// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py // RUN: %clang_cc1 -ffreestanding -triple armv8a-none-eabi -target-feature +crc -target-feature +dsp -O0 -disable-O0-optnone -S -emit-llvm -o - %s | opt -S -passes=mem2reg | FileCheck %s -check-prefixes=ARM,AArch32 // RUN: %clang_cc1 -ffreestanding -Wno-error=implicit-function-declaration -triple aarch64-none-elf -target-feature +neon -target-feature +crc -target-feature +crypto -O0 -disable-O0-optnone -S -emit-llvm -o - %s | opt -S -passes=mem2reg | FileCheck %s -check-prefixes=ARM,AArch64 // RUN: %clang_cc1 -ffreestanding -triple aarch64-none-elf -target-feature +v8.3a -target-feature +crc -O0 -disable-O0-optnone -S -emit-llvm -o - %s | opt -S -passes=mem2reg | FileCheck %s -check-prefixes=ARM,AArch64,AArch6483 // RUN: %clang_cc1 -ffreestanding -triple aarch64-none-elf -target-feature +v8.5a -target-feature +crc -target-feature +rand -O0 -disable-O0-optnone -S -emit-llvm -o - %s | opt -S -passes=mem2reg | FileCheck %s -check-prefixes=ARM,AArch64,AArch6483,AArch6485 // RUN: %clang_cc1 -ffreestanding -triple aarch64-none-elf -target-feature +v9.4a -target-feature +crc -target-feature +rand -target-feature +d128 -O0 -disable-O0-optnone -S -emit-llvm -o - %s | opt -S -passes=mem2reg | FileCheck %s -check-prefixes=ARM,AArch64,AArch6483,AArch6485,AArch6494D128 #include // REQUIRES: arm-registered-target,aarch64-registered-target /* 8 SYNCHRONIZATION, BARRIER AND HINT INTRINSICS */ /* 8.3 Memory Barriers */ // AArch32-LABEL: @test_dmb( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.dmb(i32 1) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_dmb( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.dmb(i32 1) // AArch64-NEXT: ret void // void test_dmb(void) { __dmb(1); } // AArch32-LABEL: @test_dsb( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.dsb(i32 2) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_dsb( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.dsb(i32 2) // AArch64-NEXT: ret void // void test_dsb(void) { __dsb(2); } // AArch32-LABEL: @test_isb( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.isb(i32 3) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_isb( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.isb(i32 3) // AArch64-NEXT: ret void // void test_isb(void) { __isb(3); } /* 8.4 Hints */ // AArch32-LABEL: @test_yield( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.hint(i32 1) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_yield( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.hint(i32 1) // AArch64-NEXT: ret void // void test_yield(void) { __yield(); } // AArch32-LABEL: @test_wfe( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.hint(i32 2) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wfe( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.hint(i32 2) // AArch64-NEXT: ret void // void test_wfe(void) { __wfe(); } // AArch32-LABEL: @test_wfi( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.hint(i32 3) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wfi( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.hint(i32 3) // AArch64-NEXT: ret void // void test_wfi(void) { __wfi(); } // AArch32-LABEL: @test_sev( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.hint(i32 4) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_sev( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.hint(i32 4) // AArch64-NEXT: ret void // void test_sev(void) { __sev(); } // AArch32-LABEL: @test_sevl( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.hint(i32 5) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_sevl( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.hint(i32 5) // AArch64-NEXT: ret void // void test_sevl(void) { __sevl(); } #ifdef __ARM_32BIT_STATE // AArch32-LABEL: @test_dbg( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.dbg(i32 0) // AArch32-NEXT: ret void // void test_dbg(void) { __dbg(0); } #endif /* 8.5 Swap */ // AArch32-LABEL: @test_swp( // AArch32-NEXT: entry: // AArch32-NEXT: br label [[DO_BODY_I:%.*]] // AArch32: do.body.i: // AArch32-NEXT: [[LDREX_I:%.*]] = call i32 @llvm.arm.ldrex.p0(ptr elementtype(i32) [[P:%.*]]) // AArch32-NEXT: [[STREX_I:%.*]] = call i32 @llvm.arm.strex.p0(i32 [[X:%.*]], ptr elementtype(i32) [[P]]) // AArch32-NEXT: [[TOBOOL_I:%.*]] = icmp ne i32 [[STREX_I]], 0 // AArch32-NEXT: br i1 [[TOBOOL_I]], label [[DO_BODY_I]], label [[__SWP_EXIT:%.*]], !llvm.loop [[LOOP3:![0-9]+]] // AArch32: __swp.exit: // AArch32-NEXT: ret void // // AArch64-LABEL: @test_swp( // AArch64-NEXT: entry: // AArch64-NEXT: br label [[DO_BODY_I:%.*]] // AArch64: do.body.i: // AArch64-NEXT: [[LDXR_I:%.*]] = call i64 @llvm.aarch64.ldxr.p0(ptr elementtype(i32) [[P:%.*]]) // AArch64-NEXT: [[TMP0:%.*]] = trunc i64 [[LDXR_I]] to i32 // AArch64-NEXT: [[TMP1:%.*]] = zext i32 [[X:%.*]] to i64 // AArch64-NEXT: [[STXR_I:%.*]] = call i32 @llvm.aarch64.stxr.p0(i64 [[TMP1]], ptr elementtype(i32) [[P]]) // AArch64-NEXT: [[TOBOOL_I:%.*]] = icmp ne i32 [[STXR_I]], 0 // AArch64-NEXT: br i1 [[TOBOOL_I]], label [[DO_BODY_I]], label [[__SWP_EXIT:%.*]], !llvm.loop [[LOOP2:![0-9]+]] // AArch64: __swp.exit: // AArch64-NEXT: ret void // void test_swp(uint32_t x, volatile void *p) { __swp(x, p); } /* 8.6 Memory prefetch intrinsics */ /* 8.6.1 Data prefetch */ // AArch32-LABEL: @test_pld( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.prefetch.p0(ptr null, i32 0, i32 3, i32 1) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_pld( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.prefetch(ptr null, i32 0, i32 0, i32 0, i32 1) // AArch64-NEXT: ret void // void test_pld() { __pld(0); } // AArch32-LABEL: @test_pldx( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.prefetch.p0(ptr null, i32 1, i32 3, i32 1) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_pldx( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.prefetch(ptr null, i32 1, i32 2, i32 0, i32 1) // AArch64-NEXT: ret void // void test_pldx() { __pldx(1, 2, 0, 0); } /* 8.6.2 Instruction prefetch */ // AArch32-LABEL: @test_pli( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.prefetch.p0(ptr null, i32 0, i32 3, i32 0) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_pli( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.prefetch(ptr null, i32 0, i32 0, i32 0, i32 0) // AArch64-NEXT: ret void // void test_pli() { __pli(0); } // AArch32-LABEL: @test_plix( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.prefetch.p0(ptr null, i32 0, i32 3, i32 0) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_plix( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.prefetch(ptr null, i32 0, i32 2, i32 0, i32 0) // AArch64-NEXT: ret void // void test_plix() { __plix(2, 0, 0); } /* 8.7 NOP */ // AArch32-LABEL: @test_nop( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.arm.hint(i32 0) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_nop( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.aarch64.hint(i32 0) // AArch64-NEXT: ret void // void test_nop(void) { __nop(); } /* 9 DATA-PROCESSING INTRINSICS */ /* 9.2 Miscellaneous data-processing intrinsics */ // ARM-LABEL: @test_ror( // ARM-NEXT: entry: // ARM-NEXT: [[REM_I:%.