//===--- Hover.cpp - Information about code at the cursor location --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "Hover.h" #include "AST.h" #include "CodeCompletionStrings.h" #include "FindTarget.h" #include "ParsedAST.h" #include "Selection.h" #include "SourceCode.h" #include "index/SymbolCollector.h" #include "support/Logger.h" #include "support/Markup.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTTypeTraits.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Type.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TokenKinds.h" #include "clang/Index/IndexSymbol.h" #include "clang/Tooling/Syntax/Tokens.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include namespace clang { namespace clangd { namespace { PrintingPolicy getPrintingPolicy(PrintingPolicy Base) { Base.AnonymousTagLocations = false; Base.TerseOutput = true; Base.PolishForDeclaration = true; Base.ConstantsAsWritten = true; Base.SuppressTemplateArgsInCXXConstructors = true; return Base; } /// Given a declaration \p D, return a human-readable string representing the /// local scope in which it is declared, i.e. class(es) and method name. Returns /// an empty string if it is not local. std::string getLocalScope(const Decl *D) { std::vector Scopes; const DeclContext *DC = D->getDeclContext(); // ObjC scopes won't have multiple components for us to join, instead: // - Methods: "-[Class methodParam1:methodParam2]" // - Classes, categories, and protocols: "MyClass(Category)" if (const ObjCMethodDecl *MD = dyn_cast(DC)) return printObjCMethod(*MD); else if (const ObjCContainerDecl *CD = dyn_cast(DC)) return printObjCContainer(*CD); auto GetName = [](const TypeDecl *D) { if (!D->getDeclName().isEmpty()) { PrintingPolicy Policy = D->getASTContext().getPrintingPolicy(); Policy.SuppressScope = true; return declaredType(D).getAsString(Policy); } if (auto RD = dyn_cast(D)) return ("(anonymous " + RD->getKindName() + ")").str(); return std::string(""); }; while (DC) { if (const TypeDecl *TD = dyn_cast(DC)) Scopes.push_back(GetName(TD)); else if (const FunctionDecl *FD = dyn_cast(DC)) Scopes.push_back(FD->getNameAsString()); DC = DC->getParent(); } return llvm::join(llvm::reverse(Scopes), "::"); } /// Returns the human-readable representation for namespace containing the /// declaration \p D. Returns empty if it is contained global namespace. std::string getNamespaceScope(const Decl *D) { const DeclContext *DC = D->getDeclContext(); // ObjC does not have the concept of namespaces, so instead we support // local scopes. if (isa(DC)) return ""; if (const TagDecl *TD = dyn_cast(DC)) return getNamespaceScope(TD); if (const FunctionDecl *FD = dyn_cast(DC)) return getNamespaceScope(FD); if (const NamespaceDecl *NSD = dyn_cast(DC)) { // Skip inline/anon namespaces. if (NSD->isInline() || NSD->isAnonymousNamespace()) return getNamespaceScope(NSD); } if (const NamedDecl *ND = dyn_cast(DC)) return printQualifiedName(*ND); return ""; } std::string printDefinition(const Decl *D, const PrintingPolicy &PP) { std::string Definition; llvm::raw_string_ostream OS(Definition); D->print(OS, PP); OS.flush(); return Definition; } std::string printType(QualType QT, const PrintingPolicy &PP) { // TypePrinter doesn't resolve decltypes, so resolve them here. // FIXME: This doesn't handle composite types that contain a decltype in them. // We should rather have a printing policy for that. while (!QT.isNull() && QT->isDecltypeType()) QT = QT->getAs()->getUnderlyingType(); std::string Result; llvm::raw_string_ostream OS(Result); // Special case: if the outer type is a tag type without qualifiers, then // include the tag for extra clarity. // This isn't very idiomatic, so