//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Unit tests for CIR implementation of OpenACC's PointertLikeType interface // //===----------------------------------------------------------------------===// #include "mlir/Dialect/OpenACC/OpenACC.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Value.h" #include "clang/CIR/Dialect/Builder/CIRBaseBuilder.h" #include "clang/CIR/Dialect/IR/CIRDialect.h" #include "clang/CIR/Dialect/IR/CIRTypes.h" #include "clang/CIR/Dialect/OpenACC/CIROpenACCTypeInterfaces.h" #include "clang/CIR/Dialect/OpenACC/RegisterOpenACCExtensions.h" #include "gtest/gtest.h" using namespace mlir; using namespace cir; //===----------------------------------------------------------------------===// // Test Fixture //===----------------------------------------------------------------------===// class CIROpenACCPointerLikeTest : public ::testing::Test { protected: CIROpenACCPointerLikeTest() : b(&context), loc(UnknownLoc::get(&context)) { context.loadDialect(); context.loadDialect(); // Register extension to integrate CIR types with OpenACC. mlir::DialectRegistry registry; cir::acc::registerOpenACCExtensions(registry); context.appendDialectRegistry(registry); } MLIRContext context; OpBuilder b; Location loc; llvm::StringMap recordNames; mlir::IntegerAttr getAlignOne(mlir::MLIRContext *ctx) { // Note that mlir::IntegerType is used instead of cir::IntType here because // we don't need sign information for this to be useful, so keep it simple. clang::CharUnits align = clang::CharUnits::One(); return b.getI64IntegerAttr(align.getQuantity()); } mlir::StringAttr getUniqueRecordName(const std::string &baseName) { auto it = recordNames.find(baseName); if (it == recordNames.end()) { recordNames[baseName] = 0; return b.getStringAttr(baseName); } return b.getStringAttr(baseName + "." + std::to_string(recordNames[baseName]++)); } // General handler for types without a specific test void testSingleType(mlir::Type ty, mlir::acc::VariableTypeCategory expectedTypeCategory) { mlir::Type ptrTy = cir::PointerType::get(ty); // cir::PointerType should be castable to acc::PointerLikeType auto pltTy = dyn_cast_if_present(ptrTy); ASSERT_NE(pltTy, nullptr); EXPECT_EQ(pltTy.getElementType(), ty); OwningOpRef varPtrOp = b.create(loc, ptrTy, ty, "", getAlignOne(&context)); mlir::Value val = varPtrOp.get(); mlir::acc::VariableTypeCategory typeCategory = pltTy.getPointeeTypeCategory( cast>(val), mlir::acc::getVarType(varPtrOp.get())); EXPECT_EQ(typeCategory, expectedTypeCategory); } void testScalarType(mlir::Type ty) { testSingleType(ty, mlir::acc::VariableTypeCategory::scalar); } void testNonScalarType(mlir::Type ty) { testSingleType(ty, mlir::acc::VariableTypeCategory::nonscalar); } void testUncategorizedType(mlir::Type ty) { testSingleType(ty, mlir::acc::VariableTypeCategory::uncategorized); } void testArrayType(mlir::Type ty) { // Build the array pointer type. mlir::Type arrTy = cir::ArrayType::get(ty, 10); mlir::Type ptrTy = cir::PointerType::get(arrTy); // Verify that the pointer points to the array type.. auto pltTy = dyn_cast_if_present(ptrTy); ASSERT_NE(pltTy, nullptr); EXPECT_EQ(pltTy.getElementType(), arrTy); // Create an alloca for the array OwningOpRef varPtrOp = b.create(loc, ptrTy, arrTy, "", getAlignOne(&context)); // Verify that the type category is array. mlir::Value val = varPtrOp.get(); mlir::acc::VariableTypeCategory typeCategory = pltTy.getPointeeTypeCategory( cast>(val), mlir::acc::getVarType(varPtrOp.get())); EXPECT_EQ(typeCategory, mlir::acc::VariableTypeCategory::array); // Create an array-to-pointer decay cast. mlir::Type ptrToElemTy = cir::PointerType::get(ty); OwningOpRef decayPtr = b.create( loc, ptrToElemTy, cir::CastKind::array_to_ptrdecay, val); mlir::Value decayVal = decayPtr.get(); // Verify that we still get the expected element type. auto decayPltTy = dyn_cast_if_present(decayVal.getType()); ASSERT_NE(decayPltTy, nullptr); EXPECT_EQ(decayPltTy.getElementType(), ty); // Verify that we still identify the type