*]] = urem i32 [[Y:%.*]], 32 // ARM-NEXT: [[CMP_I:%.*]] = icmp eq i32 [[REM_I]], 0 // ARM-NEXT: br i1 [[CMP_I]], label [[IF_THEN_I:%.*]], label [[IF_END_I:%.*]] // ARM: if.then.i: // ARM-NEXT: br label [[__ROR_EXIT:%.*]] // ARM: if.end.i: // ARM-NEXT: [[SHR_I:%.*]] = lshr i32 [[X:%.*]], [[REM_I]] // ARM-NEXT: [[SUB_I:%.*]] = sub i32 32, [[REM_I]] // ARM-NEXT: [[SHL_I:%.*]] = shl i32 [[X]], [[SUB_I]] // ARM-NEXT: [[OR_I:%.*]] = or i32 [[SHR_I]], [[SHL_I]] // ARM-NEXT: br label [[__ROR_EXIT]] // ARM: __ror.exit: // ARM-NEXT: [[RETVAL_I_0:%.*]] = phi i32 [ [[X]], [[IF_THEN_I]] ], [ [[OR_I]], [[IF_END_I]] ] // ARM-NEXT: ret i32 [[RETVAL_I_0]] // uint32_t test_ror(uint32_t x, uint32_t y) { return __ror(x, y); } // AArch32-LABEL: @test_rorl( // AArch32-NEXT: entry: // AArch32-NEXT: [[REM_I_I:%.*]] = urem i32 [[Y:%.*]], 32 // AArch32-NEXT: [[CMP_I_I:%.*]] = icmp eq i32 [[REM_I_I]], 0 // AArch32-NEXT: br i1 [[CMP_I_I]], label [[IF_THEN_I_I:%.*]], label [[IF_END_I_I:%.*]] // AArch32: if.then.i.i: // AArch32-NEXT: br label [[__RORL_EXIT:%.*]] // AArch32: if.end.i.i: // AArch32-NEXT: [[SHR_I_I:%.*]] = lshr i32 [[X:%.*]], [[REM_I_I]] // AArch32-NEXT: [[SUB_I_I:%.*]] = sub i32 32, [[REM_I_I]] // AArch32-NEXT: [[SHL_I_I:%.*]] = shl i32 [[X]], [[SUB_I_I]] // AArch32-NEXT: [[OR_I_I:%.*]] = or i32 [[SHR_I_I]], [[SHL_I_I]] // AArch32-NEXT: br label [[__RORL_EXIT]] // AArch32: __rorl.exit: // AArch32-NEXT: [[RETVAL_I_I_0:%.*]] = phi i32 [ [[X]], [[IF_THEN_I_I]] ], [ [[OR_I_I]], [[IF_END_I_I]] ] // AArch32-NEXT: ret i32 [[RETVAL_I_I_0]] // // AArch64-LABEL: @test_rorl( // AArch64-NEXT: entry: // AArch64-NEXT: [[REM_I:%.*]] = urem i32 [[Y:%.*]], 64 // AArch64-NEXT: [[CMP_I:%.*]] = icmp eq i32 [[REM_I]], 0 // AArch64-NEXT: br i1 [[CMP_I]], label [[IF_THEN_I:%.*]], label [[IF_END_I:%.*]] // AArch64: if.then.i: // AArch64-NEXT: br label [[__RORLL_EXIT:%.*]] // AArch64: if.end.i: // AArch64-NEXT: [[SH_PROM_I:%.*]] = zext i32 [[REM_I]] to i64 // AArch64-NEXT: [[SHR_I:%.*]] = lshr i64 [[X:%.*]], [[SH_PROM_I]] // AArch64-NEXT: [[SUB_I:%.*]] = sub i32 64, [[REM_I]] // AArch64-NEXT: [[SH_PROM1_I:%.*]] = zext i32 [[SUB_I]] to i64 // AArch64-NEXT: [[SHL_I:%.*]] = shl i64 [[X]], [[SH_PROM1_I]] // AArch64-NEXT: [[OR_I:%.*]] = or i64 [[SHR_I]], [[SHL_I]] // AArch64-NEXT: br label [[__RORLL_EXIT]] // AArch64: __rorll.exit: // AArch64-NEXT: [[RETVAL_I_0:%.*]] = phi i64 [ [[X]], [[IF_THEN_I]] ], [ [[OR_I]], [[IF_END_I]] ] // AArch64-NEXT: ret i64 [[RETVAL_I_0]] // unsigned long test_rorl(unsigned long x, uint32_t y) { return __rorl(x, y); } // ARM-LABEL: @test_rorll( // ARM-NEXT: entry: // ARM-NEXT: [[REM_I:%.*]] = urem i32 [[Y:%.*]], 64 // ARM-NEXT: [[CMP_I:%.*]] = icmp eq i32 [[REM_I]], 0 // ARM-NEXT: br i1 [[CMP_I]], label [[IF_THEN_I:%.*]], label [[IF_END_I:%.*]] // ARM: if.then.i: // ARM-NEXT: br label [[__RORLL_EXIT:%.*]] // ARM: if.end.i: // ARM-NEXT: [[SH_PROM_I:%.*]] = zext i32 [[REM_I]] to i64 // ARM-NEXT: [[SHR_I:%.*]] = lshr i64 [[X:%.*]], [[SH_PROM_I]] // ARM-NEXT: [[SUB_I:%.*]] = sub i32 64, [[REM_I]] // ARM-NEXT: [[SH_PROM1_I:%.*]] = zext i32 [[SUB_I]] to i64 // ARM-NEXT: [[SHL_I:%.*]] = shl i64 [[X]], [[SH_PROM1_I]] // ARM-NEXT: [[OR_I:%.*]] = or i64 [[SHR_I]], [[SHL_I]] // ARM-NEXT: br label [[__RORLL_EXIT]] // ARM: __rorll.exit: // ARM-NEXT: [[RETVAL_I_0:%.*]] = phi i64 [ [[X]], [[IF_THEN_I]] ], [ [[OR_I]], [[IF_END_I]] ] // ARM-NEXT: ret i64 [[RETVAL_I_0]] // uint64_t test_rorll(uint64_t x, uint32_t y) { return __rorll(x, y); } // ARM-LABEL: @test_clz( // ARM-NEXT: entry: // ARM-NEXT: [[TMP0:%.*]] = call i32 @llvm.ctlz.i32(i32 [[T:%.*]], i1 false) // ARM-NEXT: ret i32 [[TMP0]] // unsigned test_clz(uint32_t t) { return __clz(t); } // AArch32-LABEL: @test_clzl( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.ctlz.i32(i32 [[T:%.*]], i1 false) // AArch32-NEXT: ret i32 [[TMP0]] // // AArch64-LABEL: @test_clzl( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.ctlz.i64(i64 [[T:%.*]], i1 false) // AArch64-NEXT: [[CAST_I:%.*]] = trunc i64 [[TMP0]] to i32 // AArch64-NEXT: ret i32 [[CAST_I]] // unsigned test_clzl(unsigned long t) { return __clzl(t); } // ARM-LABEL: @test_clzll( // ARM-NEXT: entry: // ARM-NEXT: [[TMP0:%.*]] = call i64 @llvm.ctlz.i64(i64 [[T:%.*]], i1 false) // ARM-NEXT: [[CAST_I:%.*]] = trunc i64 [[TMP0]] to i32 // ARM-NEXT: ret i32 [[CAST_I]] // unsigned test_clzll(uint64_t t) { return __clzll(t); } // AArch32-LABEL: @test_cls( // AArch32-NEXT: entry: // AArch32-NEXT: [[CLS_I:%.*]] = call i32 @llvm.arm.cls(i32 [[T:%.*]]) // AArch32-NEXT: ret i32 [[CLS_I]] // // AArch64-LABEL: @test_cls( // AArch64-NEXT: entry: // AArch64-NEXT: [[CLS_I:%.*]] = call i32 @llvm.aarch64.cls(i32 [[T:%.*]]) // AArch64-NEXT: ret i32 [[CLS_I]] // unsigned test_cls(uint32_t t) { return __cls(t); } // AArch32-LABEL: @test_clsl( // AArch32-NEXT: entry: // AArch32-NEXT: [[CLS_I:%.*]] = call i32 @llvm.arm.cls(i32 [[T:%.*]]) // AArch32-NEXT: ret i32 [[CLS_I]] // // AArch64-LABEL: @test_clsl( // AArch64-NEXT: entry: // AArch64-NEXT: [[CLS_I:%.*]] = call i32 @llvm.aarch64.cls64(i64 [[T:%.*]]) // AArch64-NEXT: ret i32 [[CLS_I]] // unsigned test_clsl(unsigned long t) { return __clsl(t); } // AArch32-LABEL: @test_clsll( // AArch32-NEXT: entry: // AArch32-NEXT: [[CLS_I:%.*]] = call i32 @llvm.arm.cls64(i64 [[T:%.*]]) // AArch32-NEXT: ret i32 [[CLS_I]] // // AArch64-LABEL: @test_clsll( // AArch64-NEXT: entry: // AArch64-NEXT: [[CLS_I:%.*]] = call i32 @llvm.aarch64.cls64(i64 [[T:%.*]]) // AArch64-NEXT: ret i32 [[CLS_I]] // unsigned test_clsll(uint64_t t) { return __clsll(t); } // ARM-LABEL: @test_rev( // ARM-NEXT: entry: // ARM-NEXT: [[TMP0:%.*]] = call i32 @llvm.bswap.i32(i32 [[T:%.