don't attempt it for complex cases, including // pointers/references, template specializations, etc. if (!QT.isNull() && !QT.hasQualifiers() && PP.SuppressTagKeyword) { if (auto *TT = llvm::dyn_cast(QT.getTypePtr())) OS << TT->getDecl()->getKindName() << " "; } OS.flush(); QT.print(OS, PP); return Result; } std::string printType(const TemplateTypeParmDecl *TTP) { std::string Res = TTP->wasDeclaredWithTypename() ? "typename" : "class"; if (TTP->isParameterPack()) Res += "..."; return Res; } std::string printType(const NonTypeTemplateParmDecl *NTTP, const PrintingPolicy &PP) { std::string Res = printType(NTTP->getType(), PP); if (NTTP->isParameterPack()) Res += "..."; return Res; } std::string printType(const TemplateTemplateParmDecl *TTP, const PrintingPolicy &PP) { std::string Res; llvm::raw_string_ostream OS(Res); OS << "template <"; llvm::StringRef Sep = ""; for (const Decl *Param : *TTP->getTemplateParameters()) { OS << Sep; Sep = ", "; if (const auto *TTP = dyn_cast(Param)) OS << printType(TTP); else if (const auto *NTTP = dyn_cast(Param)) OS << printType(NTTP, PP); else if (const auto *TTPD = dyn_cast(Param)) OS << printType(TTPD, PP); } // FIXME: TemplateTemplateParameter doesn't store the info on whether this // param was a "typename" or "class". OS << "> class"; return OS.str(); } std::vector fetchTemplateParameters(const TemplateParameterList *Params, const PrintingPolicy &PP) { assert(Params); std::vector TempParameters; for (const Decl *Param : *Params) { HoverInfo::Param P; if (const auto *TTP = dyn_cast(Param)) { P.Type = printType(TTP); if (!TTP->getName().empty()) P.Name = TTP->getNameAsString(); if (TTP->hasDefaultArgument()) P.Default = TTP->getDefaultArgument().getAsString(PP); } else if (const auto *NTTP = dyn_cast(Param)) { P.Type = printType(NTTP, PP); if (IdentifierInfo *II = NTTP->getIdentifier()) P.Name = II->getName().str(); if (NTTP->hasDefaultArgument()) { P.Default.emplace(); llvm::raw_string_ostream Out(*P.Default); NTTP->getDefaultArgument()->printPretty(Out, nullptr, PP); } } else if (const auto *TTPD = dyn_cast(Param)) { P.Type = printType(TTPD, PP); if (!TTPD->getName().empty()) P.Name = TTPD->getNameAsString(); if (TTPD->hasDefaultArgument()) { P.Default.emplace(); llvm::raw_string_ostream Out(*P.Default); TTPD->getDefaultArgument().getArgument().print(PP, Out, /*IncludeType*/ false); } } TempParameters.push_back(std::move(P)); } return TempParameters; } const FunctionDecl *getUnderlyingFunction(const Decl *D) { // Extract lambda from variables. if (const VarDecl *VD = llvm::dyn_cast(D)) { auto QT = VD->getType(); if (!QT.isNull()) { while (!QT->getPointeeType().isNull()) QT = QT->getPointeeType(); if (const auto *CD = QT->getAsCXXRecordDecl()) return CD->getLambdaCallOperator(); } } // Non-lambda functions. return D->getAsFunction(); } // Returns the decl that should be used for querying comments, either from index // or AST. const NamedDecl *getDeclForComment(const NamedDecl *D) { if (const auto *TSD = llvm::dyn_cast(D)) { // Template may not be instantiated e.g. if the type didn't need to be // complete; fallback to primary template. if (TSD->getTemplateSpecializationKind() == TSK_Undeclared) return TSD->getSpecializedTemplate(); if (const auto *TIP = TSD->getTemplateInstantiationPattern()) return TIP; } if (const auto *TSD = llvm::dyn_cast(D)) { if (TSD->getTemplateSpecializationKind() == TSK_Undeclared) return TSD->getSpecializedTemplate(); if (const auto *TIP = TSD->getTemplateInstantiationPattern()) return TIP; } if (const auto *FD = D->getAsFunction()) if (const auto *TIP = FD->getTemplateInstantiationPattern()) return TIP; return D; } // Look up information about