//===--- InterpreterValuePrinter.cpp - Value printing utils -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements routines for in-process value printing in clang-repl. // //===----------------------------------------------------------------------===// #include "IncrementalParser.h" #include "InterpreterUtils.h" #include "clang/AST/ASTContext.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Type.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Interpreter/Interpreter.h" #include "clang/Interpreter/Value.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Sema.h" #include "llvm/Support/Error.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #define DEBUG_TYPE "interp-value" using namespace clang; static std::string DeclTypeToString(const QualType &QT, NamedDecl *D) { std::string Str; llvm::raw_string_ostream SS(Str); if (QT.hasQualifiers()) SS << QT.getQualifiers().getAsString() << " "; SS << D->getQualifiedNameAsString(); return Str; } static std::string QualTypeToString(ASTContext &Ctx, QualType QT) { PrintingPolicy Policy(Ctx.getPrintingPolicy()); // Print the Allocator in STL containers, for instance. Policy.SuppressDefaultTemplateArgs = false; Policy.SuppressUnwrittenScope = true; // Print 'a >' rather than 'a>'. Policy.SplitTemplateClosers = true; struct LocalPrintingPolicyRAII { ASTContext &Context; PrintingPolicy Policy; LocalPrintingPolicyRAII(ASTContext &Ctx, PrintingPolicy &PP) : Context(Ctx), Policy(Ctx.getPrintingPolicy()) { Context.setPrintingPolicy(PP); } ~LocalPrintingPolicyRAII() { Context.setPrintingPolicy(Policy); } } X(Ctx, Policy); const QualType NonRefTy = QT.getNonReferenceType(); if (const auto *TTy = llvm::dyn_cast(NonRefTy)) return DeclTypeToString(NonRefTy, TTy->getDecl()); if (const auto *TRy = dyn_cast(NonRefTy)) return DeclTypeToString(NonRefTy, TRy->getDecl()); const QualType Canon = NonRefTy.getCanonicalType(); // FIXME: How a builtin type can be a function pointer type? if (Canon->isBuiltinType() && !NonRefTy->isFunctionPointerType() && !NonRefTy->isMemberPointerType()) return Canon.getAsString(Ctx.getPrintingPolicy()); if (const auto *TDTy = dyn_cast(NonRefTy)) { // FIXME: TemplateSpecializationType & SubstTemplateTypeParmType checks // are predominately to get STL containers to print nicer and might be // better handled in GetFullyQualifiedName. // // std::vector::iterator is a TemplateSpecializationType // std::vector::value_type is a SubstTemplateTypeParmType // QualType SSDesugar = TDTy->getLocallyUnqualifiedSingleStepDesugaredType(); if (llvm::isa(SSDesugar)) return GetFullTypeName(Ctx, Canon); else if (llvm::isa(SSDesugar)) return GetFullTypeName(Ctx, NonRefTy); return DeclTypeToString(NonRefTy, TDTy->getDecl()); } return GetFullTypeName(Ctx, NonRefTy); } static std::string EnumToString(const Value &V) { std::string Str; llvm::raw_string_ostream SS(Str); ASTContext &Ctx = const_cast(V.getASTContext()); QualType DesugaredTy = V.getType().getDesugaredType(Ctx); const EnumType *EnumTy = DesugaredTy.getNonReferenceType()->getAs(); assert(EnumTy && "Fail to cast to enum type"); EnumDecl *ED = EnumTy->getDecl(); uint64_t Data = V.convertTo(); bool IsFirst = true; llvm::APSInt AP = Ctx.MakeIntValue(Data, DesugaredTy); for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; ++I) { if (I->getInitVal() == AP) { if (!IsFirst) SS << " ? "; SS << "(" + I->getQualifiedNameAsString() << ")"; IsFirst = false; } } llvm::SmallString<64> APStr; AP.toString(APStr, /*Radix=*/10); SS << " : " << QualTypeToString(Ctx, ED->getIntegerType()) << " " << APStr; return Str; } static std::string FunctionToString(const Value &V, const void *Ptr) { std::string Str; llvm::raw_string_ostream SS(Str); SS << "Function @" << Ptr; const DeclContext *PTU = V.getASTContext().getTranslationUnitDecl(); // Find the last top-level-stmt-decl. This is a forward iterator but the // partial translation unit should not be large. const TopLevelStmtDecl *TLSD = nullptr; for (const Decl *D : PTU->noload_decls()) if (isa(D)) TLSD = cast(D); // Get __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void // *OpaqueType, void *Val); const FunctionDecl *FD = nullptr; if (auto *InterfaceCall = llvm::dyn_cast(TLSD->getStmt())) { const auto *Arg = InterfaceCall->getArg(/*Val*/ 3); // Get rid of cast nodes. while (const CastExpr *CastE = llvm::dyn_cast(Arg)) Arg = CastE->getSubExpr(); if (const DeclRefExpr *DeclRefExp = llvm::dyn_cast(Arg)) FD = llvm::dyn_cast(DeclRefExp->getDecl()); if (FD) { SS << '\n'; const clang::FunctionDecl *FDef; if (FD->hasBody(FDef)) FDef->print(SS); } } return Str; } static std::string VoidPtrToString(const void *Ptr) { std::string Str; llvm::raw_string_ostream SS(Str); SS << Ptr; return Str; } static std::string CharPtrToString(const char *Ptr) { if (!Ptr) return "0"; std::string Result = "\""; Result += Ptr; Result += '"'; return Result; } namespace clang { struct ValueRef : public Value { ValueRef(const Interpreter *In, void *Ty) : Value(In, Ty) { // Tell the base class to not try to deallocate if it manages the value. IsManuallyAlloc = false; } }; std::string Interpreter::ValueDataToString(const Value &V) const { Sema &S = getCompilerInstance()->getSema(); ASTContext &Ctx = S.getASTContext(); QualType QT = V.getType(); if (const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(QT)) { QualType ElemTy = CAT->getElementType(); size_t ElemCount = Ctx.getConstantArrayElementCount(CAT); const Type *BaseTy = CAT->getBaseElementTypeUnsafe(); size_t ElemSize = Ctx.getTypeSizeInChars(BaseTy).getQuantity(); // Treat null terminated char arrays as strings basically. if (ElemTy->isCharType()) { char last = *(char *)(((uintptr_t)V.getPtr()) + ElemCount * ElemSize - 1); if (last == '\0') return CharPtrToString((char *)V.getPtr()); } std::string Result = "{ "; for (unsigned Idx = 0, N = CAT->getZExtSize(); Idx < N; ++Idx) { ValueRef InnerV = ValueRef(this, ElemTy.getAsOpaquePtr()); if (ElemTy->isBuiltinType()) { // Single dim arrays, advancing. uintptr_t Offset = (uintptr_t)V.getPtr() + Idx * ElemSize; InnerV.setRawBits((void *)Offset, ElemSize * 8); } else { // Multi dim arrays, position to the next dimension. size_t Stride = ElemCount / N; uintptr_t Offset = ((uintptr_t)V.getPtr()) + Idx * Stride * ElemSize; InnerV.setPtr((void *)Offset); } Result += ValueDataToString(InnerV); // Skip the \0 if the char types if (Idx < N - 1) Result += ", "; } Result += " }"; return Result; } QualType DesugaredTy = QT.getDesugaredType(Ctx); QualType NonRefTy = DesugaredTy.getNonReferenceType(); // FIXME: Add support for user defined printers. // LookupResult R = LookupUserDefined(S, QT); // if (!R.empty()) // return CallUserSpecifiedPrinter(R, V); // If it is a builtin type dispatch to the builtin overloads. if (auto *BT = DesugaredTy.getCanonicalType()->getAs()) { auto formatFloating = [](auto Val, char Suffix = '\0') -> std::string { std::string Out; llvm::raw_string_ostream SS(Out); if (std::isnan(Val) || std::isinf(Val)) { SS << llvm::format("%g", Val); return SS.str(); } if (Val == static_cast(static_cast(Val))) SS << llvm::format("%.1f", Val); else if (std::abs(Val) < 1e-4 || std::abs(Val) > 1e6 || Suffix == 'f') SS << llvm::format("%#.6g", Val); else if (Suffix == 'L') SS << llvm::format("%#.12Lg", Val); else SS << llvm::format("%#.8g", Val); if (Suffix != '\0') SS << Suffix; return SS.str(); }; std::string Str; llvm::raw_string_ostream SS(Str); switch (BT->getKind()) { default: return "{ error: unknown builtin type '" + std::to_string(BT->getKind()) + " '}"; case clang::BuiltinType::Bool: SS << ((V.getBool()) ? "true" : "false"); return Str; case clang::BuiltinType::Char_S: SS << '\'' << V.getChar_S() << '\''; return Str; case clang::BuiltinType::SChar: SS << '\'' << V.getSChar() << '\''; return Str; case clang::BuiltinType::Char_U: SS << '\'' << V.getChar_U() << '\''; return Str; case clang::BuiltinType::UChar: SS << '\'' << V.getUChar() << '\''; return Str; case clang::BuiltinType::Short: SS << V.getShort(); return Str; case clang::BuiltinType::UShort: SS << V.getUShort(); return Str; case clang::BuiltinType::Int: SS << V.getInt(); return Str; case clang::BuiltinType::UInt: SS << V.getUInt(); return Str; case clang::BuiltinType::Long: SS << V.getLong(); return Str; case clang::BuiltinType::ULong: SS << V.getULong(); return Str; case clang::BuiltinType::LongLong: SS << V.getLongLong(); return Str; case clang::BuiltinType::ULongLong: SS << V.getULongLong(); return Str; case clang::BuiltinType::Float: return formatFloating(V.getFloat(), /*suffix=*/'f'); case clang::BuiltinType::Double: return formatFloating(V.getDouble()); case clang::BuiltinType::LongDouble: return formatFloating(V.getLongDouble(), /*suffix=*/'L'); } } if ((NonRefTy->isPointerType() || NonRefTy->isMemberPointerType()) && NonRefTy->getPointeeType()->isFunctionProtoType()) return FunctionToString(V, V.getPtr()); if (NonRefTy->isFunctionType()) return FunctionToString(V, &V); if (NonRefTy->isEnumeralType()) return EnumToString(V); if (NonRefTy->isNullPtrType()) return "nullptr\n"; // FIXME: Add support for custom printers in C. if (NonRefTy->isPointerType()) { if (NonRefTy->getPointeeType()->isCharType()) return CharPtrToString((char *)V.getPtr()); return VoidPtrToString(V.getPtr()); } // Fall back to printing just the address of the unknown object. return "@" + VoidPtrToString(V.getPtr()); } std::string Interpreter::ValueTypeToString(const Value &V) const { ASTContext &Ctx = const_cast(V.getASTContext()); QualType QT = V.getType(); std::string QTStr = QualTypeToString(Ctx, QT); if (QT->isReferenceType()) QTStr += " &"; return QTStr; } llvm::Expected Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) const { assert(CXXRD && "Cannot compile a destructor for a nullptr"); if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end()) return Dtor->getSecond(); if (CXXRD->hasIrrelevantDestructor()) return llvm::orc::ExecutorAddr{}; CXXDestructorDecl *DtorRD = getCompilerInstance()->getSema().LookupDestructor(CXXRD); llvm::StringRef Name = getCodeGen()->GetMangledName(GlobalDecl(DtorRD, Dtor_Base)); auto AddrOrErr = getSymbolAddress(Name); if (!AddrOrErr) return AddrOrErr.takeError(); Dtors[CXXRD] = *AddrOrErr; return AddrOrErr; } enum InterfaceKind { NoAlloc, WithAlloc, CopyArray, NewTag }; class InterfaceKindVisitor : public TypeVisitor { Sema &S; Expr *E; llvm::SmallVectorImpl &Args; public: InterfaceKindVisitor(Sema &S, Expr *E, llvm::SmallVectorImpl &Args) : S(S), E(E), Args(Args) {} InterfaceKind computeInterfaceKind(QualType Ty) { return Visit(Ty.getTypePtr()); } InterfaceKind VisitRecordType(const RecordType *Ty) { return InterfaceKind::WithAlloc; } InterfaceKind VisitMemberPointerType(const MemberPointerType *Ty) { return InterfaceKind::WithAlloc; } InterfaceKind VisitConstantArrayType(const ConstantArrayType *Ty) { return InterfaceKind::CopyArray; } InterfaceKind VisitFunctionType(const FunctionType *Ty) { HandlePtrType(Ty); return InterfaceKind::NoAlloc; } InterfaceKind VisitPointerType(const PointerType *Ty) { HandlePtrType(Ty); return InterfaceKind::NoAlloc; } InterfaceKind VisitReferenceType(const ReferenceType *Ty) { ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E); assert(!AddrOfE.isInvalid() && "Can not create unary expression"); Args.push_back(AddrOfE.get()); return InterfaceKind::NoAlloc; } InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { if (Ty->isNullPtrType()) Args.push_back(E); else if (Ty->isFloatingType()) Args.push_back(E); else if (Ty->isIntegralOrEnumerationType()) HandleIntegralOrEnumType(Ty); else if (Ty->isVoidType()) { // Do we need to still run `E`? } return InterfaceKind::NoAlloc; } InterfaceKind VisitEnumType(const EnumType *Ty) { HandleIntegralOrEnumType(Ty); return InterfaceKind::NoAlloc; } private: // Force cast these types to the uint that fits the register size. That way we // reduce the number of overloads of `__clang_Interpreter_SetValueNoAlloc`. void HandleIntegralOrEnumType(const Type *Ty) { ASTContext &Ctx = S.getASTContext(); uint64_t PtrBits = Ctx.getTypeSize(Ctx.VoidPtrTy); QualType UIntTy = Ctx.getBitIntType(/*Unsigned=*/true, PtrBits); TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(UIntTy); ExprResult CastedExpr = S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr"); Args.push_back(CastedExpr.get()); } void HandlePtrType(const Type *Ty) { ASTContext &Ctx = S.getASTContext(); TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy); ExprResult