*]]) // ARM-NEXT: ret i32 [[TMP0]] // uint32_t test_rev(uint32_t t) { return __rev(t); } // AArch32-LABEL: @test_revl( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.bswap.i32(i32 [[T:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // // AArch64-LABEL: @test_revl( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.bswap.i64(i64 [[T:%.*]]) // AArch64-NEXT: ret i64 [[TMP0]] // long test_revl(long t) { return __revl(t); } // ARM-LABEL: @test_revll( // ARM-NEXT: entry: // ARM-NEXT: [[TMP0:%.*]] = call i64 @llvm.bswap.i64(i64 [[T:%.*]]) // ARM-NEXT: ret i64 [[TMP0]] // uint64_t test_revll(uint64_t t) { return __revll(t); } // ARM-LABEL: @test_rev16( // ARM-NEXT: entry: // ARM-NEXT: [[TMP0:%.*]] = call i32 @llvm.bswap.i32(i32 [[T:%.*]]) // ARM-NEXT: [[REM_I_I:%.*]] = urem i32 16, 32 // ARM-NEXT: [[CMP_I_I:%.*]] = icmp eq i32 [[REM_I_I]], 0 // ARM-NEXT: br i1 [[CMP_I_I]], label [[IF_THEN_I_I:%.*]], label [[IF_END_I_I:%.*]] // ARM: if.then.i.i: // ARM-NEXT: br label [[__REV16_EXIT:%.*]] // ARM: if.end.i.i: // ARM-NEXT: [[SHR_I_I:%.*]] = lshr i32 [[TMP0]], [[REM_I_I]] // ARM-NEXT: [[SUB_I_I:%.*]] = sub i32 32, [[REM_I_I]] // ARM-NEXT: [[SHL_I_I:%.*]] = shl i32 [[TMP0]], [[SUB_I_I]] // ARM-NEXT: [[OR_I_I:%.*]] = or i32 [[SHR_I_I]], [[SHL_I_I]] // ARM-NEXT: br label [[__REV16_EXIT]] // ARM: __rev16.exit: // ARM-NEXT: [[RETVAL_I_I_0:%.*]] = phi i32 [ [[TMP0]], [[IF_THEN_I_I]] ], [ [[OR_I_I]], [[IF_END_I_I]] ] // ARM-NEXT: ret i32 [[RETVAL_I_I_0]] // uint32_t test_rev16(uint32_t t) { return __rev16(t); } // AArch32-LABEL: @test_rev16l( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.bswap.i32(i32 [[T:%.*]]) // AArch32-NEXT: [[REM_I_I_I:%.*]] = urem i32 16, 32 // AArch32-NEXT: [[CMP_I_I_I:%.*]] = icmp eq i32 [[REM_I_I_I]], 0 // AArch32-NEXT: br i1 [[CMP_I_I_I]], label [[IF_THEN_I_I_I:%.*]], label [[IF_END_I_I_I:%.*]] // AArch32: if.then.i.i.i: // AArch32-NEXT: br label [[__REV16L_EXIT:%.*]] // AArch32: if.end.i.i.i: // AArch32-NEXT: [[SHR_I_I_I:%.*]] = lshr i32 [[TMP0]], [[REM_I_I_I]] // AArch32-NEXT: [[SUB_I_I_I:%.*]] = sub i32 32, [[REM_I_I_I]] // AArch32-NEXT: [[SHL_I_I_I:%.*]] = shl i32 [[TMP0]], [[SUB_I_I_I]] // AArch32-NEXT: [[OR_I_I_I:%.*]] = or i32 [[SHR_I_I_I]], [[SHL_I_I_I]] // AArch32-NEXT: br label [[__REV16L_EXIT]] // AArch32: __rev16l.exit: // AArch32-NEXT: [[RETVAL_I_I_I_0:%.*]] = phi i32 [ [[TMP0]], [[IF_THEN_I_I_I]] ], [ [[OR_I_I_I]], [[IF_END_I_I_I]] ] // AArch32-NEXT: ret i32 [[RETVAL_I_I_I_0]] // // AArch64-LABEL: @test_rev16l( // AArch64-NEXT: entry: // AArch64-NEXT: [[SHR_I:%.*]] = lshr i64 [[T:%.*]], 32 // AArch64-NEXT: [[CONV_I:%.*]] = trunc i64 [[SHR_I]] to i32 // AArch64-NEXT: [[TMP0:%.*]] = call i32 @llvm.bswap.i32(i32 [[CONV_I]]) // AArch64-NEXT: [[REM_I_I10_I:%.*]] = urem i32 16, 32 // AArch64-NEXT: [[CMP_I_I11_I:%.*]] = icmp eq i32 [[REM_I_I10_I]], 0 // AArch64-NEXT: br i1 [[CMP_I_I11_I]], label [[IF_THEN_I_I17_I:%.*]], label [[IF_END_I_I12_I:%.*]] // AArch64: if.then.i.i17.i: // AArch64-NEXT: br label [[__REV16_EXIT18_I:%.*]] // AArch64: if.end.i.i12.i: // AArch64-NEXT: [[SHR_I_I13_I:%.*]] = lshr i32 [[TMP0]], [[REM_I_I10_I]] // AArch64-NEXT: [[SUB_I_I14_I:%.*]] = sub i32 32, [[REM_I_I10_I]] // AArch64-NEXT: [[SHL_I_I15_I:%.*]] = shl i32 [[TMP0]], [[SUB_I_I14_I]] // AArch64-NEXT: [[OR_I_I16_I:%.*]] = or i32 [[SHR_I_I13_I]], [[SHL_I_I15_I]] // AArch64-NEXT: br label [[__REV16_EXIT18_I]] // AArch64: __rev16.exit18.i: // AArch64-NEXT: [[RETVAL_I_I6_I_0:%.*]] = phi i32 [ [[TMP0]], [[IF_THEN_I_I17_I]] ], [ [[OR_I_I16_I]], [[IF_END_I_I12_I]] ] // AArch64-NEXT: [[CONV1_I:%.*]] = zext i32 [[RETVAL_I_I6_I_0]] to i64 // AArch64-NEXT: [[SHL_I:%.*]] = shl i64 [[CONV1_I]], 32 // AArch64-NEXT: [[CONV2_I:%.*]] = trunc i64 [[T]] to i32 // AArch64-NEXT: [[TMP1:%.*]] = call i32 @llvm.bswap.i32(i32 [[CONV2_I]]) // AArch64-NEXT: [[REM_I_I_I:%.*]] = urem i32 16, 32 // AArch64-NEXT: [[CMP_I_I_I:%.*]] = icmp eq i32 [[REM_I_I_I]], 0 // AArch64-NEXT: br i1 [[CMP_I_I_I]], label [[IF_THEN_I_I_I:%.*]], label [[IF_END_I_I_I:%.*]] // AArch64: if.then.i.i.i: // AArch64-NEXT: br label [[__REV16LL_EXIT:%.*]] // AArch64: if.end.i.i.i: // AArch64-NEXT: [[SHR_I_I_I:%.*]] = lshr i32 [[TMP1]], [[REM_I_I_I]] // AArch64-NEXT: [[SUB_I_I_I:%.*]] = sub i32 32, [[REM_I_I_I]] // AArch64-NEXT: [[SHL_I_I_I:%.*]] = shl i32 [[TMP1]], [[SUB_I_I_I]] // AArch64-NEXT: [[OR_I_I_I:%.*]] = or i32 [[SHR_I_I_I]], [[SHL_I_I_I]] // AArch64-NEXT: br label [[__REV16LL_EXIT]] // AArch64: __rev16ll.exit: // AArch64-NEXT: [[RETVAL_I_I_I_0:%.*]] = phi i32 [ [[TMP1]], [[IF_THEN_I_I_I]] ], [ [[OR_I_I_I]], [[IF_END_I_I_I]] ] // AArch64-NEXT: [[CONV4_I:%.*]] = zext i32 [[RETVAL_I_I_I_0]] to i64 // AArch64-NEXT: [[OR_I:%.*]] = or i64 [[SHL_I]], [[CONV4_I]] // AArch64-NEXT: ret i64 [[OR_I]] // long test_rev16l(long t) { return __rev16l(t); } // ARM-LABEL: @test_rev16ll( // ARM-NEXT: entry: // ARM-NEXT: [[SHR_I:%.*]] = lshr i64 [[T:%.*]], 32 // ARM-NEXT: [[CONV_I:%.*]] = trunc i64 [[SHR_I]] to i32 // ARM-NEXT: [[TMP0:%.*]] = call i32 @llvm.bswap.i32(i32 [[CONV_I]]) // ARM-NEXT: [[REM_I_I10_I:%.*]] = urem i32 16, 32 // ARM-NEXT: [[CMP_I_I11_I:%.*]] = icmp eq i32 [[REM_I_I10_I]], 0 // ARM-NEXT: br i1 [[CMP_I_I11_I]], label [[IF_THEN_I_I17_I:%.*]], label [[IF_END_I_I12_I:%.*]] // ARM: if.then.i.i17.i: // ARM-NEXT: br label [[__REV16_EXIT18_I:%.*]] // ARM: if.end.i.i12.i: // ARM-NEXT: [[SHR_I_I13_I:%.*]] = lshr i32 [[TMP0]], [[REM_I_I10_I]] // ARM-NEXT: [[SUB_I_I14_I:%.*]] = sub i32 32, [[REM_I_I10_I]] // ARM-NEXT: [[SHL_I_I15_I:%.*]] = shl i32 [[TMP0]], [[SUB_I_I14_I]] // ARM-NEXT: [[OR_I_I16_I:%.*]] = or i32 [[SHR_I_I13_I]], [[SHL_I_I15_I]] // ARM-NEXT: br label [[__REV16_EXIT18_I]] // ARM: __rev16.exit18.i: // ARM-NEXT: [[RETVAL_I_I6_I_0:%.*]] = phi i32 [ [[TMP0]], [[IF_THEN_I_I17_I]] ], [ [[OR_I_I16_I]], [[IF_END_I_I12_I]] ] // ARM-NEXT: [[CONV1_I:%.*]] = zext i32 [[RETVAL_I_I6_I_0]] to i64 // ARM-NEXT: [[SHL_I:%.*]] = shl i64 [[CONV1_I]], 32 // ARM-NEXT: [[CONV2_I:%.*]] = trunc i64 [[T]] to i32 // ARM-NEXT: [[TMP1:%.*]] = call i32 @llvm.bswap.i32(i32 [[CONV2_I]]) // ARM-NEXT: [[REM_I_I_I:%.*]] = urem i32 16, 32 // ARM-NEXT: [[CMP_I_I_I:%.*]] = icmp eq i32 [[REM_I_I_I]], 0 // ARM-NEXT: br i1 [[CMP_I_I_I]], label [[IF_THEN_I_I_I:%.*]], label [[IF_END_I_I_I:%.*]] // ARM: if.then.i.i.i: // ARM-NEXT: br label [[__REV16LL_EXIT:%.*]] // ARM: if.end.i.i.i: // ARM-NEXT: [[SHR_I_I_I:%.*]] = lshr i32 [[TMP1]], [[REM_I_I_I]] // ARM-NEXT: [[SUB_I_I_I:%.*]] = sub i32 32, [[REM_I_I_I]] // ARM-NEXT: [[SHL_I_I_I:%.*]] = shl i32 [[TMP1]], [[SUB_I_I_I]] // ARM-NEXT: [[OR_I_I_I:%.