D from the index, and add it to Hover. void enhanceFromIndex(HoverInfo &Hover, const NamedDecl &ND, const SymbolIndex *Index) { assert(&ND == getDeclForComment(&ND)); // We only add documentation, so don't bother if we already have some. if (!Hover.Documentation.empty() || !Index) return; // Skip querying for non-indexable symbols, there's no point. // We're searching for symbols that might be indexed outside this main file. if (!SymbolCollector::shouldCollectSymbol(ND, ND.getASTContext(), SymbolCollector::Options(), /*IsMainFileOnly=*/false)) return; auto ID = getSymbolID(&ND); if (!ID) return; LookupRequest Req; Req.IDs.insert(ID); Index->lookup(Req, [&](const Symbol &S) { Hover.Documentation = std::string(S.Documentation); }); } // Default argument might exist but be unavailable, in the case of unparsed // arguments for example. This function returns the default argument if it is // available. const Expr *getDefaultArg(const ParmVarDecl *PVD) { // Default argument can be unparsed or uninstantiated. For the former we // can't do much, as token information is only stored in Sema and not // attached to the AST node. For the latter though, it is safe to proceed as // the expression is still valid. if (!PVD->hasDefaultArg() || PVD->hasUnparsedDefaultArg()) return nullptr; return PVD->hasUninstantiatedDefaultArg() ? PVD->getUninstantiatedDefaultArg() : PVD->getDefaultArg(); } HoverInfo::Param toHoverInfoParam(const ParmVarDecl *PVD, const PrintingPolicy &PP) { HoverInfo::Param Out; Out.Type = printType(PVD->getType(), PP); if (!PVD->getName().empty()) Out.Name = PVD->getNameAsString(); if (const Expr *DefArg = getDefaultArg(PVD)) { Out.Default.emplace(); llvm::raw_string_ostream OS(*Out.Default); DefArg->printPretty(OS, nullptr, PP); } return Out; } // Populates Type, ReturnType, and Parameters for function-like decls. void fillFunctionTypeAndParams(HoverInfo &HI, const Decl *D, const FunctionDecl *FD, const PrintingPolicy &PP) { HI.Parameters.emplace(); for (const ParmVarDecl *PVD : FD->parameters()) HI.Parameters->emplace_back(toHoverInfoParam(PVD, PP)); // We don't want any type info, if name already contains it. This is true for // constructors/destructors and conversion operators. const auto NK = FD->getDeclName().getNameKind(); if (NK == DeclarationName::CXXConstructorName || NK == DeclarationName::CXXDestructorName || NK == DeclarationName::CXXConversionFunctionName) return; HI.ReturnType = printType(FD->getReturnType(), PP); QualType QT = FD->getType(); if (const VarDecl *VD = llvm::dyn_cast(D)) // Lambdas QT = VD->getType().getDesugaredType(D->getASTContext()); HI.Type = printType(QT, PP); // FIXME: handle variadics. } // Non-negative numbers are printed using min digits // 0 => 0x0 // 100 => 0x64 // Negative numbers are sign-extended to 32/64 bits // -2 => 0xfffffffe // -2^32 => 0xfffffffeffffffff static llvm::FormattedNumber printHex(const llvm::APSInt &V) { uint64_t Bits = V.getExtValue(); if (V.isNegative() && V.getMinSignedBits() <= 32) return llvm::format_hex(uint32_t(Bits), 0); return llvm::format_hex(Bits, 0); } llvm::Optional printExprValue(const Expr *E, const ASTContext &Ctx) { // InitListExpr has two forms, syntactic and semantic. They are the same thing // (refer to a same AST node) in most cases. // When they are different, RAV returns the syntactic form, and we should feed // the semantic form to EvaluateAsRValue. if (const auto *ILE = llvm::dyn_cast(E)) { if (!ILE->isSemanticForm()) E = ILE->getSemanticForm(); } // Evaluating [[foo]]() as "&foo" isn't useful, and prevents us walking up // to the enclosing call. Evaluating an expression of void type doesn't // produce a meaningful result. QualType