//===------- FixedPoint.h - Fixedd point types for the VM -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_INTERP_FIXED_POINT_H #define LLVM_CLANG_AST_INTERP_FIXED_POINT_H #include "clang/AST/APValue.h" #include "clang/AST/ComparisonCategories.h" #include "llvm/ADT/APFixedPoint.h" namespace clang { namespace interp { using APInt = llvm::APInt; using APSInt = llvm::APSInt; /// Wrapper around fixed point types. class FixedPoint final { private: llvm::APFixedPoint V; public: FixedPoint(llvm::APFixedPoint &&V) : V(std::move(V)) {} FixedPoint(llvm::APFixedPoint &V) : V(V) {} FixedPoint(APInt V, llvm::FixedPointSemantics Sem) : V(V, Sem) {} // This needs to be default-constructible so llvm::endian::read works. FixedPoint() : V(APInt(0, 0ULL, false), llvm::FixedPointSemantics(0, 0, false, false, false)) {} static FixedPoint zero(llvm::FixedPointSemantics Sem) { return FixedPoint(APInt(Sem.getWidth(), 0ULL, Sem.isSigned()), Sem); } static FixedPoint from(const APSInt &I, llvm::FixedPointSemantics Sem, bool *Overflow) { return FixedPoint(llvm::APFixedPoint::getFromIntValue(I, Sem, Overflow)); } static FixedPoint from(const llvm::APFloat &I, llvm::FixedPointSemantics Sem, bool *Overflow) { return FixedPoint(llvm::APFixedPoint::getFromFloatValue(I, Sem, Overflow)); } operator bool() const { return V.getBoolValue(); } void print(llvm::raw_ostream &OS) const { OS << V; } APValue toAPValue(const ASTContext &) const { return APValue(V); } APSInt toAPSInt(unsigned BitWidth = 0) const { return V.getValue(); } unsigned bitWidth() const { return V.getWidth(); } bool isSigned() const { return V.isSigned(); } bool isZero() const { return V.getValue().isZero(); } bool isNegative() const { return V.getValue().isNegative(); } bool isPositive() const { return V.getValue().isNonNegative(); } bool isMin() const { return V == llvm::APFixedPoint::getMin(V.getSemantics()); } bool isMinusOne() const { return V.isSigned() && V.getValue() == -1; } FixedPoint truncate(unsigned BitWidth) const { return *this; } FixedPoint toSemantics(const llvm::FixedPointSemantics &Sem, bool *Overflow) const { return FixedPoint(V.convert(Sem, Overflow)); } llvm::FixedPointSemantics getSemantics() const { return V.getSemantics(); } llvm::APFloat toFloat(const llvm::fltSemantics *Sem) const { return V.convertToFloat(*Sem); } llvm::APSInt toInt(unsigned BitWidth, bool Signed, bool *Overflow) const { return V.convertToInt(BitWidth, Signed, Overflow); } std::string toDiagnosticString(const ASTContext &Ctx) const { return V.toString(); } ComparisonCategoryResult compare(const FixedPoint &Other) const { int c = V.compare(Other.V); if (c == 0) return ComparisonCategoryResult::Equal; else if (c < 0) return ComparisonCategoryResult::Less; return ComparisonCategoryResult::Greater; } size_t bytesToSerialize() const { return sizeof(uint32_t) + (V.getValue().getBitWidth() / CHAR_BIT); } void serialize(std::byte *Buff) const { // Semantics followed by APInt. uint32_t SemI = V.getSemantics().toOpaqueInt(); std::memcpy(Buff, &SemI, sizeof(SemI)); llvm::APInt API = V.getValue(); llvm::StoreIntToMemory(API, (uint8_t *)(Buff + sizeof(SemI)), bitWidth() / 8); } static FixedPoint deserialize(const std::byte *Buff) { auto Sem = llvm::FixedPointSemantics::getFromOpaqueInt( *reinterpret_cast(Buff)); unsigned BitWidth = Sem.getWidth(); APInt I(BitWidth, 0ull, !Sem.isSigned()); llvm::LoadIntFromMemory( I, reinterpret_cast(Buff + sizeof(uint32_t)), BitWidth / CHAR_BIT); return FixedPoint(I, Sem); } static bool neg(const FixedPoint &A, FixedPoint *R) { bool Overflow = false; *R = FixedPoint(A.V.negate(&Overflow)); return Overflow; } static bool add(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { bool Overflow = false; *R = FixedPoint(A.V.add(B.V, &Overflow)); return Overflow; } static bool sub(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { bool Overflow = false; *R = FixedPoint(A.V.sub(B.V, &Overflow)); return Overflow; } static bool mul(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { bool Overflow = false; *R = FixedPoint(A.V.mul(B.V, &Overflow)); return Overflow; } static bool div(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { bool Overflow = false; *R = FixedPoint(A.V.div(B.V, &Overflow)); return Overflow; } static bool shiftLeft(const FixedPoint A, const FixedPoint B, unsigned OpBits, FixedPoint *R) { unsigned Amt = B.V.getValue().getLimitedValue(OpBits); bool Overflow; *R = FixedPoint(A.V.shl(Amt, &Overflow)); return Overflow; } static bool shiftRight(const FixedPoint A, const FixedPoint B, unsigned OpBits, FixedPoint *R) { unsigned Amt = B.V.getValue().getLimitedValue(OpBits); bool Overflow; *R = FixedPoint(A.V.shr(Amt, &Overflow)); return Overflow; } static bool rem(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { llvm_unreachable("Rem doesn't exist for fixed point values"); return true; } static bool bitAnd(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { return true; } static bool bitOr(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { return true; } static bool bitXor(const FixedPoint A, const FixedPoint B, unsigned Bits, FixedPoint *R) { return true; } static bool increment(const FixedPoint &A, FixedPoint *R) { return true; } static bool decrement(const FixedPoint &A, FixedPoint *R) { return true; } }; inline FixedPoint getSwappedBytes(FixedPoint F) { return F; } inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, FixedPoint F) { F.print(OS); return OS; } } // namespace interp } // namespace clang #endif