*]] = or i32 [[SHR_I_I_I]], [[SHL_I_I_I]] // ARM-NEXT: br label [[__REV16LL_EXIT]] // ARM: __rev16ll.exit: // ARM-NEXT: [[RETVAL_I_I_I_0:%.*]] = phi i32 [ [[TMP1]], [[IF_THEN_I_I_I]] ], [ [[OR_I_I_I]], [[IF_END_I_I_I]] ] // ARM-NEXT: [[CONV4_I:%.*]] = zext i32 [[RETVAL_I_I_I_0]] to i64 // ARM-NEXT: [[OR_I:%.*]] = or i64 [[SHL_I]], [[CONV4_I]] // ARM-NEXT: ret i64 [[OR_I]] // uint64_t test_rev16ll(uint64_t t) { return __rev16ll(t); } // ARM-LABEL: @test_revsh( // ARM-NEXT: entry: // ARM-NEXT: [[TMP0:%.*]] = call i16 @llvm.bswap.i16(i16 [[T:%.*]]) // ARM-NEXT: ret i16 [[TMP0]] // int16_t test_revsh(int16_t t) { return __revsh(t); } // ARM-LABEL: @test_rbit( // ARM-NEXT: entry: // ARM-NEXT: [[RBIT_I:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[T:%.*]]) // ARM-NEXT: ret i32 [[RBIT_I]] // uint32_t test_rbit(uint32_t t) { return __rbit(t); } // AArch32-LABEL: @test_rbitl( // AArch32-NEXT: entry: // AArch32-NEXT: [[RBIT_I_I:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[T:%.*]]) // AArch32-NEXT: ret i32 [[RBIT_I_I]] // // AArch64-LABEL: @test_rbitl( // AArch64-NEXT: entry: // AArch64-NEXT: [[RBIT_I:%.*]] = call i64 @llvm.bitreverse.i64(i64 [[T:%.*]]) // AArch64-NEXT: ret i64 [[RBIT_I]] // long test_rbitl(long t) { return __rbitl(t); } // AArch32-LABEL: @test_rbitll( // AArch32-NEXT: entry: // AArch32-NEXT: [[CONV_I:%.*]] = trunc i64 [[T:%.*]] to i32 // AArch32-NEXT: [[RBIT_I:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[CONV_I]]) // AArch32-NEXT: [[CONV1_I:%.*]] = zext i32 [[RBIT_I]] to i64 // AArch32-NEXT: [[SHL_I:%.*]] = shl i64 [[CONV1_I]], 32 // AArch32-NEXT: [[SHR_I:%.*]] = lshr i64 [[T]], 32 // AArch32-NEXT: [[CONV2_I:%.*]] = trunc i64 [[SHR_I]] to i32 // AArch32-NEXT: [[RBIT3_I:%.*]] = call i32 @llvm.bitreverse.i32(i32 [[CONV2_I]]) // AArch32-NEXT: [[CONV4_I:%.*]] = zext i32 [[RBIT3_I]] to i64 // AArch32-NEXT: [[OR_I:%.*]] = or i64 [[SHL_I]], [[CONV4_I]] // AArch32-NEXT: ret i64 [[OR_I]] // // AArch64-LABEL: @test_rbitll( // AArch64-NEXT: entry: // AArch64-NEXT: [[RBIT_I:%.*]] = call i64 @llvm.bitreverse.i64(i64 [[T:%.*]]) // AArch64-NEXT: ret i64 [[RBIT_I]] // uint64_t test_rbitll(uint64_t t) { return __rbitll(t); } /* 9.4 Saturating intrinsics */ #ifdef __ARM_FEATURE_SAT /* 9.4.1 Width-specified saturation intrinsics */ // AArch32-LABEL: @test_ssat( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.ssat(i32 [[T:%.*]], i32 1) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_ssat(int32_t t) { return __ssat(t, 1); } // AArch32-LABEL: @test_usat( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usat(i32 [[T:%.*]], i32 2) // AArch32-NEXT: ret i32 [[TMP0]] // uint32_t test_usat(int32_t t) { return __usat(t, 2); } #endif /* 9.4.2 Saturating addition and subtraction intrinsics */ #ifdef __ARM_FEATURE_DSP // AArch32-LABEL: @test_qadd( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qadd(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_qadd(int32_t a, int32_t b) { return __qadd(a, b); } // AArch32-LABEL: @test_qsub( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qsub(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_qsub(int32_t a, int32_t b) { return __qsub(a, b); } extern int32_t f(); // AArch32-LABEL: @test_qdbl( // AArch32-NEXT: entry: // AArch32-NEXT: [[CALL:%.*]] = call i32 @f() #[[ATTR9:[0-9]+]] // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qadd(i32 [[CALL]], i32 [[CALL]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_qdbl() { return __qdbl(f()); } #endif /* * 9.3 16-bit multiplications */ #if __ARM_FEATURE_DSP // AArch32-LABEL: @test_smulbb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smulbb(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smulbb(int32_t a, int32_t b) { return __smulbb(a, b); } // AArch32-LABEL: @test_smulbt( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smulbt(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smulbt(int32_t a, int32_t b) { return __smulbt(a, b); } // AArch32-LABEL: @test_smultb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smultb(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smultb(int32_t a, int32_t b) { return __smultb(a, b); } // AArch32-LABEL: @test_smultt( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smultt(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smultt(int32_t a, int32_t b) { return __smultt(a, b); } // AArch32-LABEL: @test_smulwb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smulwb(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smulwb(int32_t a, int32_t b) { return __smulwb(a, b); } // AArch32-LABEL: @test_smulwt( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smulwt(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smulwt(int32_t a, int32_t b) { return __smulwt(a, b); } #endif /* 9.4.3 Accumultating multiplications */ #if __ARM_FEATURE_DSP // AArch32-LABEL: @test_smlabb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlabb(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlabb(int32_t a, int32_t b, int32_t c) { return __smlabb(a, b, c); } // AArch32-LABEL: @test_smlabt( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlabt(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlabt(int32_t a, int32_t b, int32_t c) { return __smlabt(a, b, c); } // AArch32-LABEL: @test_smlatb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlatb(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlatb(int32_t a, int32_t b, int32_t c) { return __smlatb(a, b, c); } // AArch32-LABEL: @test_smlatt( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlatt(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlatt(int32_t a, int32_t b, int32_t c) { return __smlatt(a, b, c); } // AArch32-LABEL: @test_smlawb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlawb(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlawb(int32_t a, int32_t b, int32_t c) { return __smlawb(a, b, c); } // AArch32-LABEL: @test_smlawt( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlawt(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlawt(int32_t a, int32_t b, int32_t c) { return __smlawt(a, b, c); } #endif /* 9.5.4 Parallel 16-bit saturation */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_ssat16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.ssat16(i32 [[A:%.*]], i32 15) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_ssat16(int16x2_t a) { return __ssat16(a, 15); } // AArch32-LABEL: @test_usat16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usat16(i32 [[A:%.