T = E->getType(); if (T.isNull() || T->isFunctionType() || T->isFunctionPointerType() || T->isFunctionReferenceType() || T->isVoidType()) return llvm::None; Expr::EvalResult Constant; // Attempt to evaluate. If expr is dependent, evaluation crashes! if (E->isValueDependent() || !E->EvaluateAsRValue(Constant, Ctx) || // Disable printing for record-types, as they are usually confusing and // might make clang crash while printing the expressions. Constant.Val.isStruct() || Constant.Val.isUnion()) return llvm::None; // Show enums symbolically, not numerically like APValue::printPretty(). if (T->isEnumeralType() && Constant.Val.getInt().getMinSignedBits() <= 64) { // Compare to int64_t to avoid bit-width match requirements. int64_t Val = Constant.Val.getInt().getExtValue(); for (const EnumConstantDecl *ECD : T->castAs()->getDecl()->enumerators()) if (ECD->getInitVal() == Val) return llvm::formatv("{0} ({1})", ECD->getNameAsString(), printHex(Constant.Val.getInt())) .str(); } // Show hex value of integers if they're at least 10 (or negative!) if (T->isIntegralOrEnumerationType() && Constant.Val.getInt().getMinSignedBits() <= 64 && Constant.Val.getInt().uge(10)) return llvm::formatv("{0} ({1})", Constant.Val.getAsString(Ctx, T), printHex(Constant.Val.getInt())) .str(); return Constant.Val.getAsString(Ctx, T); } llvm::Optional printExprValue(const SelectionTree::Node *N, const ASTContext &Ctx) { for (; N; N = N->Parent) { // Try to evaluate the first evaluatable enclosing expression. if (const Expr *E = N->ASTNode.get()) { // Once we cross an expression of type 'cv void', the evaluated result // has nothing to do with our original cursor position. if (!E->getType().isNull() && E->getType()->isVoidType()) break; if (auto Val = printExprValue(E, Ctx)) return Val; } else if (N->ASTNode.get() || N->ASTNode.get()) { // Refuse to cross certain non-exprs. (TypeLoc are OK as part of Exprs). // This tries to ensure we're showing a value related to the cursor. break; } } return llvm::None; } llvm::Optional fieldName(const Expr *E) { const auto *ME = llvm::dyn_cast(E->IgnoreCasts()); if (!ME || !llvm::isa(ME->getBase()->IgnoreCasts())) return llvm::None; const auto *Field = llvm::dyn_cast(ME->getMemberDecl()); if (!Field || !Field->getDeclName().isIdentifier()) return llvm::None; return Field->getDeclName().getAsIdentifierInfo()->getName(); } // If CMD is of the form T foo() { return FieldName; } then returns "FieldName". llvm::Optional getterVariableName(const CXXMethodDecl *CMD) { assert(CMD->hasBody()); if (CMD->getNumParams() != 0 || CMD->isVariadic()) return llvm::None; const auto *Body = llvm::dyn_cast(CMD->getBody()); const auto *OnlyReturn = (Body && Body->size() == 1) ? llvm::dyn_cast(Body->body_front()) : nullptr; if (!OnlyReturn || !OnlyReturn->getRetValue()) return llvm::None; return fieldName(OnlyReturn->getRetValue()); } // If CMD is one of the forms: // void foo(T arg) { FieldName = arg; } // R foo(T arg) { FieldName = arg; return *this; } // void foo(T arg) { FieldName = std::move(arg); } // R foo(T arg) { FieldName = std::move(arg); return *this; } // then returns "FieldName" llvm::Optional setterVariableName(const CXXMethodDecl *CMD) { assert(CMD->hasBody()); if (CMD->isConst() || CMD->getNumParams() != 1 || CMD->isVariadic()) return llvm::None; const ParmVarDecl *Arg = CMD->getParamDecl(0); if (Arg->isParameterPack()) return llvm::None; const auto *Body = llvm::dyn_cast(CMD->getBody()); if (!Body || Body->size() == 0 || Body->size() > 2) return llvm::None; // If the second statement exists, it must be `return this` or `return *this`. if (Body->size() == 2) { auto *Ret = llvm::dyn_cast(Body->body_back()); if (!Ret || !Ret->getRetValue()) return llvm::None; const Expr *RetVal = Ret->getRetValue()->IgnoreCasts(); if (const auto *UO = llvm::dyn_cast(RetVal)) { if (UO->getOpcode() != UO_Deref) return llvm::None; RetVal = UO->getSubExpr()->IgnoreCasts(); } if (!llvm::isa(RetVal)) return llvm::None; } // The first statement must be an assignment of the arg to a field. const Expr *LHS, *RHS; if (const auto *BO = llvm::dyn_cast(Body->body_front())) { if (BO->getOpcode() != BO_Assign) return llvm::None; LHS = BO->getLHS(); RHS = BO->getRHS(); } else if (const auto *COCE = llvm::dyn_cast(Body->body_front())) { if (COCE->getOperator() != OO_Equal || COCE->getNumArgs() != 2) return llvm::None; LHS = COCE->getArg(0); RHS = COCE->getArg(1); } else { return llvm::None; } // Detect the case when the item is moved into the field. if (auto *CE = llvm::dyn_cast(RHS->IgnoreCasts())) { if (CE->getNumArgs() != 1) return llvm::None; auto *ND = llvm::dyn_cast_or_null(CE->getCalleeDecl()); if (!ND || !ND->getIdentifier() || ND->getName() != "move" || !ND->isInStdNamespace()) return llvm::None; RHS = CE->getArg(0); } auto *DRE = llvm::dyn_cast(RHS->IgnoreCasts()); if (!DRE || DRE->getDecl() != Arg) return llvm::None; return fieldName(LHS); } std::string synthesizeDocumentation(const NamedDecl *ND) { if (const auto *CMD = llvm::dyn_cast(ND)) { // Is this an ordinary, non-static method whose definition is visible? if (CMD->getDeclName().isIdentifier() && !CMD->isStatic() && (CMD = llvm::dyn_cast_or_null(CMD->getDefinition())) && CMD->hasBody()) { if (const auto GetterField = getterVariableName(CMD)) return llvm::formatv("Trivial accessor for `{0}`.", *GetterField); if (const auto SetterField = setterVariableName(CMD)) return llvm::formatv("Trivial setter for `{0}`.", *SetterField); } } return ""; } /// Generate a \p Hover object given the declaration \p D. HoverInfo getHoverContents(const NamedDecl *D, const PrintingPolicy &PP, const SymbolIndex *Index) { HoverInfo HI; const ASTContext &Ctx = D->getASTContext(); HI.AccessSpecifier = getAccessSpelling(D->getAccess()).str(); HI.NamespaceScope = getNamespaceScope(D); if (!HI.NamespaceScope->empty()) HI.NamespaceScope->append("::"); HI.LocalScope = getLocalScope(D); if (!HI.LocalScope.empty()) HI.LocalScope.append("::"); HI.Name = printName(Ctx, *D); const auto *CommentD = getDeclForComment(D); HI.Documentation = getDeclComment(Ctx, *CommentD); enhanceFromIndex(HI, *CommentD, Index); if (HI.Documentation.empty()) HI.Documentation = synthesizeDocumentation(D); HI.Kind = index::getSymbolInfo(D).Kind; // Fill in template params. if (const TemplateDecl *TD = D->getDescribedTemplate()) { HI.TemplateParameters = fetchTemplateParameters(TD->getTemplateParameters(), PP); D = TD; } else if (const FunctionDecl *FD = D->getAsFunction()) { if (const auto *FTD = FD->getDescribedTemplate()) { HI.TemplateParameters = fetchTemplateParameters(FTD->getTemplateParameters(), PP); D = FTD; } } // Fill in types and params. if (const FunctionDecl *FD = getUnderlyingFunction(D)) fillFunctionTypeAndParams(HI, D, FD, PP); else if (const auto *VD = dyn_cast(D)) HI.Type = printType(VD->getType(), PP); else if (const auto *TTP = dyn_cast(D)) HI.Type = TTP->wasDeclaredWithTypename() ? "typename" : "class"; else if (const auto *TTP = dyn_cast(D)) HI.Type = printType(TTP, PP); // Fill in value with evaluated initializer if possible. if (const auto *Var = dyn_cast(D)) { if (const Expr *Init = Var->getInit()) HI.Value = printExprValue(Init, Ctx); } else if (const auto *ECD = dyn_cast(D)) { // Dependent enums (e.g. nested in template classes) don't have values yet. if (!ECD->getType()->isDependentType()) HI.Value = toString(ECD->getInitVal(), 10); } HI.Definition = printDefinition(D, PP); return HI; } /// Generate a \p Hover object given the macro \p MacroDecl. HoverInfo getHoverContents(const DefinedMacro &Macro, ParsedAST &AST) { HoverInfo HI; SourceManager &SM = AST.getSourceManager(); HI.Name = std::string(Macro.Name); HI.Kind = index::SymbolKind::Macro; // FIXME: Populate documentation // FIXME: Populate parameters // Try to get the full definition, not just the name SourceLocation StartLoc = Macro.Info->getDefinitionLoc(); SourceLocation EndLoc = Macro.Info->getDefinitionEndLoc(); // Ensure that EndLoc is a valid offset. For example it might come from // preamble, and source file might've changed, in such a scenario EndLoc still // stays valid, but getLocForEndOfToken will fail as it is no longer a valid // offset. // Note that this check is just to ensure there's text data inside the range. // It will still succeed even when the data inside the range is irrelevant to // macro definition. if (SM.getPresumedLoc(EndLoc, /*UseLineDirectives=*/false).isValid()) { EndLoc = Lexer::getLocForEndOfToken(EndLoc, 0, SM, AST.getLangOpts()); bool Invalid; StringRef Buffer = SM.getBufferData(SM.getFileID(StartLoc), &Invalid); if (!Invalid) { unsigned StartOffset = SM.getFileOffset(StartLoc); unsigned EndOffset = SM.getFileOffset(EndLoc); if (EndOffset <= Buffer.size() && StartOffset < EndOffset) HI.Definition = ("#define " + Buffer.substr(StartOffset, EndOffset - StartOffset)) .str(); } } return HI; } llvm::Optional getThisExprHoverContents(const CXXThisExpr *CTE, ASTContext &ASTCtx, const PrintingPolicy &PP) { QualType OriginThisType = CTE->getType()->getPointeeType(); QualType ClassType = declaredType(OriginThisType->getAsTagDecl()); // For partial specialization class, origin `this` pointee type will be // parsed as `InjectedClassNameType`, which will ouput template arguments // like "type-parameter-0-0". So we retrieve user written class type in this // case. QualType PrettyThisType = ASTCtx.getPointerType( QualType(ClassType.getTypePtr(), OriginThisType.getCVRQualifiers())); HoverInfo HI; HI.Name = "this"; HI.Definition = printType(PrettyThisType, PP); return HI; } /// Generate a HoverInfo object given the deduced type \p QT HoverInfo getDeducedTypeHoverContents(QualType QT, const syntax::Token &Tok, ASTContext &ASTCtx, const PrintingPolicy &PP, const SymbolIndex *Index) { HoverInfo HI; // FIXME: distinguish decltype(auto) vs decltype(expr) HI.Name = tok::getTokenName(Tok.kind()); HI.Kind = index::SymbolKind::TypeAlias; if (QT->isUndeducedAutoType()) { HI.Definition = "/* not deduced */"; } else { HI.Definition = printType(QT, PP); if (const auto *D = QT->getAsTagDecl()) { const auto *CommentD = getDeclForComment(D); HI.Documentation = getDeclComment(ASTCtx, *CommentD); enhanceFromIndex(HI, *CommentD, Index); } } return HI; } bool isLiteral(const Expr *E) { // Unfortunately there's no common base Literal classes inherits from // (apart from Expr), therefore these exclusions. return llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E) || llvm::isa(E); } llvm::StringLiteral getNameForExpr(const Expr *E) { // FIXME: Come up with names for `special` expressions. // // It's an known issue for GCC5, https://godbolt.org/z/Z_tbgi. Work around // that by using explicit conversion constructor. // // TODO: Once GCC5 is fully retired and not the minimal requirement as stated // in `GettingStarted`, please remove the explicit conversion constructor. return llvm::StringLiteral("expression"); } // Generates hover info for `this` and evaluatable expressions. // FIXME: Support hover for literals (esp user-defined) llvm::Optional getHoverContents(const