// RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -Wno-unused-value -fclangir -emit-cir %s -o %t.cir // RUN: FileCheck --input-file=%t.cir %s --check-prefixes=CIR,CXX_CIR // RUN: %clang_cc1 -x c -triple x86_64-unknown-linux-gnu -Wno-unused-value -fclangir -emit-cir %s -o %t.cir // RUN: FileCheck --input-file=%t.cir %s -check-prefix=CIR // RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -Wno-unused-value -fclangir -emit-llvm %s -o %t-cir.ll // RUN: FileCheck --input-file=%t-cir.ll %s --check-prefixes=LLVM,CXX_LLVM // RUN: %clang_cc1 -x c -triple x86_64-unknown-linux-gnu -Wno-unused-value -fclangir -emit-llvm %s -o %t-cir.ll // RUN: FileCheck --input-file=%t-cir.ll %s -check-prefix=LLVM // RUN: %clang_cc1 -std=c++20 -triple x86_64-unknown-linux-gnu -Wno-unused-value -emit-llvm %s -o %t.ll // RUN: FileCheck --input-file=%t.ll %s --check-prefixes=OGCG,CXX_OGCG // RUN: %clang_cc1 -x c -triple x86_64-unknown-linux-gnu -Wno-unused-value -emit-llvm %s -o %t.ll // RUN: FileCheck --input-file=%t.ll %s -check-prefix=OGCG void foo() { float _Complex a; float _Complex b; b += a; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[RESULT:.*]] = cir.complex.add %[[TMP_B]], %[[TMP_A]] : !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4 // LLVM: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4 // LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1 // LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1 // LLVM: %[[ADD_REAL_A_B:.*]] = fadd float %[[B_REAL]], %[[A_REAL]] // LLVM: %[[ADD_IMAG_A_B:.*]] = fadd float %[[B_IMAG]], %[[A_IMAG]] // LLVM: %[[ADD_A_B:.*]] = insertvalue { float, float } poison, float %[[ADD_REAL_A_B]], 0 // LLVM: %[[RESULT:.*]] = insertvalue { float, float } %[[ADD_A_B]], float %[[ADD_IMAG_A_B]], 1 // LLVM: store { float, float } %[[RESULT]], ptr %[[B_ADDR]], align 4 // OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[B_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4 // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4 // OGCG: %[[ADD_REAL:.*]] = fadd float %[[B_REAL]], %[[A_REAL]] // OGCG: %[[ADD_IMAG:.*]] = fadd float %[[B_IMAG]], %[[A_IMAG]] // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: store float %[[ADD_REAL]], ptr %[[B_REAL_PTR]], align 4 // OGCG: store float %[[ADD_IMAG]], ptr %[[B_IMAG_PTR]], align 4 void foo1() { float _Complex a; float _Complex b; b -= a; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[RESULT:.*]] = cir.complex.sub %[[TMP_B]], %[[TMP_A]] : !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4 // LLVM: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4 // LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1 // LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1 // LLVM: %[[SUB_REAL_A_B:.*]] = fsub float %[[B_REAL]], %[[A_REAL]] // LLVM: %[[SUB_IMAG_A_B:.*]] = fsub float %[[B_IMAG]], %[[A_IMAG]] // LLVM: %[[SUB_A_B:.*]] = insertvalue { float, float } poison, float %[[SUB_REAL_A_B]], 0 // LLVM: %[[RESULT:.*]] = insertvalue { float, float } %[[SUB_A_B]], float %[[SUB_IMAG_A_B]], 1 // LLVM: store { float, float } %[[RESULT]], ptr %[[B_ADDR]], align 4 // OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[B_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4 // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4 // OGCG: %[[SUB_REAL:.