argument %2$d of '%1$s' is an alternate return indicator but" " the corresponding argument in the interface body is not"_err_en_US, i + 1); } else if (arg1 && arg2) { SourceName name1{arg1->name()}; SourceName name2{arg2->name()}; if (name1 != name2) { Say(*arg1, *arg2, "Dummy argument name '%s' does not match corresponding name '%s'" " in interface body"_err_en_US, name2); } else { CheckDummyArg( *arg1, *arg2, proc1->dummyArguments[i], proc2->dummyArguments[i]); } } } } void SubprogramMatchHelper::CheckDummyArg(const Symbol &symbol1, const Symbol &symbol2, const DummyArgument &arg1, const DummyArgument &arg2) { common::visit( common::visitors{ [&](const DummyDataObject &obj1, const DummyDataObject &obj2) { CheckDummyDataObject(symbol1, symbol2, obj1, obj2); }, [&](const DummyProcedure &proc1, const DummyProcedure &proc2) { CheckDummyProcedure(symbol1, symbol2, proc1, proc2); }, [&](const DummyDataObject &, const auto &) { Say(symbol1, symbol2, "Dummy argument '%s' is a data object; the corresponding" " argument in the interface body is not"_err_en_US); }, [&](const DummyProcedure &, const auto &) { Say(symbol1, symbol2, "Dummy argument '%s' is a procedure; the corresponding" " argument in the interface body is not"_err_en_US); }, [&](const auto &, const auto &) { llvm_unreachable("Dummy arguments are not data objects or" "procedures"); }, }, arg1.u, arg2.u); } void SubprogramMatchHelper::CheckDummyDataObject(const Symbol &symbol1, const Symbol &symbol2, const DummyDataObject &obj1, const DummyDataObject &obj2) { if (!CheckSameIntent(symbol1, symbol2, obj1.intent, obj2.intent)) { } else if (!CheckSameAttrs(symbol1, symbol2, obj1.attrs, obj2.attrs)) { } else if (!obj1.type.type().IsEquivalentTo(obj2.type.type())) { Say(symbol1, symbol2, "Dummy argument '%s' has type %s; the corresponding argument in the interface body has distinct type %s"_err_en_US, obj1.type.type().AsFortran(), obj2.type.type().AsFortran()); } else if (!ShapesAreCompatible(obj1, obj2)) { Say(symbol1, symbol2, "The shape of dummy argument '%s' does not match the shape of the" " corresponding argument in the interface body"_err_en_US); } // TODO: coshape } void SubprogramMatchHelper::CheckDummyProcedure(const Symbol &symbol1, const Symbol &symbol2, const DummyProcedure &proc1, const DummyProcedure &proc2) { if (!CheckSameIntent(symbol1, symbol2, proc1.intent, proc2.intent)) { } else if (!CheckSameAttrs(symbol1, symbol2, proc1.attrs, proc2.attrs)) { } else if (proc1 != proc2) { Say(symbol1, symbol2, "Dummy procedure '%s' does not match the corresponding argument in" " the interface body"_err_en_US); } } bool SubprogramMatchHelper::CheckSameIntent(const Symbol &symbol1, const Symbol &symbol2, common::Intent intent1, common::Intent intent2) { if (intent1 == intent2) { return true; } else { Say(symbol1, symbol2, "The intent of dummy argument '%s' does not match the intent" " of the corresponding argument in the interface body"_err_en_US); return false; } } // Report an error referring to first symbol with declaration of second symbol template void SubprogramMatchHelper::Say(const Symbol &symbol1, const Symbol &symbol2, parser::MessageFixedText &&text, A &&...args) { auto &message{context().Say(symbol1.name(), std::move(text), symbol1.name(), std::forward(args)...)}; evaluate::AttachDeclaration(message, symbol2); } template bool SubprogramMatchHelper::CheckSameAttrs( const Symbol &symbol1, const Symbol &symbol2, ATTRS attrs1, ATTRS attrs2) { if (attrs1 == attrs2) { return true; } attrs1.IterateOverMembers([&](auto attr) { if (!attrs2.test(attr)) { Say(symbol1, symbol2, "Dummy argument '%s' has the %s attribute; the corresponding" " argument in the interface body does not"_err_en_US, AsFortran(attr)); } }); attrs2.IterateOverMembers([&](auto attr) { if (!attrs1.test(attr)) { Say(symbol1, symbol2, "Dummy argument '%s' does not have the %s attribute; the" " corresponding argument in the interface body does"_err_en_US, AsFortran(attr)); } }); return false; } bool SubprogramMatchHelper::ShapesAreCompatible( const DummyDataObject &obj1, const DummyDataObject &obj2) { return characteristics::ShapesAreCompatible( FoldShape(obj1.type.shape()), FoldShape(obj2.type.shape())); } evaluate::Shape SubprogramMatchHelper::FoldShape(const evaluate::Shape &shape) { evaluate::Shape