// Force x86-64 because some of our heuristics are actually based // on integer sizes. // RUN: %clang_cc1 -triple x86_64-apple-darwin -fcxx-exceptions -fsyntax-only -pedantic -verify -Wsign-compare -std=c++2a %s // RUN: %clang_cc1 -triple x86_64-apple-darwin -fcxx-exceptions -std=c++2a -x c++ %S/Inputs/std-compare.h -emit-pch -o %t.pch // RUN: %clang_cc1 -triple x86_64-apple-darwin -fcxx-exceptions -fsyntax-only -pedantic -verify -Wsign-compare -std=c++2a %s -include-pch %t.pch #include "Inputs/std-compare.h" #define ASSERT_TYPE(...) static_assert(__is_same(__VA_ARGS__)) #define ASSERT_EXPR_TYPE(Expr, Expect) static_assert(__is_same(decltype(Expr), Expect)); struct S { static int x[5]; }; void self_compare() { int a; int *b = nullptr; S s; (void)(a <=> a); // expected-warning {{self-comparison always evaluates to 'std::strong_ordering::equal'}} (void)(b <=> b); // expected-warning {{self-comparison always evaluates to 'std::strong_ordering::equal'}} (void)(s.x[a] <=> S::x[a]); // expected-warning {{self-comparison always evaluates to 'std::strong_ordering::equal'}} } void test0(long a, unsigned long b) { enum EnumA : int {A}; enum EnumB {B}; enum EnumC {C = 0x10000}; (void)((short)a <=> (unsigned short)b); // (a,b) (void)(a <=> (unsigned long)b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)(a <=> (unsigned int) b); (void)(a <=> (unsigned short) b); (void)(a <=> (unsigned char) b); (void)((long)a <=> b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((int)a <=> b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((short)a <=> b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((signed char)a <=> b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((long)a <=> (unsigned long)b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((int)a <=> (unsigned int)b); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((short) a <=> (unsigned short) b); (void)((signed char) a <=> (unsigned char) b); // (A,b) (void)(A <=> (unsigned long) b); (void)(A <=> (unsigned int) b); (void)(A <=> (unsigned short) b); (void)(A <=> (unsigned char) b); (void)((long) A <=> b); (void)((int) A <=> b); (void)((short) A <=> b); (void)((signed char) A <=> b); (void)((long) A <=> (unsigned long) b); (void)((int) A <=> (unsigned int) b); (void)((short) A <=> (unsigned short) b); (void)((signed char) A <=> (unsigned char) b); // (a,B) (void)(a <=> (unsigned long) B); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'long' to 'unsigned long'}} (void)(a <=> (unsigned int) B); (void)(a <=> (unsigned short) B); (void)(a <=> (unsigned char) B); (void)((long) a <=> B); (void)((int) a <=> B); (void)((short) a <=> B); (void)((signed char) a <=> B); (void)((long) a <=> (unsigned long) B); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'long' to 'unsigned long'}} (void)((int) a <=> (unsigned int) B); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'int' to 'unsigned int'}} (void)((short) a <=> (unsigned short) B); (void)((signed char) a <=> (unsigned char) B); // (C,b) (void)(C <=> (unsigned long) b); (void)(C <=> (unsigned int) b); (void)(C <=> (unsigned short) b); // expected-warning {{comparison of constant 'C' (65536) with expression of type 'unsigned short' is always 'std::strong_ordering::greater'}} (void)(C <=> (unsigned char) b); // expected-warning {{comparison of constant 'C' (65536) with expression of type 'unsigned char' is always 'std::strong_ordering::greater'}} (void)((long) C <=> b); (void)((int) C <=> b); (void)((short) C <=> b); (void)((signed char) C <=> b); (void)((long) C <=> (unsigned long) b); (void)((int) C <=> (unsigned int) b); (void)((short) C <=> (unsigned short) b); (void)((signed char) C <=> (unsigned char) b); // (a,C) (void)(a <=> (unsigned long) C); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'long' to 'unsigned long'}} (void)(a <=> (unsigned int) C); (void)(a <=> (unsigned short) C); (void)(a <=> (unsigned char) C); (void)((long) a <=> C); (void)((int) a <=> C); (void)((short) a <=> C); // expected-warning {{comparison of constant 'C' (65536) with expression of type 'short' is always 'std::strong_ordering::less'}} (void)((signed char) a <=> C); // expected-warning {{comparison of constant 'C' (65536) with expression of type 'signed char' is always 'std::strong_ordering::less'}} (void)((long) a <=> (unsigned long) C); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'long' to 'unsigned long'}} (void)((int) a <=> (unsigned int) C); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'int' to 'unsigned int'}} (void)((short) a <=> (unsigned short) C); (void)((signed char) a <=> (unsigned char) C); // (0x80000,b) (void)(0x80000 <=> (unsigned long) b); (void)(0x80000 <=> (unsigned int) b); (void)(0x80000 <=> (unsigned short) b); // expected-warning {{result of comparison of constant 524288 with expression of type 'unsigned short' is always 'std::strong_ordering::greater'}} (void)(0x80000 <=> (unsigned char) b); // expected-warning {{result of comparison of constant 524288 with expression of type 'unsigned char' is always 'std::strong_ordering::greater'}} (void)((long) 0x80000 <=> b); (void)((int) 0x80000 <=> b); (void)((short) 0x80000 <=> b); (void)((signed char) 0x80000 <=> b); (void)((long) 0x80000 <=> (unsigned long) b); (void)((int) 0x80000 <=> (unsigned int) b); (void)((short) 0x80000 <=> (unsigned short) b); (void)((signed char) 0x80000 <=> (unsigned char) b); // (a,0x80000) (void)(a <=> (unsigned long)0x80000); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)(a <=> (unsigned int) 0x80000); (void)(a <=> (unsigned short) 0x80000); (void)(a <=> (unsigned char) 0x80000); (void)((long) a <=> 0x80000); (void)((int) a <=> 0x80000); (void)((short) a <=> 0x80000); // expected-warning {{comparison of constant 524288 with expression of type 'short' is always 'std::strong_ordering::less'}} (void)((signed char) a <=> 0x80000); // expected-warning {{comparison of constant 524288 with expression of type 'signed char' is always 'std::strong_ordering::less'}} (void)((long)a <=> (unsigned long)0x80000); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((int)a <=> (unsigned int)0x80000); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((short) a <=> (unsigned short) 0x80000); (void)((signed char) a <=> (unsigned char) 0x80000); } void test5(bool b, bool b2) { enum EnumA { A }; (void)(b <=> b2); // OK (void)(true <=> b); // OK (void)(b <=> -10); // expected-error {{invalid operands to binary expression ('bool' and 'int')}} (void)(b <=> char(1)); // expected-error {{invalid operands to binary expression ('bool' and 'char')}} (void)(b <=> A); // expected-error {{invalid operands to binary expression ('bool' and 'EnumA')}} // FIXME: Should this be accepted when narrowing doesn't occur? (void)(b <=> 0); // expected-error {{invalid operands to binary expression ('bool' and 'int')}} (void)(b <=> 1); // expected-error {{invalid operands to binary expression ('bool' and 'int')}} } void test6(signed char sc) { (void)(sc <=> 200); // expected-warning{{comparison of constant 200 with expression of type 'signed char' is always 'std::strong_ordering::less'}} (void)(200 <=> sc); // expected-warning{{comparison of constant 200 with expression of type 'signed char' is always 'std::strong_ordering::greater'}} } // Test many signedness combinations. void test7(unsigned long other) { // Common unsigned, other unsigned, constant unsigned (void)((unsigned)other <=> (unsigned long)(0x1'ffff'ffff)); // expected-warning{{less}} (void)((unsigned)other <=> (unsigned long)(0xffff'ffff)); (void)((unsigned long)other <=> (unsigned)(0x1'ffff'ffff)); (void)((unsigned long)other <=> (unsigned)(0xffff'ffff)); // Common unsigned, other signed, constant unsigned (void)((int)other <=> (unsigned long)(0xffff'ffff'ffff'ffff)); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((int)other <=> (unsigned