*]] = fsub float %[[B_REAL]], %[[A_REAL]] // OGCG: %[[SUB_IMAG:.*]] = fsub float %[[B_IMAG]], %[[A_IMAG]] // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: store float %[[SUB_REAL]], ptr %[[B_REAL_PTR]], align 4 // OGCG: store float %[[SUB_IMAG]], ptr %[[B_IMAG_PTR]], align 4 void foo2() { int _Complex a; int _Complex b; b += a; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[RESULT:.*]] = cir.complex.add %[[TMP_B]], %[[TMP_A]] : !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // LLVM: %[[B_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // LLVM: %[[TMP_A:.*]] = load { i32, i32 }, ptr %[[A_ADDR]], align 4 // LLVM: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4 // LLVM: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 1 // LLVM: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 1 // LLVM: %[[ADD_REAL_A_B:.*]] = add i32 %[[B_REAL]], %[[A_REAL]] // LLVM: %[[ADD_IMAG_A_B:.*]] = add i32 %[[B_IMAG]], %[[A_IMAG]] // LLVM: %[[ADD_A_B:.*]] = insertvalue { i32, i32 } poison, i32 %[[ADD_REAL_A_B]], 0 // LLVM: %[[RESULT:.*]] = insertvalue { i32, i32 } %[[ADD_A_B]], i32 %[[ADD_IMAG_A_B]], 1 // LLVM: store { i32, i32 } %[[RESULT]], ptr %[[B_ADDR]], align 4 // OGCG: %[[A_ADDR:.*]] = alloca { i32, i32 }, align 4 // OGCG: %[[B_ADDR:.*]] = alloca { i32, i32 }, align 4 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load i32, ptr %[[A_REAL_PTR]], align 4 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load i32, ptr %[[A_IMAG_PTR]], align 4 // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_REAL:.*]] = load i32, ptr %[[B_REAL_PTR]], align 4 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: %[[B_IMAG:.*]] = load i32, ptr %[[B_IMAG_PTR]], align 4 // OGCG: %[[ADD_REAL:.*]] = add i32 %[[B_REAL]], %[[A_REAL]] // OGCG: %[[ADD_IMAG:.*]] = add i32 %[[B_IMAG]], %[[A_IMAG]] // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: store i32 %[[ADD_REAL]], ptr %[[B_REAL_PTR]], align 4 // OGCG: store i32 %[[ADD_IMAG]], ptr %[[B_IMAG_PTR]], align 4 void foo3() { _Float16 _Complex a; _Float16 _Complex b; b += a; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex -> !cir.f16 // CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex -> !cir.f16 // CIR: %[[A_REAL_F32:.*]] = cir.cast(floating, %[[A_REAL]] : !cir.f16), !cir.float // CIR: %[[A_IMAG_F32:.*]] = cir.cast(floating, %[[A_IMAG]] : !cir.f16), !cir.float // CIR: %[[A_COMPLEX_F32:.*]] = cir.complex.create %[[A_REAL_F32]], %[[A_IMAG_F32]] : !cir.float -> !cir.complex // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex -> !cir.f16 // CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex -> !cir.f16 // CIR: %[[B_REAL_F32:.*]] = cir.cast(floating, %[[B_REAL]] : !cir.f16), !cir.float // CIR: %[[B_IMAG_F32:.*]] = cir.cast(floating, %[[B_IMAG]] : !cir.f16), !cir.float // CIR: %[[B_COMPLEX_F32:.*]] = cir.complex.create %[[B_REAL_F32]], %[[B_IMAG_F32]] : !cir.float -> !cir.complex // CIR: %[[ADD_A_B:.*]] = cir.complex.add %[[B_COMPLEX_F32]], %[[A_COMPLEX_F32]] : !cir.complex // CIR: %[[ADD_REAL:.*]] = cir.complex.real %[[ADD_A_B]] : !cir.complex -> !cir.float // CIR: %[[ADD_IMAG:.*]] = cir.complex.imag %[[ADD_A_B]] : !cir.complex -> !cir.float // CIR: %[[ADD_REAL_F16:.