category as an array. mlir::acc::VariableTypeCategory decayTypeCategory = decayPltTy.getPointeeTypeCategory( cast>(decayVal), mlir::acc::getVarType(decayPtr.get())); EXPECT_EQ(decayTypeCategory, mlir::acc::VariableTypeCategory::array); // Create an element access. mlir::Type i32Ty = cir::IntType::get(&context, 32, true); mlir::Value index = b.create(loc, cir::IntAttr::get(i32Ty, 2)); OwningOpRef accessPtr = b.create(loc, ptrToElemTy, decayVal, index); mlir::Value accessVal = accessPtr.get(); // Verify that we still get the expected element type. auto accessPltTy = dyn_cast_if_present(accessVal.getType()); ASSERT_NE(accessPltTy, nullptr); EXPECT_EQ(accessPltTy.getElementType(), ty); // Verify that we still identify the type category as an array. mlir::acc::VariableTypeCategory accessTypeCategory = accessPltTy.getPointeeTypeCategory( cast>(accessVal), mlir::acc::getVarType(accessPtr.get())); EXPECT_EQ(accessTypeCategory, mlir::acc::VariableTypeCategory::array); } // Structures and unions are accessed in the same way, so use a common test. void testRecordType(mlir::Type ty1, mlir::Type ty2, cir::RecordType::RecordKind kind) { // Build the structure pointer type. cir::RecordType structTy = cir::RecordType::get(&context, getUniqueRecordName("S"), kind); structTy.complete({ty1, ty2}, false, false); mlir::Type ptrTy = cir::PointerType::get(structTy); // Verify that the pointer points to the structure type. auto pltTy = dyn_cast_if_present(ptrTy); ASSERT_NE(pltTy, nullptr); EXPECT_EQ(pltTy.getElementType(), structTy); // Create an alloca for the array OwningOpRef varPtrOp = b.create( loc, ptrTy, structTy, "", getAlignOne(&context)); // Verify that the type category is composite. mlir::Value val = varPtrOp.get(); mlir::acc::VariableTypeCategory typeCategory = pltTy.getPointeeTypeCategory( cast>(val), mlir::acc::getVarType(varPtrOp.get())); EXPECT_EQ(typeCategory, mlir::acc::VariableTypeCategory::composite); // Access the first element of the structure. OwningOpRef access1 = b.create( loc, cir::PointerType::get(ty1), val, b.getStringAttr("f1"), 0); mlir::Value accessVal1 = access1.get(); // Verify that we get the expected element type. auto access1PltTy = dyn_cast_if_present(accessVal1.getType()); ASSERT_NE(access1PltTy, nullptr); EXPECT_EQ(access1PltTy.getElementType(), ty1); // Verify that the type category is still composite. mlir::acc::VariableTypeCategory access1TypeCategory = access1PltTy.getPointeeTypeCategory( cast>(accessVal1), mlir::acc::getVarType(access1.get())); EXPECT_EQ(access1TypeCategory, mlir::acc::VariableTypeCategory::composite); // Access the second element of the structure. OwningOpRef access2 = b.create( loc, cir::PointerType::get(ty2), val, b.getStringAttr("f2"), 1); mlir::Value accessVal2 = access2.get(); // Verify that we get the expected element type. auto access2PltTy = dyn_cast_if_present(accessVal2.getType()); ASSERT_NE(access2PltTy, nullptr); EXPECT_EQ(access2PltTy.getElementType(), ty2); // Verify that the type category is still composite. mlir::acc::VariableTypeCategory access2TypeCategory = access2PltTy.getPointeeTypeCategory( cast>(accessVal2), mlir::acc::getVarType(access2.get())); EXPECT_EQ(access2TypeCategory, mlir::acc::VariableTypeCategory::composite); } void testStructType(mlir::Type ty1, mlir::Type ty2) { testRecordType(ty1, ty2, cir::RecordType::RecordKind::Struct); } void testUnionType(mlir::Type ty1, mlir::Type ty2) { testRecordType(ty1, ty2, cir::RecordType::RecordKind::Union); } // This is testing a case like this: // // struct S { // int *f1; // int *f2; // } *p; // int *pMember = p->f2; // // That is, we are not testing a pointer to a member, we're testing a pointer // that is loaded as a member value. void testPointerToMemberType( mlir::Type ty, mlir::acc::VariableTypeCategory expectedTypeCategory) { // Construct a struct type with two members that are pointers to the input // type. mlir::Type ptrTy = cir::PointerType::get(ty); cir::RecordType structTy = cir::RecordType::get(&context, getUniqueRecordName("S"), cir::RecordType::RecordKind::Struct); structTy.complete({ptrTy, ptrTy}, false, false); mlir::Type structPptrTy = cir::PointerType::get(structTy); // Create an alloca for the struct. OwningOpRef varPtrOp = b.create( loc, structPptrTy, structTy, "S", getAlignOne(&context)); mlir::Value val = varPtrOp.get(); // Get a pointer to the second member. OwningOpRef access = b.create( loc, cir::PointerType::get(ptrTy), val, b.getStringAttr("f2"), 1); mlir::Value accessVal = access.get(); // Load the value of the second member. This is the pointer we want to test. OwningOpRef loadOp = b.create(loc, accessVal); mlir::Value loadVal = loadOp.get(); // Verify that the type category is the expected type category. auto pltTy = dyn_cast_if_present(ptrTy); mlir::acc::VariableTypeCategory typeCategory = pltTy.getPointeeTypeCategory( cast>(loadVal), mlir::acc::getVarType(loadOp.get())); EXPECT_EQ(typeCategory, expectedTypeCategory); } }; TEST_F(CIROpenACCPointerLikeTest, testPointerToInt) { // Test various scalar types. testScalarType(cir::IntType::get(&context, 8, true)); testScalarType(cir::IntType::get(&context, 8, false)); testScalarType(cir::IntType::get(&context, 16, true)); testScalarType(cir::IntType::get(&context, 16, false)); testScalarType(cir::IntType::get(&context, 32, true)); testScalarType(cir::IntType::get(&context, 32, false)); testScalarType(cir::IntType::get(&context, 64, true)); testScalarType(cir::IntType::get(&context, 64, false)); testScalarType(cir::IntType::get(&context, 128, true)); testScalarType(cir::IntType::get(&context, 128, false)); } TEST_F(CIROpenACCPointerLikeTest, testPointerToBool) { testScalarType(cir::BoolType::get(&context)); } TEST_F(CIROpenACCPointerLikeTest, testPointerToFloat) { testScalarType(cir::SingleType::get(&context)); testScalarType(cir::DoubleType::get(&context)); } TEST_F(CIROpenACCPointerLikeTest, testPointerToPointer) { mlir::Type i32Ty = cir::IntType::get(&context, 32, true); mlir::Type ptrTy = cir::PointerType::get(i32Ty); testScalarType(ptrTy); } TEST_F(CIROpenACCPointerLikeTest, testPointerToArray) { // Test an array type. mlir::Type i32Ty = cir::IntType::get(&context, 32, true); testArrayType(i32Ty); } TEST_F(CIROpenACCPointerLikeTest, testPointerToStruct) { // Test a struct type. mlir::Type i16Ty = cir::IntType::get(&context, 16, true); mlir::Type i32Ty = cir::IntType::get(&context, 32, true); testStructType(i16Ty, i32Ty); } TEST_F(CIROpenACCPointerLikeTest, testPointerToUnion) { // Test a union type. mlir::Type i16Ty = cir::IntType::get(&context, 16, true); mlir::Type i32Ty = cir::IntType::get(&context, 32, true); testUnionType(i16Ty, i32Ty); } TEST_F(CIROpenACCPointerLikeTest, testPointerToFunction) { mlir::Type i32Ty = cir::IntType::get(&context, 32, true); mlir::Type funcTy = cir::FuncType::get(SmallVector{i32Ty, i32Ty}, i32Ty); testNonScalarType(funcTy); } TEST_F(CIROpenACCPointerLikeTest, testPointerToVector) { mlir::Type i32Ty = cir::IntType::get(&context, 32, true); mlir::Type vecTy = cir::VectorType::get(i32Ty, 4); testNonScalarType(vecTy); } TEST_F(CIROpenACCPointerLikeTest, testPointerToVoid) { mlir::Type voidTy = cir::VoidType::get(&context); testUncategorizedType(voidTy); } TEST_F(CIROpenACCPointerLikeTest, testPointerToIntMember) { mlir::Type i32Ty = cir::IntType::get(&context, 32, true); testPointerToMemberType(i32Ty, mlir::acc::VariableTypeCategory::scalar); } TEST_F(CIROpenACCPointerLikeTest, testPointerToArrayMember) { mlir::Type i32Ty = cir::IntType::get(&context, 32, true); mlir::Type arrTy = cir::ArrayType::get(i32Ty, 10); testPointerToMemberType(arrTy, mlir::acc::VariableTypeCategory::array); } TEST_F(CIROpenACCPointerLikeTest, testPointerToStructMember) { mlir::Type i32Ty = cir::IntType::get(&context, 32, true); cir::RecordType structTy = cir::RecordType::get( &context, getUniqueRecordName("S"), cir::RecordType::RecordKind::Struct); structTy.complete({i32Ty, i32Ty}, false, false); testPointerToMemberType(structTy, mlir::acc::VariableTypeCategory::composite); }