CastedExpr = S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression"); Args.push_back(CastedExpr.get()); } }; static constexpr llvm::StringRef VPName[] = { "__clang_Interpreter_SetValueNoAlloc", "__clang_Interpreter_SetValueWithAlloc", "__clang_Interpreter_SetValueCopyArr", "__ci_newtag"}; // This synthesizes a call expression to a speciall // function that is responsible for generating the Value. // In general, we transform c++: // clang-repl> x // To: // // 1. If x is a built-in type like int, float. // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); // // 2. If x is a struct, and a lvalue. // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, // &x); // // 3. If x is a struct, but a rvalue. // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, // xQualType)) (x); llvm::Expected Interpreter::convertExprToValue(Expr *E) { Sema &S = getCompilerInstance()->getSema(); ASTContext &Ctx = S.getASTContext(); // Find the value printing builtins. if (!ValuePrintingInfo[0]) { assert(llvm::all_of(ValuePrintingInfo, [](Expr *E) { return !E; })); auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) -> llvm::Error { LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), Sema::LookupOrdinaryName, RedeclarationKind::ForVisibleRedeclaration); S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl()); if (R.empty()) return llvm::make_error( Name + " not found!", llvm::inconvertibleErrorCode()); CXXScopeSpec CSS; Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get(); return llvm::Error::success(); }; if (llvm::Error Err = LookupInterface(ValuePrintingInfo[NoAlloc], VPName[NoAlloc])) return std::move(Err); if (llvm::Error Err = LookupInterface(ValuePrintingInfo[CopyArray], VPName[CopyArray])) return std::move(Err); if (llvm::Error Err = LookupInterface(ValuePrintingInfo[WithAlloc], VPName[WithAlloc])) return std::move(Err); if (Ctx.getLangOpts().CPlusPlus) { if (llvm::Error Err = LookupInterface(ValuePrintingInfo[NewTag], VPName[NewTag])) return std::move(Err); } } llvm::SmallVector AdjustedArgs; // Create parameter `ThisInterp`. AdjustedArgs.push_back(CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this)); // Create parameter `OutVal`. AdjustedArgs.push_back( CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue)); // Build `__clang_Interpreter_SetValue*` call. // Get rid of ExprWithCleanups. if (auto *EWC = llvm::dyn_cast_if_present(E)) E = EWC->getSubExpr(); QualType Ty = E->IgnoreImpCasts()->getType(); QualType DesugaredTy = Ty.getDesugaredType(Ctx); // For lvalue struct, we treat it as a reference. if (DesugaredTy->isRecordType() && E->isLValue()) { DesugaredTy = Ctx.getLValueReferenceType(DesugaredTy); Ty = Ctx.getLValueReferenceType(Ty); } Expr *TypeArg = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)Ty.getAsOpaquePtr()); // The QualType parameter `OpaqueType`, represented as `void*`. AdjustedArgs.push_back(TypeArg); // We push the last parameter based on the type of the Expr. Note we need // special care for rvalue struct. InterfaceKindVisitor V(S, E, AdjustedArgs); Scope *Scope = nullptr; ExprResult SetValueE; InterfaceKind Kind = V.computeInterfaceKind(DesugaredTy); switch (Kind) { case InterfaceKind::WithAlloc: LLVM_FALLTHROUGH; case InterfaceKind::CopyArray: { // __clang_Interpreter_SetValueWithAlloc. ExprResult AllocCall = S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::WithAlloc], E->getBeginLoc(), AdjustedArgs, E->getEndLoc()); if (AllocCall.isInvalid()) return llvm::make_error( "Cannot call to " + VPName[WithAlloc], llvm::inconvertibleErrorCode()); TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation()); // Force CodeGen to emit destructor. if (auto *RD = Ty->getAsCXXRecordDecl()) { auto *Dtor = S.LookupDestructor(RD); Dtor->addAttr(UsedAttr::CreateImplicit(Ctx)); getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( DeclGroupRef(Dtor)); } // __clang_Interpreter_SetValueCopyArr. if (Kind == InterfaceKind::CopyArray) { const auto *CATy = cast(DesugaredTy.getTypePtr()); size_t ArrSize = Ctx.getConstantArrayElementCount(CATy); if (!Ctx.getLangOpts().CPlusPlus) ArrSize *= Ctx.getTypeSizeInChars(CATy->getBaseElementTypeUnsafe()) .getQuantity(); Expr *ArrSizeExpr = IntegerLiteralExpr(Ctx, ArrSize); Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; SetValueE = S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::CopyArray], SourceLocation(), Args, SourceLocation()); if (SetValueE.isInvalid()) return llvm::make_error( "Cannot call to " + VPName[CopyArray], llvm::inconvertibleErrorCode()); break; } Expr *Args[] = {AllocCall.get(), ValuePrintingInfo[InterfaceKind::NewTag]}; ExprResult CXXNewCall = S.BuildCXXNew( E->getSourceRange(), /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args, /*PlacementRParen=*/SourceLocation(), /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt, E->getSourceRange(), E); if (CXXNewCall.isInvalid()) return llvm::make_error( "Cannot build a call to placement new", llvm::inconvertibleErrorCode()); SetValueE = S.ActOnFinishFullExpr(CXXNewCall.get(), /*DiscardedValue=*/false); break; } // __clang_Interpreter_SetValueNoAlloc. case InterfaceKind::NoAlloc: { SetValueE = S.ActOnCallExpr(Scope, ValuePrintingInfo[InterfaceKind::NoAlloc], E->getBeginLoc(), AdjustedArgs, E->getEndLoc()); break; } default: llvm_unreachable("Unhandled InterfaceKind"); } // It could fail, like printing an array type in C. (not supported) if (SetValueE.isInvalid()) return E; return SetValueE.get(); } } // namespace clang using namespace clang; // Temporary rvalue struct that need special care. extern "C" { REPL_EXTERNAL_VISIBILITY void * __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, void *OpaqueType) { Value &VRef = *(Value *)OutVal; VRef = Value(static_cast(This), OpaqueType); return VRef.getPtr(); } REPL_EXTERNAL_VISIBILITY void __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, ...) { Value &VRef = *(Value *)OutVal; Interpreter *I = static_cast(This); VRef = Value(I, OpaqueType); if (VRef.isVoid()) return; va_list args; va_start(args, /*last named param*/ OpaqueType); QualType QT = VRef.getType(); if (VRef.getKind() == Value::K_PtrOrObj) { VRef.setPtr(va_arg(args, void *)); } else { if (const auto *ET = QT->getAs()) QT = ET->getDecl()->getIntegerType(); switch (QT->castAs()->getKind()) { default: llvm_unreachable("unknown type kind!"); break; // Types shorter than int are resolved as int, else va_arg has UB. case BuiltinType::Bool: VRef.setBool(va_arg(args, int)); break; case BuiltinType::Char_S: VRef.setChar_S(va_arg(args, int)); break; case BuiltinType::SChar: VRef.setSChar(va_arg(args, int)); break; case BuiltinType::Char_U: VRef.setChar_U(va_arg(args, unsigned)); break; case BuiltinType::UChar: VRef.setUChar(va_arg(args, unsigned)); break; case BuiltinType::Short: VRef.setShort(va_arg(args, int)); break; case BuiltinType::UShort: VRef.setUShort(va_arg(args, unsigned)); break; case BuiltinType::Int: VRef.setInt(va_arg(args, int)); break; case BuiltinType::UInt: VRef.setUInt(va_arg(args, unsigned)); break; case BuiltinType::Long: VRef.setLong(va_arg(args, long)); break; case BuiltinType::ULong: VRef.setULong(va_arg(args, unsigned long)); break; case BuiltinType::LongLong: VRef.setLongLong(va_arg(args, long long)); break; case BuiltinType::ULongLong: VRef.setULongLong(va_arg(args, unsigned long long)); break; // Types shorter than double are resolved as double, else va_arg has UB. case BuiltinType::Float: VRef.setFloat(va_arg(args, double)); break; case BuiltinType::Double: VRef.setDouble(va_arg(args, double)); break; case BuiltinType::LongDouble: VRef.setLongDouble(va_arg(args, long double)); break; // See REPL_BUILTIN_TYPES. } } va_end(args); } } // A trampoline to work around the fact that operator placement new cannot // really be forward declared due to libc++ and libstdc++ declaration mismatch. // FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same // definition in the interpreter runtime. We should move it in a runtime header // which gets included by the interpreter and here. struct __clang_Interpreter_NewTag {}; REPL_EXTERNAL_VISIBILITY void * operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept { // Just forward to the standard operator placement new. return operator new(__sz, __p); }