*]] = cir.cast(floating, %[[ADD_REAL]] : !cir.float), !cir.f16 // CIR: %[[ADD_IMAG_F16:.*]] = cir.cast(floating, %[[ADD_IMAG]] : !cir.float), !cir.f16 // CIR: %[[RESULT:.*]] = cir.complex.create %[[ADD_REAL_F16]], %[[ADD_IMAG_F16]] : !cir.f16 -> !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { half, half }, i64 1, align 2 // LLVM: %[[B_ADDR:.*]] = alloca { half, half }, i64 1, align 2 // LLVM: %[[TMP_A:.*]] = load { half, half }, ptr %[[A_ADDR]], align 2 // LLVM: %[[A_REAL:.*]] = extractvalue { half, half } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { half, half } %[[TMP_A]], 1 // LLVM: %[[A_REAL_F32:.*]] = fpext half %[[A_REAL]] to float // LLVM: %[[A_IMAG_F32:.*]] = fpext half %[[A_IMAG]] to float // LLVM: %[[TMP_A_COMPLEX_F32:.*]] = insertvalue { float, float } {{.*}}, float %[[A_REAL_F32]], 0 // LLVM: %[[A_COMPLEX_F32:.*]] = insertvalue { float, float } %8, float %[[A_IMAG_F32]], 1 // LLVM: %[[TMP_B:.*]] = load { half, half }, ptr %[[B_ADDR]], align 2 // LLVM: %[[B_REAL:.*]] = extractvalue { half, half } %[[TMP_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { half, half } %[[TMP_B]], 1 // LLVM: %[[B_REAL_F32:.*]] = fpext half %[[B_REAL]] to float // LLVM: %[[B_IMAG_F32:.*]] = fpext half %[[B_IMAG]] to float // LLVM: %[[TMP_B_COMPLEX_F32:.*]] = insertvalue { float, float } {{.*}}, float %[[B_REAL_F32]], 0 // LLVM: %[[B_COMPLEX_F32:.*]] = insertvalue { float, float } %[[TMP_B_COMPLEX_F32]], float %[[B_IMAG_F32]], 1 // LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[B_COMPLEX_F32]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[B_COMPLEX_F32]], 1 // LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[A_COMPLEX_F32]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[A_COMPLEX_F32]], 1 // LLVM: %[[ADD_REAL:.*]] = fadd float %[[B_REAL]], %[[A_REAL]] // LLVM: %[[ADD_IMAG:.*]] = fadd float %[[B_IMAG]], %[[A_IMAG]] // LLVM: %[[TMP_RESULT:.*]] = insertvalue { float, float } poison, float %[[ADD_REAL]], 0 // LLVM: %[[RESULT:.*]] = insertvalue { float, float } %[[TMP_RESULT]], float %[[ADD_IMAG]], 1 // LLVM: %[[RESULT_REAL:.*]] = extractvalue { float, float } %[[RESULT]], 0 // LLVM: %[[RESULT_IMAG:.*]] = extractvalue { float, float } %[[RESULT]], 1 // LLVM: %[[RESULT_REAL_F16:.*]] = fptrunc float %[[RESULT_REAL]] to half // LLVM: %[[RESULT_IMAG_F26:.*]] = fptrunc float %[[RESULT_IMAG]] to half // LLVM: %[[TMP_RESULT_F16:.*]] = insertvalue { half, half } undef, half %[[RESULT_REAL_F16]], 0 // LLVM: %[[RESULT_F16:.*]] = insertvalue { half, half } %29, half %[[RESULT_IMAG_F26]], 1 // LLVM: store { half, half } %[[RESULT_F16]], ptr %[[B_ADDR]], align 2 // OGCG: %[[A_ADDR:.*]] = alloca { half, half }, align 2 // OGCG: %[[B_ADDR:.*]] = alloca { half, half }, align 2 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { half, half }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load half, ptr %[[A_REAL_PTR]], align 2 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { half, half }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load half, ptr %[[A_IMAG_PTR]], align 2 // OGCG: %[[A_REAL_F32:.*]] = fpext half %[[A_REAL]] to float // OGCG: %[[A_IMAG_F32:.