result; for (const auto &extent : shape) { result.emplace_back( evaluate::Fold(context().foldingContext(), common::Clone(extent))); } return result; } void DistinguishabilityHelper::Add(const Symbol &generic, GenericKind kind, const Symbol &ultimateSpecific, const Procedure &procedure) { if (!context_.HasError(ultimateSpecific)) { nameToSpecifics_[generic.name()].emplace( &ultimateSpecific, ProcedureInfo{kind, procedure}); } } void DistinguishabilityHelper::Check(const Scope &scope) { if (FindModuleFileContaining(scope)) { // Distinguishability was checked when the module was created; // don't let optional warnings then become errors now. return; } for (const auto &[name, info] : nameToSpecifics_) { for (auto iter1{info.begin()}; iter1 != info.end(); ++iter1) { const auto &[ultimate, procInfo]{*iter1}; const auto &[kind, proc]{procInfo}; for (auto iter2{iter1}; ++iter2 != info.end();) { auto distinguishable{kind.IsName() ? evaluate::characteristics::Distinguishable : evaluate::characteristics::DistinguishableOpOrAssign}; std::optional distinct{distinguishable( context_.languageFeatures(), proc, iter2->second.procedure)}; if (!distinct.value_or(false)) { SayNotDistinguishable(GetTopLevelUnitContaining(scope), name, kind, *ultimate, *iter2->first, distinct.has_value()); } } } } } void DistinguishabilityHelper::SayNotDistinguishable(const Scope &scope, const SourceName &name, GenericKind kind, const Symbol &proc1, const Symbol &proc2, bool isHardConflict) { bool isUseAssociated{!scope.sourceRange().Contains(name)}; // The rules for distinguishing specific procedures (F'2023 15.4.3.4.5) // are inadequate for some real-world cases like pFUnit. // When there are optional dummy arguments or unlimited polymorphic // dummy data object arguments, the best that we can do is emit an optional // portability warning. Also, named generics created by USE association // merging shouldn't receive hard errors for ambiguity. // (Non-named generics might be defined I/O procedures or defined // assignments that need to be used by the runtime.) bool isWarning{!isHardConflict || (isUseAssociated && kind.IsName())}; if (isWarning && (!context_.ShouldWarn( common::LanguageFeature::IndistinguishableSpecifics) || FindModuleFileContaining(scope))) { return; } std::string name1{proc1.name().ToString()}; std::string name2{proc2.name().ToString()}; if (kind.IsOperator() || kind.IsAssignment()) { // proc1 and proc2 may come from different scopes so qualify their names if (proc1.owner().IsDerivedType()) { name1 = proc1.owner().GetName()->ToString() + '%' + name1; } if (proc2.owner().IsDerivedType()) { name2 = proc2.owner().GetName()->ToString() + '%' + name2; } } parser::Message *msg; if (!isUseAssociated) { CHECK(isWarning == !isHardConflict); msg = &context_.Say(name, isHardConflict ? "Generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US : "Generic '%s' should not have specific procedures '%s' and '%s' as their interfaces are not distinguishable by the rules in the standard"_port_en_US, MakeOpName(name), name1, name2); } else { msg = &context_.Say(*GetTopLevelUnitContaining(proc1).GetName(), isHardConflict ? (isWarning ? "USE-associated generic '%s' should not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_warn_en_US : "USE-associated generic '%s' may not have specific procedures '%s' and '%s' as their interfaces are not distinguishable"_err_en_US) : "USE-associated generic '%s' should not have specific procedures '%s' and '%s' as their interfaces are not distinguishable by the rules in the standard"_port_en_US, MakeOpName(name), name1, name2); } AttachDeclaration(*msg, scope, proc1); AttachDeclaration(*msg, scope, proc2); } // `evaluate::AttachDeclaration` doesn't handle the generic case where `proc` // comes from a different module but is not necessarily use-associated. void DistinguishabilityHelper::AttachDeclaration( parser::Message &msg, const Scope &scope, const Symbol &proc) { const Scope &unit{GetTopLevelUnitContaining(proc)}; if (unit == scope) { evaluate::AttachDeclaration(msg, proc); } else { msg.Attach(unit.GetName().value(), "'%s' is USE-associated from module '%s'"_en_US, proc.name(), unit.GetName().value()); } } void CheckDeclarations(SemanticsContext &context) { CheckHelper{context}.Check(); } } // namespace Fortran::semantics