*]], i32 15) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_usat16(int16x2_t a) { return __usat16(a, 15); } #endif /* 9.5.5 Packing and unpacking */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_sxtab16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.sxtab16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_sxtab16(int16x2_t a, int8x4_t b) { return __sxtab16(a, b); } // AArch32-LABEL: @test_sxtb16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.sxtb16(i32 [[A:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_sxtb16(int8x4_t a) { return __sxtb16(a); } // AArch32-LABEL: @test_uxtab16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uxtab16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_uxtab16(int16x2_t a, int8x4_t b) { return __uxtab16(a, b); } // AArch32-LABEL: @test_uxtb16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uxtb16(i32 [[A:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_uxtb16(int8x4_t a) { return __uxtb16(a); } #endif /* 9.5.6 Parallel selection */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_sel( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.sel(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_sel(uint8x4_t a, uint8x4_t b) { return __sel(a, b); } #endif /* 9.5.7 Parallel 8-bit addition and subtraction */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_qadd8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qadd8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_qadd8(int8x4_t a, int8x4_t b) { return __qadd8(a, b); } // AArch32-LABEL: @test_qsub8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qsub8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int8x4_t test_qsub8(int8x4_t a, int8x4_t b) { return __qsub8(a, b); } // AArch32-LABEL: @test_sadd8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.sadd8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int8x4_t test_sadd8(int8x4_t a, int8x4_t b) { return __sadd8(a, b); } // AArch32-LABEL: @test_shadd8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.shadd8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int8x4_t test_shadd8(int8x4_t a, int8x4_t b) { return __shadd8(a, b); } // AArch32-LABEL: @test_shsub8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.shsub8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int8x4_t test_shsub8(int8x4_t a, int8x4_t b) { return __shsub8(a, b); } // AArch32-LABEL: @test_ssub8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.ssub8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int8x4_t test_ssub8(int8x4_t a, int8x4_t b) { return __ssub8(a, b); } // AArch32-LABEL: @test_uadd8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uadd8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_uadd8(uint8x4_t a, uint8x4_t b) { return __uadd8(a, b); } // AArch32-LABEL: @test_uhadd8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uhadd8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_uhadd8(uint8x4_t a, uint8x4_t b) { return __uhadd8(a, b); } // AArch32-LABEL: @test_uhsub8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uhsub8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_uhsub8(uint8x4_t a, uint8x4_t b) { return __uhsub8(a, b); } // AArch32-LABEL: @test_uqadd8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uqadd8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_uqadd8(uint8x4_t a, uint8x4_t b) { return __uqadd8(a, b); } // AArch32-LABEL: @test_uqsub8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uqsub8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_uqsub8(uint8x4_t a, uint8x4_t b) { return __uqsub8(a, b); } // AArch32-LABEL: @test_usub8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usub8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint8x4_t test_usub8(uint8x4_t a, uint8x4_t b) { return __usub8(a, b); } #endif /* 9.5.8 Sum of 8-bit absolute differences */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_usad8( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usad8(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint32_t test_usad8(uint8x4_t a, uint8x4_t b) { return __usad8(a, b); } // AArch32-LABEL: @test_usada8( // AArch32-NEXT: entry: // AArch32-NEXT: [[CONV:%.*]] = zext i8 [[A:%.*]] to i32 // AArch32-NEXT: [[CONV1:%.*]] = zext i8 [[B:%.*]] to i32 // AArch32-NEXT: [[CONV2:%.*]] = zext i8 [[C:%.*]] to i32 // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usada8(i32 [[CONV]], i32 [[CONV1]], i32 [[CONV2]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint32_t test_usada8(uint8_t a, uint8_t b, uint8_t c) { return __usada8(a, b, c); } #endif /* 9.5.9 Parallel 16-bit addition and subtraction */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_qadd16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qadd16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_qadd16(int16x2_t a, int16x2_t b) { return __qadd16(a, b); } // AArch32-LABEL: @test_qasx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qasx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_qasx(int16x2_t a, int16x2_t b) { return __qasx(a, b); } // AArch32-LABEL: @test_qsax( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qsax(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_qsax(int16x2_t a, int16x2_t b) { return __qsax(a, b); } // AArch32-LABEL: @test_qsub16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.qsub16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_qsub16(int16x2_t a, int16x2_t b) { return __qsub16(a, b); } // AArch32-LABEL: @test_sadd16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.sadd16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_sadd16(int16x2_t a, int16x2_t b) { return __sadd16(a, b); } // AArch32-LABEL: @test_sasx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.sasx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_sasx(int16x2_t a, int16x2_t b) { return __sasx(a, b); } // AArch32-LABEL: @test_shadd16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.shadd16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_shadd16(int16x2_t a, int16x2_t b) { return __shadd16(a, b); } // AArch32-LABEL: @test_shasx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.shasx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_shasx(int16x2_t a, int16x2_t b) { return __shasx(a, b); } // AArch32-LABEL: @test_shsax( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.shsax(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_shsax(int16x2_t