*]] = fpext half %[[A_IMAG]] to float // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { half, half }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_REAL:.*]] = load half, ptr %[[B_REAL_PTR]], align 2 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { half, half }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: %[[B_IMAG:.*]] = load half, ptr %[[B_IMAG_PTR]], align 2 // OGCG: %[[B_REAL_F32:.*]] = fpext half %[[B_REAL]] to float // OGCG: %[[B_IMAG_F32:.*]] = fpext half %[[B_IMAG]] to float // OGCG: %[[ADD_REAL:.*]] = fadd float %[[B_REAL_F32]], %[[A_REAL_F32]] // OGCG: %[[ADD_IMAG:.*]] = fadd float %[[B_IMAG_F32]], %[[A_IMAG_F32]] // OGCG: %[[ADD_REAL_F16:.*]] = fptrunc float %[[ADD_REAL]] to half // OGCG: %[[ADD_IMAG_F16:.*]] = fptrunc float %[[ADD_IMAG]] to half // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { half, half }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { half, half }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: store half %[[ADD_REAL_F16]], ptr %[[B_REAL_PTR]], align 2 // OGCG: store half %[[ADD_IMAG_F16]], ptr %[[B_IMAG_PTR]], align 2 #ifdef __cplusplus void foo4() { volatile _Complex int a; volatile _Complex int b; int _Complex c = b += a; } #endif // CXX_CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CXX_CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CXX_CIR: %[[C_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["c", init] // CXX_CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CXX_CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CXX_CIR: %[[RESULT:.*]] = cir.complex.add %[[TMP_B]], %[[TMP_A]] : !cir.complex // CXX_CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // CXX_CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CXX_CIR: cir.store{{.*}} %[[TMP_B]], %[[C_ADDR]] : !cir.complex, !cir.ptr // CXX_LLVM: %[[A_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // CXX_LLVM: %[[B_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // CXX_LLVM: %[[C_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // CXX_LLVM: %[[TMP_A:.*]] = load { i32, i32 }, ptr %[[A_ADDR]], align 4 // CXX_LLVM: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4 // CXX_LLVM: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 0 // CXX_LLVM: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 1 // CXX_LLVM: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 0 // CXX_LLVM: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 1 // CXX_LLVM: %[[ADD_REAL:.*]] = add i32 %[[B_REAL]], %[[A_REAL]] // CXX_LLVM: %[[ADD_IMAG:.*]] = add i32 %[[B_IMAG]], %[[A_IMAG]] // CXX_LLVM: %[[TMP_RESULT:.*]] = insertvalue { i32, i32 } poison, i32 %[[ADD_REAL]], 0 // CXX_LLVM: %[[RESULT:.*]] = insertvalue { i32, i32 } %[[TMP_RESULT]], i32 %[[ADD_IMAG]], 1 // CXX_LLVM: store { i32, i32 } %[[RESULT]], ptr %[[B_ADDR]], align 4 // CXX_LLVM: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4 // CXX_LLVM: store { i32, i32 } %[[TMP_B]], ptr %[[C_ADDR]], align 4 // CXX_OGCG: %[[A_ADDR:.*]] = alloca { i32, i32 }, align 4 // CXX_OGCG: %[[B_ADDR:.*]] = alloca { i32, i32 }, align 4 // CXX_OGCG: %[[C_ADDR:.