long)(0x0000'0000'ffff'ffff)); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((int)other <=> (unsigned long)(0x0000'0000'0fff'ffff)); // expected-error {{argument to 'operator<=>' cannot be narrowed}} (void)((int)other <=> (unsigned)(0x8000'0000)); // expected-error {{argument to 'operator<=>' cannot be narrowed}} // Common unsigned, other unsigned, constant signed (void)((unsigned long)other <=> (int)(0xffff'ffff)); // expected-error {{argument to 'operator<=>' evaluates to -1, which cannot be narrowed to type 'unsigned long'}} // Common unsigned, other signed, constant signed // Should not be possible as the common type should also be signed. // Common signed, other signed, constant signed (void)((int)other <=> (long)(0xffff'ffff)); // expected-warning{{less}} (void)((int)other <=> (long)(0xffff'ffff'0000'0000)); // expected-warning{{greater}} (void)((int)other <=> (long)(0x0fff'ffff)); (void)((int)other <=> (long)(0xffff'ffff'f000'0000)); // Common signed, other signed, constant unsigned (void)((int)other <=> (unsigned char)(0xffff)); (void)((int)other <=> (unsigned char)(0xff)); // Common signed, other unsigned, constant signed (void)((unsigned char)other <=> (int)(0xff)); (void)((unsigned char)other <=> (int)(0xffff)); // expected-warning{{less}} // Common signed, other unsigned, constant unsigned (void)((unsigned char)other <=> (unsigned short)(0xff)); (void)((unsigned char)other <=> (unsigned short)(0x100)); // expected-warning{{less}} (void)((unsigned short)other <=> (unsigned char)(0xff)); } void test8(void *vp, const void *cvp, int *ip) { (void)(vp <=> cvp); // OK, void* comparisons are allowed. (void)(vp <=> ip); (void)(ip <=> cvp); } void test9(long double ld, double d, float f, int i, long long ll) { (void)(f <=> ll); // OK, floating-point to integer is OK (void)(d <=> ld); (void)(i <=> f); } typedef int *INTPTR; void test_typedef_bug(int *x, INTPTR y) { (void)(x <=> y); } using nullptr_t = decltype(nullptr); struct Class {}; struct ClassB : Class {}; struct Class2 {}; using FnTy = void(int); using MemFnTy = void (Class::*)() const; using MemDataTy = long(Class::*); void test_nullptr(int *x, FnTy *fp, MemFnTy memp, MemDataTy memdp) { auto r1 = (nullptr <=> nullptr); // expected-error {{invalid operands}} auto r2 = (nullptr <=> x); // expected-error {{invalid operands}} auto r3 = (fp <=> nullptr); // expected-error {{invalid operands}} auto r4 = (0 <=> fp); // expected-error {{ordered comparison between pointer and zero}} auto r5 = (nullptr <=> memp); // expected-error {{invalid operands}} auto r6 = (0 <=> memdp); // expected-error {{invalid operands}} auto r7 = (0 <=> nullptr); // expected-error {{invalid operands}} } void test_memptr(MemFnTy mf, MemDataTy md) { (void)(mf <=> mf); // expected-error {{invalid operands}} expected-warning {{self-comparison}} (void)(md <=> md); // expected-error {{invalid operands}} expected-warning {{self-comparison}} } // Test that variable narrowing is deferred for value dependent expressions template auto test_template_overflow() { // expected-error@+1 {{argument to 'operator<=>' evaluates to -1, which cannot be narrowed to type 'unsigned long'}} return (Val <=> (unsigned long)0); } template auto test_template_overflow<0>(); template auto test_template_overflow<-1>(); // expected-note {{requested here}} void test_enum_integral_compare() { enum EnumA : int {A, ANeg = -1, AMax = __INT_MAX__}; enum EnumB : unsigned {B, BMax = __UINT32_MAX__ }; enum EnumC : int {C = -1, C0 = 0}; (void)(A <=> C); // expected-error {{invalid operands to binary expression ('EnumA' and 'EnumC')}} (void)(A <=> (unsigned)0); (void)((unsigned)0 <=> A); (void)(ANeg <=> (unsigned)0); // expected-error {{argument to 'operator<=>' evaluates to -1, which cannot be narrowed to type 'unsigned int'}} (void)((unsigned)0 <=> ANeg); // expected-error {{cannot be narrowed}} (void)(B <=> 42); (void)(42 <=> B); (void)(B <=> (unsigned long long)42); (void)(B <=> -1); // expected-error {{argument to 'operator<=>' evaluates to -1, which cannot be narrowed to type 'unsigned int'}} (void)(BMax <=> (unsigned long)-1); (void)(C0 <=> (unsigned)42); (void)(C <=> (unsigned)42); // expected-error {{argument to 'operator<=>' evaluates to -1, which cannot be narrowed to type 'unsigned int'}} } namespace EnumCompareTests { enum class EnumA { A, A2 }; enum class EnumB { B }; enum class EnumC : unsigned { C }; void test_enum_enum_compare_no_builtin() { auto r1 = (EnumA::A <=> EnumA::A2); // OK ASSERT_EXPR_TYPE(r1, std::strong_ordering); (void)(EnumA::A <=> EnumA::A); // expected-warning {{self-comparison always evaluates to 'std::strong_ordering::equal'}} (void)(EnumA::A <=> EnumB::B); // expected-error {{invalid operands to binary expression ('EnumCompareTests::EnumA' and 'EnumCompareTests::EnumB')}} (void)(EnumB::B <=> EnumA::A); // expected-error {{invalid operands}} } template struct Tag {}; Tag<0> operator<=>(EnumA, EnumA) { // expected-note {{not viable}} return {}; } // expected-note@+1 {{while rewriting comparison as call to 'operator<=>' declared here}} Tag<1> operator<=>(EnumA, EnumB) { // expected-note {{not viable}} return {}; } void test_enum_ovl_provided() { auto r1 = (EnumA::A <=> EnumA::A); ASSERT_EXPR_TYPE(r1, Tag<0>); auto r2 = (EnumA::A <=> EnumB::B); ASSERT_EXPR_TYPE(r2, Tag<1>); (void)(EnumB::B <=> EnumA::A); // expected-error {{invalid operands to binary expression ('int' and 'Tag<1>')}} } void enum_float_test() { enum EnumA { A }; (void)(A <=> (float)0); // expected-error {{invalid operands to binary expression ('EnumA' and 'float')}} (void)((double)0 <=> A); // expected-error {{invalid operands to binary expression ('double' and 'EnumA')}} (void)((long double)0 <=> A); // expected-error {{invalid operands to binary expression ('long double' and 'EnumA')}} } enum class Bool1 : bool { Zero, One }; enum Bool2 : bool { B2_Zero, B2_One }; void test_bool_enum(Bool1 A1, Bool1 A2, Bool2 B1, Bool2 B2) { (void)(A1 <=> A2); (void)(B1 <=> B2); } } // namespace EnumCompareTests namespace TestUserDefinedConvSeq { template struct Conv { constexpr operator T() const { return Val; } operator T() { return Val; } }; void test_user_conv() { { using C = Conv; C c; const C cc; (void)(0 <=> c); (void)(c <=> -1); (void)((unsigned)0 <=> cc); (void)((unsigned)0 <=> c); // expected-error {{argument to 'operator<=>' cannot be narrowed from type 'int' to 'unsigned int'}} } { using C = Conv; C c; const C cc; (void)(c <=> 0); (void)(cc <=> (unsigned)0); // expected-error {{argument to 'operator<=>' evaluates to -1, which cannot be narrowed to type 'unsigned int'}} (void)(c <=> (unsigned)0); // expected-error {{cannot be narrowed from type 'int' to 'unsigned int'}} } } struct X { constexpr const Conv operator<=>(X) { return {}; } }; static_assert(X() < X()); } // namespace TestUserDefinedConvSeq void test_array_conv() { int arr[5]; int *ap = arr + 2; int arr2[3]; (void)(arr <=> arr); // expected-error {{invalid operands to binary expression ('int[5]' and 'int[5]')}} (void)(+arr <=> arr); } void test_mixed_float_int(float f, double d, long double ld) { extern int i; extern unsigned u; extern long l; extern short s; extern unsigned short us; auto r1 = (f <=> i); ASSERT_EXPR_TYPE(r1, std::partial_ordering); auto r2 = (us <=> ld); ASSERT_EXPR_TYPE(r2, std::partial_ordering); auto r3 = (s <=> f); ASSERT_EXPR_TYPE(r3, std::partial_ordering); auto r4 = (0.0 <=> i); ASSERT_EXPR_TYPE(r4, std::partial_ordering); } namespace NullptrTest { using nullptr_t = decltype(nullptr); void foo(nullptr_t x, nullptr_t y) { auto r = x <=> y; // expected-error {{invalid operands}} } } // namespace NullptrTest namespace ComplexTest { enum class StrongE {}; enum WeakE { E_One, E_Two }; void test_diag(_Complex int ci, _Complex float cf, _Complex double cd, int i, float f, StrongE E1, WeakE E2, int *p) { // expected-warning 3 {{'_Complex' is a C99 extension}} (void)(ci <=> (_Complex int &)ci); // expected-warning {{'_Complex' is a C99 extension}} expected-error {{invalid operands}} (void)(ci <=> cf); // expected-error {{invalid operands}} (void)(ci <=> i); // expected-error {{invalid operands}} (void)(ci <=> f); // expected-error {{invalid operands}} (void)(cf <=> i); // expected-error {{invalid operands}} (void)(cf <=> f); // expected-error {{invalid operands}} (void)(ci <=> p); // expected-error {{invalid operands}} (void)(ci <=> E1); // expected-error {{invalid operands}} (void)(E2 <=> cf); // expected-error {{invalid operands}} } void test_int(_Complex int x, _Complex int y) { // expected-warning 2 {{'_Complex' is a C99 extension}} auto r = x <=> y; // expected-error {{invalid operands}} } void test_double(_Complex double x, _Complex double y) { // expected-warning 2 {{'_Complex' is a C99 extension}} auto r = x <=> y; // expected-error {{invalid operands}} } } // namespace ComplexTest namespace Vector { typedef __attribute__((ext_vector_type(4))) int V; void f(V v1, V v2) { // This would logically result in a vector of std::strong_ordering, but we // don't support vectors of class type. We could model this as a vector of // int (-1 / 0 / 1), but that doesn't extend to floating-point types (how // to represent 'unordered')? For now, just reject. (void)(v1 <=> v2); // expected-error {{three-way comparison between vectors is not supported}} } } namespace PR44992 { extern "C++" struct s { friend auto operator<=>(s const &, s const &) = default; }; } namespace PR52537 { template struct X {}; template bool operator==(const X &, int) { return T::error; } // expected-error 2{{no members}} template int operator<=>(const X &, int) { return T::error; } // expected-error 2{{no members}} const X x1; template bool f1() { return x1 != 0; } // expected-note {{instantiation of}} void g1() { f1(); } // expected-note {{instantiation of}} const X x2; template bool f2() { return 0 == x2; } // expected-note {{instantiation of}} void g2() { f2(); } // expected-note {{instantiation of}} const X x3; template bool f3() { return x3 < 0; } // expected-note {{instantiation of}} void g3() { f3(); } // expected-note {{instantiation of}} const X x4; template bool f4() { return 0 >= x4; } // expected-note {{instantiation of}} void g4() { f4(); } // expected-note {{instantiation of}} template struct Y {}; template struct Z { Z(int) { T::error; } using nondeduced = Z; }; // expected-error 2{{no members}} template Z operator<=>(const Y&, int); template bool operator<(const Z&, const typename Z::nondeduced&); template bool operator<(const typename Z::nondeduced&, const Z&); const Y y5; template bool f5() { return y5 < 0; } // expected-note {{instantiation of}} void g5() { f5(); } // expected-note {{instantiation of}} const Y y6; template bool f6() { return 0 < y6; } // expected-note {{instantiation of}} void g6() { f6(); } // expected-note {{instantiation of}} } namespace GH64923 { using nullptr_t = decltype(nullptr); struct MyTask{}; constexpr MyTask DoAnotherThing() { return {}; } constexpr nullptr_t operator++(MyTask &&T); // expected-note 2{{declared here}} void DoSomething() { if constexpr (++DoAnotherThing() != nullptr) {} // expected-error {{constexpr if condition is not a constant expression}} \ // expected-note {{undefined function 'operator++' cannot be used in a constant expression}} if constexpr (nullptr == ++DoAnotherThing()) {} // expected-error {{constexpr if condition is not a constant expression}} \ // expected-note {{undefined function 'operator++' cannot be used in a constant expression}} } } namespace GH64162 { struct S { const std::strong_ordering& operator<=>(const S&) const = default; }; bool test(S s) { return s < s; // We expect this not to crash anymore } // Following example never crashed but worth adding in because it is related struct A {}; bool operator<(A, int); struct B { operator A(); }; struct C { B operator<=>(C); }; bool f(C c) { return c < c; } }