a, int16x2_t b) { return __shsax(a, b); } // AArch32-LABEL: @test_shsub16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.shsub16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_shsub16(int16x2_t a, int16x2_t b) { return __shsub16(a, b); } // AArch32-LABEL: @test_ssax( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.ssax(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_ssax(int16x2_t a, int16x2_t b) { return __ssax(a, b); } // AArch32-LABEL: @test_ssub16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.ssub16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int16x2_t test_ssub16(int16x2_t a, int16x2_t b) { return __ssub16(a, b); } // AArch32-LABEL: @test_uadd16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uadd16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uadd16(uint16x2_t a, uint16x2_t b) { return __uadd16(a, b); } // AArch32-LABEL: @test_uasx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uasx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uasx(uint16x2_t a, uint16x2_t b) { return __uasx(a, b); } // AArch32-LABEL: @test_uhadd16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uhadd16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uhadd16(uint16x2_t a, uint16x2_t b) { return __uhadd16(a, b); } // AArch32-LABEL: @test_uhasx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uhasx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uhasx(uint16x2_t a, uint16x2_t b) { return __uhasx(a, b); } // AArch32-LABEL: @test_uhsax( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uhsax(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uhsax(uint16x2_t a, uint16x2_t b) { return __uhsax(a, b); } // AArch32-LABEL: @test_uhsub16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uhsub16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uhsub16(uint16x2_t a, uint16x2_t b) { return __uhsub16(a, b); } // AArch32-LABEL: @test_uqadd16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uqadd16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uqadd16(uint16x2_t a, uint16x2_t b) { return __uqadd16(a, b); } // AArch32-LABEL: @test_uqasx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uqasx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uqasx(uint16x2_t a, uint16x2_t b) { return __uqasx(a, b); } // AArch32-LABEL: @test_uqsax( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uqsax(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uqsax(uint16x2_t a, uint16x2_t b) { return __uqsax(a, b); } // AArch32-LABEL: @test_uqsub16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.uqsub16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_uqsub16(uint16x2_t a, uint16x2_t b) { return __uqsub16(a, b); } // AArch32-LABEL: @test_usax( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usax(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_usax(uint16x2_t a, uint16x2_t b) { return __usax(a, b); } // AArch32-LABEL: @test_usub16( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.usub16(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // uint16x2_t test_usub16(uint16x2_t a, uint16x2_t b) { return __usub16(a, b); } #endif /* 9.5.10 Parallel 16-bit multiplications */ #if __ARM_FEATURE_SIMD32 // AArch32-LABEL: @test_smlad( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlad(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlad(int16x2_t a, int16x2_t b, int32_t c) { return __smlad(a, b, c); } // AArch32-LABEL: @test_smladx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smladx(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smladx(int16x2_t a, int16x2_t b, int32_t c) { return __smladx(a, b, c); } // AArch32-LABEL: @test_smlald( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i64 @llvm.arm.smlald(i32 [[A:%.*]], i32 [[B:%.*]], i64 [[C:%.*]]) // AArch32-NEXT: ret i64 [[TMP0]] // int64_t test_smlald(int16x2_t a, int16x2_t b, int64_t c) { return __smlald(a, b, c); } // AArch32-LABEL: @test_smlaldx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i64 @llvm.arm.smlaldx(i32 [[A:%.*]], i32 [[B:%.*]], i64 [[C:%.*]]) // AArch32-NEXT: ret i64 [[TMP0]] // int64_t test_smlaldx(int16x2_t a, int16x2_t b, int64_t c) { return __smlaldx(a, b, c); } // AArch32-LABEL: @test_smlsd( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlsd(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlsd(int16x2_t a, int16x2_t b, int32_t c) { return __smlsd(a, b, c); } // AArch32-LABEL: @test_smlsdx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smlsdx(i32 [[A:%.*]], i32 [[B:%.*]], i32 [[C:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smlsdx(int16x2_t a, int16x2_t b, int32_t c) { return __smlsdx(a, b, c); } // AArch32-LABEL: @test_smlsld( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i64 @llvm.arm.smlsld(i32 [[A:%.*]], i32 [[B:%.*]], i64 [[C:%.*]]) // AArch32-NEXT: ret i64 [[TMP0]] // int64_t test_smlsld(int16x2_t a, int16x2_t b, int64_t c) { return __smlsld(a, b, c); } // AArch32-LABEL: @test_smlsldx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i64 @llvm.arm.smlsldx(i32 [[A:%.*]], i32 [[B:%.*]], i64 [[C:%.*]]) // AArch32-NEXT: ret i64 [[TMP0]] // int64_t test_smlsldx(int16x2_t a, int16x2_t b, int64_t c) { return __smlsldx(a, b, c); } // AArch32-LABEL: @test_smuad( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smuad(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smuad(int16x2_t a, int16x2_t b) { return __smuad(a, b); } // AArch32-LABEL: @test_smuadx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smuadx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smuadx(int16x2_t a, int16x2_t b) { return __smuadx(a, b); } // AArch32-LABEL: @test_smusd( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smusd(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smusd(int16x2_t a, int16x2_t b) { return __smusd(a, b); } // AArch32-LABEL: @test_smusdx( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.smusdx(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // int32_t test_smusdx(int16x2_t a, int16x2_t b) { return __smusdx(a, b); } #endif /* 9.7 CRC32 intrinsics */ // AArch32-LABEL: @test_crc32b( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = zext i8 [[B:%.*]] to i32 // AArch32-NEXT: [[TMP1:%.*]] = call i32 @llvm.arm.crc32b(i32 [[A:%.*]], i32 [[TMP0]]) // AArch32-NEXT: ret i32 [[TMP1]] // // AArch64-LABEL: @test_crc32b( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = zext i8 [[B:%.