*]] = alloca { i32, i32 }, align 4 // CXX_OGCG: %a.realp = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 0 // CXX_OGCG: %a.real = load volatile i32, ptr %a.realp, align 4 // CXX_OGCG: %a.imagp = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 1 // CXX_OGCG: %a.imag = load volatile i32, ptr %a.imagp, align 4 // CXX_OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // CXX_OGCG: %[[B_REAL:.*]] = load volatile i32, ptr %[[B_REAL_PTR]], align 4 // CXX_OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // CXX_OGCG: %[[B_IMAG:.*]] = load volatile i32, ptr %[[B_IMAG_PTR]], align 4 // CXX_OGCG: %[[ADD_REAL:.*]] = add i32 %[[B_REAL]], %[[A_REAL]] // CXX_OGCG: %[[ADD_IMAG:.*]] = add i32 %[[B_IMAG]], %[[A_IMAG]] // CXX_OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // CXX_OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // CXX_OGCG: store volatile i32 %[[ADD_REAL]], ptr %[[B_REAL_PTR]], align 4 // CXX_OGCG: store volatile i32 %[[ADD_IMAG]], ptr %[[B_IMAG_PTR]], align 4 // CXX_OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // CXX_OGCG: %[[B_REAL:.*]] = load volatile i32, ptr %[[B_REAL_PTR]], align 4 // CXX_OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // CXX_OGCG: %[[B_IMAG:.*]] = load volatile i32, ptr %[[B_IMAG_PTR]], align 4 // CXX_OGCG: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 0 // CXX_OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 1 // CXX_OGCG: store i32 %[[B_REAL]], ptr %[[C_REAL_PTR]], align 4 // CXX_OGCG: store i32 %[[B_IMAG]], ptr %[[C_IMAG_PTR]], align 4 void foo5() { float _Complex a; float b; a += b; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.float, !cir.ptr, ["b"] // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr, !cir.float // CIR: %[[CONST_ZERO:.*]] = cir.const #cir.fp<0.000000e+00> : !cir.float // CIR: %[[COMPLEX_B:.*]] = cir.complex.create %[[TMP_B]], %[[CONST_ZERO]] : !cir.float -> !cir.complex // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[RESULT:.*]] = cir.complex.add %[[TMP_A]], %[[COMPLEX_B]] : !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[A_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[B_ADDR:.*]] = alloca float, i64 1, align 4 // LLVM: %[[TMP_B:.*]] = load float, ptr %[[B_ADDR]], align 4 // LLVM: %[[TMP_COMPLEX_B:.*]] = insertvalue { float, float } {{.*}}, float %[[TMP_B]], 0 // LLVM: %[[COMPLEX_B:.*]] = insertvalue { float, float } %[[TMP_COMPLEX_B]], float 0.000000e+00, 1 // LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4 // LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1 // LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[COMPLEX_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[COMPLEX_B]], 1 // LLVM: %[[ADD_REAL:.*]] = fadd float %[[A_REAL]], %[[B_REAL]] // LLVM: %[[ADD_IMAG:.*]] = fadd float %[[A_IMAG]], %[[B_IMAG]] // LLVM: %[[TMP_RESULT:.*]] = insertvalue { float, float } poison, float %[[ADD_REAL]], 0 // LLVM: %[[RESULT:.*]] = insertvalue { float, float } %[[TMP_RESULT]], float %[[ADD_IMAG]], 1 // LLVM: store { float, float } %[[RESULT]], ptr %[[A_ADDR]], align 4 // OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[B_ADDR:.*]] = alloca float, align 4 // OGCG: %[[TMP_B:.*]] = load float, ptr %[[B_ADDR]], align 4 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4 // OGCG: %[[ADD_REAL:.*]] = fadd float %[[A_REAL]], %[[TMP_B]] // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: store float %[[ADD_REAL]], ptr %[[A_REAL_PTR]], align 4 // OGCG: store float %[[A_IMAG]], ptr %[[A_IMAG_PTR]], align 4 void foo6() { int _Complex a; int _Complex b; b *= a; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex -> !s32i // CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex -> !s32i // CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex -> !s32i // CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex -> !s32i // CIR: %[[MUL_BR_AR:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_REAL]]) : !s32i // CIR: %[[MUL_BI_AI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_IMAG]]) : !s32i // CIR: %[[MUL_BR_AI:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_IMAG]]) : !s32i // CIR: %[[MUL_BI_AR:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_REAL]]) : !s32i // CIR: %[[RESULT_REAL:.*]] = cir.binop(sub, %[[MUL_BR_AR]], %[[MUL_BI_AI]]) : !s32i // CIR: %[[RESULT_IMAG:.*]] = cir.binop(add, %[[MUL_BR_AI]], %[[MUL_BI_AR]]) : !s32i // CIR: %[[RESULT:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !s32i -> !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // LLVM: %[[B_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4 // LLVM: %[[TMP_A:.*]] = load { i32, i32 }, ptr %[[A_ADDR]], align 4 // LLVM: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4 // LLVM: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 1 // LLVM: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 1 // LLVM: %[[MUL_BR_AR:.*]] = mul i32 %[[B_REAL]], %[[A_REAL]] // LLVM: %[[MUL_BI_AI:.*]] = mul i32 %[[B_IMAG]], %[[A_IMAG]] // LLVM: %[[MUL_BR_AI:.*]] = mul i32 %[[B_REAL]], %[[A_IMAG]] // LLVM: %[[MUL_BI_AR:.*]] = mul i32 %[[B_IMAG]], %[[A_REAL]] // LLVM: %[[RESULT_REAL:.*]] = sub i32 %[[MUL_BR_AR]], %[[MUL_BI_AI]] // LLVM: %[[RESULT_IMAG:.*]] = add i32 %[[MUL_BR_AI]], %[[MUL_BI_AR]] // LLVM: %[[MUL_A_B:.*]] = insertvalue { i32, i32 } {{.*}}, i32 %[[RESULT_REAL]], 0 // LLVM: %[[RESULT:.*]] = insertvalue { i32, i32 } %[[MUL_A_B]], i32 %[[RESULT_IMAG]], 1 // LLVM: store { i32, i32 } %[[RESULT]], ptr %[[B_ADDR]], align 4 // OGCG: %[[A_ADDR:.*]] = alloca { i32, i32 }, align 4 // OGCG: %[[B_ADDR:.*]] = alloca { i32, i32 }, align 4 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load i32, ptr %[[A_REAL_PTR]], align 4 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load i32, ptr %[[A_IMAG_PTR]], align 4 // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_REAL:.*]] = load i32, ptr %[[B_REAL_PTR]], align 4 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: %[[B_IMAG:.*]] = load i32, ptr %[[B_IMAG_PTR]], align 4 // OGCG: %[[MUL_BR_AR:.*]] = mul i32 %[[B_REAL]], %[[A_REAL]] // OGCG: %[[MUL_BI_AI:.*]] = mul i32 %[[B_IMAG]], %[[A_IMAG]] // OGCG: %[[RESULT_REAL:.*]] = sub i32 %[[MUL_BR_AR]], %[[MUL_BI_AI]] // OGCG: %[[MUL_BI_AR:.*]] = mul i32 %[[B_IMAG]], %[[A_REAL]] // OGCG: %[[MUL_BR_AI:.*]] = mul i32 %[[B_REAL]], %[[A_IMAG]] // OGCG: %[[RESULT_IMAG:.