*]] to i32 // AArch64-NEXT: [[TMP1:%.*]] = call i32 @llvm.aarch64.crc32b(i32 [[A:%.*]], i32 [[TMP0]]) // AArch64-NEXT: ret i32 [[TMP1]] // uint32_t test_crc32b(uint32_t a, uint8_t b) { return __crc32b(a, b); } // AArch32-LABEL: @test_crc32h( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = zext i16 [[B:%.*]] to i32 // AArch32-NEXT: [[TMP1:%.*]] = call i32 @llvm.arm.crc32h(i32 [[A:%.*]], i32 [[TMP0]]) // AArch32-NEXT: ret i32 [[TMP1]] // // AArch64-LABEL: @test_crc32h( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = zext i16 [[B:%.*]] to i32 // AArch64-NEXT: [[TMP1:%.*]] = call i32 @llvm.aarch64.crc32h(i32 [[A:%.*]], i32 [[TMP0]]) // AArch64-NEXT: ret i32 [[TMP1]] // uint32_t test_crc32h(uint32_t a, uint16_t b) { return __crc32h(a, b); } // AArch32-LABEL: @test_crc32w( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.crc32w(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // // AArch64-LABEL: @test_crc32w( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i32 @llvm.aarch64.crc32w(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch64-NEXT: ret i32 [[TMP0]] // uint32_t test_crc32w(uint32_t a, uint32_t b) { return __crc32w(a, b); } // AArch32-LABEL: @test_crc32d( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = trunc i64 [[B:%.*]] to i32 // AArch32-NEXT: [[TMP1:%.*]] = lshr i64 [[B]], 32 // AArch32-NEXT: [[TMP2:%.*]] = trunc i64 [[TMP1]] to i32 // AArch32-NEXT: [[TMP3:%.*]] = call i32 @llvm.arm.crc32w(i32 [[A:%.*]], i32 [[TMP0]]) // AArch32-NEXT: [[TMP4:%.*]] = call i32 @llvm.arm.crc32w(i32 [[TMP3]], i32 [[TMP2]]) // AArch32-NEXT: ret i32 [[TMP4]] // // AArch64-LABEL: @test_crc32d( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i32 @llvm.aarch64.crc32x(i32 [[A:%.*]], i64 [[B:%.*]]) // AArch64-NEXT: ret i32 [[TMP0]] // uint32_t test_crc32d(uint32_t a, uint64_t b) { return __crc32d(a, b); } // AArch32-LABEL: @test_crc32cb( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = zext i8 [[B:%.*]] to i32 // AArch32-NEXT: [[TMP1:%.*]] = call i32 @llvm.arm.crc32cb(i32 [[A:%.*]], i32 [[TMP0]]) // AArch32-NEXT: ret i32 [[TMP1]] // // AArch64-LABEL: @test_crc32cb( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = zext i8 [[B:%.*]] to i32 // AArch64-NEXT: [[TMP1:%.*]] = call i32 @llvm.aarch64.crc32cb(i32 [[A:%.*]], i32 [[TMP0]]) // AArch64-NEXT: ret i32 [[TMP1]] // uint32_t test_crc32cb(uint32_t a, uint8_t b) { return __crc32cb(a, b); } // AArch32-LABEL: @test_crc32ch( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = zext i16 [[B:%.*]] to i32 // AArch32-NEXT: [[TMP1:%.*]] = call i32 @llvm.arm.crc32ch(i32 [[A:%.*]], i32 [[TMP0]]) // AArch32-NEXT: ret i32 [[TMP1]] // // AArch64-LABEL: @test_crc32ch( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = zext i16 [[B:%.*]] to i32 // AArch64-NEXT: [[TMP1:%.*]] = call i32 @llvm.aarch64.crc32ch(i32 [[A:%.*]], i32 [[TMP0]]) // AArch64-NEXT: ret i32 [[TMP1]] // uint32_t test_crc32ch(uint32_t a, uint16_t b) { return __crc32ch(a, b); } // AArch32-LABEL: @test_crc32cw( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.arm.crc32cw(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch32-NEXT: ret i32 [[TMP0]] // // AArch64-LABEL: @test_crc32cw( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i32 @llvm.aarch64.crc32cw(i32 [[A:%.*]], i32 [[B:%.*]]) // AArch64-NEXT: ret i32 [[TMP0]] // uint32_t test_crc32cw(uint32_t a, uint32_t b) { return __crc32cw(a, b); } // AArch32-LABEL: @test_crc32cd( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = trunc i64 [[B:%.*]] to i32 // AArch32-NEXT: [[TMP1:%.*]] = lshr i64 [[B]], 32 // AArch32-NEXT: [[TMP2:%.*]] = trunc i64 [[TMP1]] to i32 // AArch32-NEXT: [[TMP3:%.*]] = call i32 @llvm.arm.crc32cw(i32 [[A:%.*]], i32 [[TMP0]]) // AArch32-NEXT: [[TMP4:%.*]] = call i32 @llvm.arm.crc32cw(i32 [[TMP3]], i32 [[TMP2]]) // AArch32-NEXT: ret i32 [[TMP4]] // // AArch64-LABEL: @test_crc32cd( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i32 @llvm.aarch64.crc32cx(i32 [[A:%.*]], i64 [[B:%.*]]) // AArch64-NEXT: ret i32 [[TMP0]] // uint32_t test_crc32cd(uint32_t a, uint64_t b) { return __crc32cd(a, b); } /* 10.1 Special register intrinsics */ // AArch32-LABEL: @test_rsr( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.read_volatile_register.i32(metadata [[META5:![0-9]+]]) // AArch32-NEXT: ret i32 [[TMP0]] // // AArch64-LABEL: @test_rsr( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META4:![0-9]+]]) // AArch64-NEXT: [[TMP1:%.*]] = trunc i64 [[TMP0]] to i32 // AArch64-NEXT: ret i32 [[TMP1]] // uint32_t test_rsr() { #ifdef __ARM_32BIT_STATE return __arm_rsr("cp1:2:c3:c4:5"); #else return __arm_rsr("1:2:3:4:5"); #endif } // AArch32-LABEL: @test_rsr64( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META6:![0-9]+]]) // AArch32-NEXT: ret i64 [[TMP0]] // // AArch64-LABEL: @test_rsr64( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META4]]) // AArch64-NEXT: ret i64 [[TMP0]] // uint64_t test_rsr64() { #ifdef __ARM_32BIT_STATE return __arm_rsr64("cp1:2:c3"); #else return __arm_rsr64("1:2:3:4:5"); #endif } #ifdef __ARM_FEATURE_SYSREG128 // AArch6494D128-LABEL: @test_rsr128( // AArch6494D128-NEXT: entry: // AArch6494D128-NEXT: [[TMP0:%.*]] = call i128 @llvm.read_volatile_register.i128(metadata [[META4]]) // AArch6494D128-NEXT: ret i128 [[TMP0]] // __uint128_t test_rsr128() { return __arm_rsr128("1:2:3:4:5"); } #endif // AArch32-LABEL: @test_rsrp( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.read_volatile_register.i32(metadata [[META7:![0-9]+]]) // AArch32-NEXT: [[TMP1:%.*]] = inttoptr i32 [[TMP0]] to ptr // AArch32-NEXT: ret ptr [[TMP1]] // // AArch64-LABEL: @test_rsrp( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META5:![0-9]+]]) // AArch64-NEXT: [[TMP1:%.*]] = inttoptr i64 [[TMP0]] to ptr // AArch64-NEXT: ret ptr [[TMP1]] // void *test_rsrp() { return __arm_rsrp("sysreg"); } // AArch32-LABEL: @test_wsr( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.write_register.i32(metadata [[META5]], i32 [[V:%.*]]) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wsr( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = zext i32 [[V:%.*]] to i64 // AArch64-NEXT: call void @llvm.write_register.i64(metadata [[META4]], i64 [[TMP0]]) // AArch64-NEXT: ret void // void test_wsr(uint32_t v) { #ifdef __ARM_32BIT_STATE __arm_wsr("cp1:2:c3:c4:5", v); #else __arm_wsr("1:2:3:4:5", v); #endif } // AArch32-LABEL: @test_wsr64( // AArch32-NEXT: entry: // AArch32-NEXT: call void @llvm.write_register.i64(metadata [[META6]], i64 [[V:%.