*]] = add i32 %[[MUL_BI_AR]], %[[MUL_BR_AI]] // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: store i32 %[[RESULT_REAL]], ptr %[[B_REAL_PTR]], align 4 // OGCG: store i32 %[[RESULT_IMAG]], ptr %[[B_IMAG_PTR]], align 4 void foo7() { float _Complex a; float _Complex b; b *= a; } // CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["a"] // CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex, !cir.ptr>, ["b"] // CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr>, !cir.complex // CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex -> !cir.float // CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex -> !cir.float // CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex -> !cir.float // CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex -> !cir.float // CIR: %[[MUL_BR_AR:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_REAL]]) : !cir.float // CIR: %[[MUL_BI_AI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_IMAG]]) : !cir.float // CIR: %[[MUL_BR_AI:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_IMAG]]) : !cir.float // CIR: %[[MUL_BI_AR:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_REAL]]) : !cir.float // CIR: %[[C_REAL:.*]] = cir.binop(sub, %[[MUL_BR_AR]], %[[MUL_BI_AI]]) : !cir.float // CIR: %[[C_IMAG:.*]] = cir.binop(add, %[[MUL_BR_AI]], %[[MUL_BI_AR]]) : !cir.float // CIR: %[[COMPLEX:.*]] = cir.complex.create %[[C_REAL]], %[[C_IMAG]] : !cir.float -> !cir.complex // CIR: %[[IS_C_REAL_NAN:.*]] = cir.cmp(ne, %[[C_REAL]], %[[C_REAL]]) : !cir.float, !cir.bool // CIR: %[[IS_C_IMAG_NAN:.*]] = cir.cmp(ne, %[[C_IMAG]], %[[C_IMAG]]) : !cir.float, !cir.bool // CIR: %[[CONST_FALSE:.*]] = cir.const #false // CIR: %[[SELECT_CONDITION:.*]] = cir.select if %[[IS_C_REAL_NAN]] then %[[IS_C_IMAG_NAN]] else %[[CONST_FALSE]] : (!cir.bool, !cir.bool, !cir.bool) -> !cir.bool // CIR: %[[RESULT:.*]] = cir.ternary(%[[SELECT_CONDITION]], true { // CIR: %[[LIBC_COMPLEX:.*]] = cir.call @__mulsc3(%[[B_REAL]], %[[B_IMAG]], %[[A_REAL]], %[[A_IMAG]]) : (!cir.float, !cir.float, !cir.float, !cir.float) -> !cir.complex // CIR: cir.yield %[[LIBC_COMPLEX]] : !cir.complex // CIR: }, false { // CIR: cir.yield %[[COMPLEX]] : !cir.complex // CIR: }) : (!cir.bool) -> !cir.complex // CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex, !cir.ptr> // LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4 // LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4 // LLVM: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4 // LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0 // LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1 // LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0 // LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1 // LLVM: %[[MUL_BR_AR:.*]] = fmul float %[[B_REAL]], %[[A_REAL]] // LLVM: %[[MUL_BI_AI:.*]] = fmul float %[[B_IMAG]], %[[A_IMAG]] // LLVM: %[[MUL_BR_AI:.*]] = fmul float %[[B_REAL]], %[[A_IMAG]] // LLVM: %[[MUL_BI_AR:.*]] = fmul float %[[B_IMAG]], %[[A_REAL]] // LLVM: %[[C_REAL:.*]] = fsub float %[[MUL_BR_AR]], %[[MUL_BI_AI]] // LLVM: %[[C_IMAG:.*]] = fadd float %[[MUL_BR_AI]], %[[MUL_BI_AR]] // LLVM: %[[MUL_A_B:.*]] = insertvalue { float, float } {{.*}}, float %[[C_REAL]], 0 // LLVM: %[[COMPLEX:.*]] = insertvalue { float, float } %[[MUL_A_B]], float %[[C_IMAG]], 1 // LLVM: %[[IS_C_REAL_NAN:.*]] = fcmp une float %[[C_REAL]], %[[C_REAL]] // LLVM: %[[IS_C_IMAG_NAN:.*]] = fcmp une float %[[C_IMAG]], %[[C_IMAG]] // LLVM: %[[SELECT_CONDITION:.*]] = and i1 %[[IS_C_REAL_NAN]], %[[IS_C_IMAG_NAN]] // LLVM: br i1 %[[SELECT_CONDITION]], label %[[THEN_LABEL:.