*]]) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wsr64( // AArch64-NEXT: entry: // AArch64-NEXT: call void @llvm.write_register.i64(metadata [[META4]], i64 [[V:%.*]]) // AArch64-NEXT: ret void // void test_wsr64(uint64_t v) { #ifdef __ARM_32BIT_STATE __arm_wsr64("cp1:2:c3", v); #else __arm_wsr64("1:2:3:4:5", v); #endif } #ifdef __ARM_FEATURE_SYSREG128 // AArch6494D128-LABEL: @test_wsr128( // AArch6494D128-NEXT: entry: // AArch6494D128-NEXT: call void @llvm.write_register.i128(metadata [[META4]], i128 [[V:%.*]]) // AArch6494D128-NEXT: ret void // void test_wsr128(__uint128_t v) { __arm_wsr128("1:2:3:4:5", v); } #endif // AArch32-LABEL: @test_wsrp( // AArch32-NEXT: entry: // AArch32-NEXT: [[TMP0:%.*]] = ptrtoint ptr [[V:%.*]] to i32 // AArch32-NEXT: call void @llvm.write_register.i32(metadata [[META7]], i32 [[TMP0]]) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wsrp( // AArch64-NEXT: entry: // AArch64-NEXT: [[TMP0:%.*]] = ptrtoint ptr [[V:%.*]] to i64 // AArch64-NEXT: call void @llvm.write_register.i64(metadata [[META5]], i64 [[TMP0]]) // AArch64-NEXT: ret void // void test_wsrp(void *v) { __arm_wsrp("sysreg", v); } // AArch32-LABEL: @test_rsrf( // AArch32-NEXT: entry: // AArch32-NEXT: [[REF_TMP:%.*]] = alloca i32, align 4 // AArch32-NEXT: [[TMP0:%.*]] = call i32 @llvm.read_volatile_register.i32(metadata [[META5]]) // AArch32-NEXT: store i32 [[TMP0]], ptr [[REF_TMP]], align 4 // AArch32-NEXT: [[TMP1:%.*]] = load float, ptr [[REF_TMP]], align 4 // AArch32-NEXT: ret float [[TMP1]] // // AArch64-LABEL: @test_rsrf( // AArch64-NEXT: entry: // AArch64-NEXT: [[REF_TMP:%.*]] = alloca i32, align 4 // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META4]]) // AArch64-NEXT: [[TMP1:%.*]] = trunc i64 [[TMP0]] to i32 // AArch64-NEXT: store i32 [[TMP1]], ptr [[REF_TMP]], align 4 // AArch64-NEXT: [[TMP2:%.*]] = load float, ptr [[REF_TMP]], align 4 // AArch64-NEXT: ret float [[TMP2]] // float test_rsrf() { #ifdef __ARM_32BIT_STATE return __arm_rsrf("cp1:2:c3:c4:5"); #else return __arm_rsrf("1:2:3:4:5"); #endif } // AArch32-LABEL: @test_rsrf64( // AArch32-NEXT: entry: // AArch32-NEXT: [[REF_TMP:%.*]] = alloca i64, align 8 // AArch32-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META6]]) // AArch32-NEXT: store i64 [[TMP0]], ptr [[REF_TMP]], align 8 // AArch32-NEXT: [[TMP1:%.*]] = load double, ptr [[REF_TMP]], align 8 // AArch32-NEXT: ret double [[TMP1]] // // AArch64-LABEL: @test_rsrf64( // AArch64-NEXT: entry: // AArch64-NEXT: [[REF_TMP:%.*]] = alloca i64, align 8 // AArch64-NEXT: [[TMP0:%.*]] = call i64 @llvm.read_volatile_register.i64(metadata [[META4]]) // AArch64-NEXT: store i64 [[TMP0]], ptr [[REF_TMP]], align 8 // AArch64-NEXT: [[TMP1:%.*]] = load double, ptr [[REF_TMP]], align 8 // AArch64-NEXT: ret double [[TMP1]] // double test_rsrf64() { #ifdef __ARM_32BIT_STATE return __arm_rsrf64("cp1:2:c3"); #else return __arm_rsrf64("1:2:3:4:5"); #endif } // AArch32-LABEL: @test_wsrf( // AArch32-NEXT: entry: // AArch32-NEXT: [[V_ADDR:%.*]] = alloca float, align 4 // AArch32-NEXT: store float [[V:%.*]], ptr [[V_ADDR]], align 4 // AArch32-NEXT: [[TMP0:%.*]] = load i32, ptr [[V_ADDR]], align 4 // AArch32-NEXT: call void @llvm.write_register.i32(metadata [[META5]], i32 [[TMP0]]) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wsrf( // AArch64-NEXT: entry: // AArch64-NEXT: [[V_ADDR:%.*]] = alloca float, align 4 // AArch64-NEXT: store float [[V:%.*]], ptr [[V_ADDR]], align 4 // AArch64-NEXT: [[TMP0:%.*]] = load i32, ptr [[V_ADDR]], align 4 // AArch64-NEXT: [[TMP1:%.*]] = zext i32 [[TMP0]] to i64 // AArch64-NEXT: call void @llvm.write_register.i64(metadata [[META4]], i64 [[TMP1]]) // AArch64-NEXT: ret void // void test_wsrf(float v) { #ifdef __ARM_32BIT_STATE __arm_wsrf("cp1:2:c3:c4:5", v); #else __arm_wsrf("1:2:3:4:5", v); #endif } // AArch32-LABEL: @test_wsrf64( // AArch32-NEXT: entry: // AArch32-NEXT: [[V_ADDR:%.*]] = alloca double, align 8 // AArch32-NEXT: store double [[V:%.*]], ptr [[V_ADDR]], align 8 // AArch32-NEXT: [[TMP0:%.*]] = load i64, ptr [[V_ADDR]], align 8 // AArch32-NEXT: call void @llvm.write_register.i64(metadata [[META6]], i64 [[TMP0]]) // AArch32-NEXT: ret void // // AArch64-LABEL: @test_wsrf64( // AArch64-NEXT: entry: // AArch64-NEXT: [[V_ADDR:%.*]] = alloca double, align 8 // AArch64-NEXT: store double [[V:%.*]], ptr [[V_ADDR]], align 8 // AArch64-NEXT: [[TMP0:%.*]] = load i64, ptr [[V_ADDR]], align 8 // AArch64-NEXT: call void @llvm.write_register.i64(metadata [[META4]], i64 [[TMP0]]) // AArch64-NEXT: ret void // void test_wsrf64(double v) { #ifdef __ARM_32BIT_STATE __arm_wsrf64("cp1:2:c3", v); #else __arm_wsrf64("1:2:3:4:5", v); #endif } #if defined(__ARM_64BIT_STATE) && defined(__ARM_FEATURE_JCVT) // AArch6483-LABEL: @test_jcvt( // AArch6483-NEXT: entry: // AArch6483-NEXT: [[TMP0:%.*]] = call i32 @llvm.aarch64.fjcvtzs(double [[V:%.*]]) // AArch6483-NEXT: ret i32 [[TMP0]] // int32_t test_jcvt(double v) { return __jcvt(v); } #endif #if defined(__ARM_FEATURE_DIRECTED_ROUNDING) && defined(__ARM_64BIT_STATE) // AArch64-LABEL: @test_rintn( // AArch64-NEXT: entry: // AArch64-NEXT: call double @llvm.roundeven.f64(double [[TMP0:%.*]]) double test_rintn(double a) { return __rintn(a); } // AArch64-LABEL: @test_rintnf( // AArch64-NEXT: entry: // AArch64-NEXT: call float @llvm.roundeven.f32(float [[TMP0:%.*]]) float test_rintnf(float b) { return __rintnf(b); } #endif #if defined(__ARM_64BIT_STATE) && defined(__ARM_FEATURE_RNG) // AArch6485-LABEL: @test_rndr( // AArch6485-NEXT: entry: // AArch6485-NEXT: [[TMP0:%.*]] = call { i64, i1 } @llvm.aarch64.rndr() // AArch6485-NEXT: [[TMP1:%.*]] = extractvalue { i64, i1 } [[TMP0]], 0 // AArch6485-NEXT: [[TMP2:%.*]] = extractvalue { i64, i1 } [[TMP0]], 1 // AArch6485-NEXT: store i64 [[TMP1]], ptr [[__ADDR:%.*]], align 8 // AArch6485-NEXT: [[TMP3:%.*]] = zext i1 [[TMP2]] to i32 // AArch6485-NEXT: ret i32 [[TMP3]] // int test_rndr(uint64_t *__addr) { return __rndr(__addr); } // AArch6485-LABEL: @test_rndrrs( // AArch6485-NEXT: entry: // AArch6485-NEXT: [[TMP0:%.*]] = call { i64, i1 } @llvm.aarch64.rndrrs() // AArch6485-NEXT: [[TMP1:%.*]] = extractvalue { i64, i1 } [[TMP0]], 0 // AArch6485-NEXT: [[TMP2:%.*]] = extractvalue { i64, i1 } [[TMP0]], 1 // AArch6485-NEXT: store i64 [[TMP1]], ptr [[__ADDR:%.*]], align 8 // AArch6485-NEXT: [[TMP3:%.*]] = zext i1 [[TMP2]] to i32 // AArch6485-NEXT: ret i32 [[TMP3]] // int test_rndrrs(uint64_t *__addr) { return __rndrrs(__addr); } #endif