*]], label %[[ELSE_LABEL:.*]] // LLVM: [[THEN_LABEL]]: // LLVM: %[[LIBC_COMPLEX:.*]] = call { float, float } @__mulsc3(float %[[B_REAL]], float %[[B_IMAG]], float %[[A_REAL]], float %[[A_IMAG]]) // LLVM: br label %[[PHI_BRANCH:.*]] // LLVM: [[ELSE_LABEL]]: // LLVM: br label %[[PHI_BRANCH:]] // LLVM: [[PHI_BRANCH:]]: // LLVM: %[[RESULT:.*]] = phi { float, float } [ %[[COMPLEX]], %[[ELSE_LABEL]] ], [ %[[LIBC_COMPLEX]], %[[THEN_LABEL]] ] // LLVM: br label %[[END_LABEL:.*]] // LLVM: [[END_LABEL]]: // LLVM: store { float, float } %[[RESULT]], ptr %[[B_ADDR]], align 4 // OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[B_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[COMPLEX_CALL_ADDR:.*]] = alloca { float, float }, align 4 // OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0 // OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4 // OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1 // OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4 // OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4 // OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4 // OGCG: %[[MUL_BR_AR:.*]] = fmul float %[[B_REAL]], %[[A_REAL]] // OGCG: %[[MUL_BI_AI:.*]] = fmul float %[[B_IMAG]], %[[A_IMAG]] // OGCG: %[[MUL_BR_AI:.*]] = fmul float %[[B_REAL]], %[[A_IMAG]] // OGCG: %[[MUL_BI_AR:.*]] = fmul float %[[B_IMAG]], %[[A_REAL]] // OGCG: %[[C_REAL:.*]] = fsub float %[[MUL_BR_AR]], %[[MUL_BI_AI]] // OGCG: %[[C_IMAG:.*]] = fadd float %[[MUL_BR_AI]], %[[MUL_BI_AR]] // OGCG: %[[IS_C_REAL_NAN:.*]] = fcmp uno float %[[C_REAL]], %[[C_REAL]] // OGCG: br i1 %[[IS_C_REAL_NAN]], label %[[COMPLEX_IS_IMAG_NAN:.*]], label %[[END_LABEL:.*]], !prof !2 // OGCG: [[COMPLEX_IS_IMAG_NAN]]: // OGCG: %[[IS_C_IMAG_NAN:.*]] = fcmp uno float %[[C_IMAG]], %[[C_IMAG]] // OGCG: br i1 %[[IS_C_IMAG_NAN]], label %[[COMPLEX_LIB_CALL:.*]], label %[[END_LABEL]], !prof !2 // OGCG: [[COMPLEX_LIB_CALL]]: // OGCG: %[[CALL_RESULT:.*]] = call{{.*}} <2 x float> @__mulsc3(float noundef %[[B_REAL]], float noundef %[[B_IMAG]], float noundef %[[A_REAL]], float noundef %[[A_IMAG]]) // OGCG: store <2 x float> %[[CALL_RESULT]], ptr %[[COMPLEX_CALL_ADDR]], align 4 // OGCG: %[[COMPLEX_CALL_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[COMPLEX_CALL_ADDR]], i32 0, i32 0 // OGCG: %[[COMPLEX_CALL_REAL:.*]] = load float, ptr %[[COMPLEX_CALL_REAL_PTR]], align 4 // OGCG: %[[COMPLEX_CALL_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[COMPLEX_CALL_ADDR]], i32 0, i32 1 // OGCG: %[[COMPLEX_CALL_IMAG:.*]] = load float, ptr %[[COMPLEX_CALL_IMAG_PTR]], align 4 // OGCG: br label %[[END_LABEL]] // OGCG: [[END_LABEL]]: // OGCG: %[[FINAL_REAL:.*]] = phi float [ %[[C_REAL]], %[[ENTRY:.*]] ], [ %[[C_REAL]], %[[COMPLEX_IS_IMAG_NAN]] ], [ %[[COMPLEX_CALL_REAL]], %[[COMPLEX_LIB_CALL]] ] // OGCG: %[[FINAL_IMAG:.*]] = phi float [ %[[C_IMAG]], %[[ENTRY]] ], [ %[[C_IMAG]], %[[COMPLEX_IS_IMAG_NAN]] ], [ %[[COMPLEX_CALL_IMAG]], %[[COMPLEX_LIB_CALL]] ] // OGCG: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0 // OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1 // OGCG: store float %[[FINAL_REAL]], ptr %[[C_REAL_PTR]], align 4 // OGCG: store float %[[FINAL_IMAG]], ptr %[[C_IMAG_PTR]], align 4