Expr *E, ParsedAST &AST, const PrintingPolicy &PP, const SymbolIndex *Index) { // There's not much value in hovering over "42" and getting a hover card // saying "42 is an int", similar for other literals. if (isLiteral(E)) return llvm::None; HoverInfo HI; // For `this` expr we currently generate hover with pointee type. if (const CXXThisExpr *CTE = dyn_cast(E)) return getThisExprHoverContents(CTE, AST.getASTContext(), PP); // For expressions we currently print the type and the value, iff it is // evaluatable. if (auto Val = printExprValue(E, AST.getASTContext())) { HI.Type = printType(E->getType(), PP); HI.Value = *Val; HI.Name = std::string(getNameForExpr(E)); return HI; } return llvm::None; } bool isParagraphBreak(llvm::StringRef Rest) { return Rest.ltrim(" \t").startswith("\n"); } bool punctuationIndicatesLineBreak(llvm::StringRef Line) { constexpr llvm::StringLiteral Punctuation = R"txt(.:,;!?)txt"; Line = Line.rtrim(); return !Line.empty() && Punctuation.contains(Line.back()); } bool isHardLineBreakIndicator(llvm::StringRef Rest) { // '-'/'*' md list, '@'/'\' documentation command, '>' md blockquote, // '#' headings, '`' code blocks constexpr llvm::StringLiteral LinebreakIndicators = R"txt(-*@\>#`)txt"; Rest = Rest.ltrim(" \t"); if (Rest.empty()) return false; if (LinebreakIndicators.contains(Rest.front())) return true; if (llvm::isDigit(Rest.front())) { llvm::StringRef AfterDigit = Rest.drop_while(llvm::isDigit); if (AfterDigit.startswith(".") || AfterDigit.startswith(")")) return true; } return false; } bool isHardLineBreakAfter(llvm::StringRef Line, llvm::StringRef Rest) { // Should we also consider whether Line is short? return punctuationIndicatesLineBreak(Line) || isHardLineBreakIndicator(Rest); } void addLayoutInfo(const NamedDecl &ND, HoverInfo &HI) { if (ND.isInvalidDecl()) return; const auto &Ctx = ND.getASTContext(); if (auto *RD = llvm::dyn_cast(&ND)) { if (auto Size = Ctx.getTypeSizeInCharsIfKnown(RD->getTypeForDecl())) HI.Size = Size->getQuantity(); return; } if (const auto *FD = llvm::dyn_cast(&ND)) { const auto *Record = FD->getParent(); if (Record) Record = Record->getDefinition(); if (Record && !Record->isInvalidDecl() && !Record->isDependentType() && !FD->isBitField()) { const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Record); HI.Offset = Layout.getFieldOffset(FD->getFieldIndex()) / 8; if (auto Size = Ctx.getTypeSizeInCharsIfKnown(FD->getType())) { HI.Size = FD->isZeroSize(Ctx) ? 0 : Size->getQuantity(); unsigned EndOfField = *HI.Offset + *HI.Size; // Calculate padding following the field. if (!Record->isUnion() && FD->getFieldIndex() + 1 < Layout.getFieldCount()) { // Measure padding up to the next class field. unsigned NextOffset = Layout.getFieldOffset(FD->getFieldIndex() + 1) / 8; if (NextOffset >= EndOfField) // next field could be a bitfield! HI.Padding = NextOffset - EndOfField; } else { // Measure padding up to the end of the object. HI.Padding = Layout.getSize().getQuantity() - EndOfField; } } // Offset in a union is always zero, so not really useful to report. if (Record->isUnion()) HI.Offset.reset(); } return; } } // If N is passed as argument to a function, fill HI.CalleeArgInfo with // information about that argument. void maybeAddCalleeArgInfo(const SelectionTree::Node *N, HoverInfo &HI, const PrintingPolicy &PP) { const auto &OuterNode = N->outerImplicit(); if (!OuterNode.Parent) return; const auto *CE = OuterNode.Parent->ASTNode.get(); if (!CE) return; const FunctionDecl *FD = CE->getDirectCallee(); // For non-function-call-like operatators (e.g. operator+, operator<<) it's // not immediattely obvious what the "passed as" would refer to and, given // fixed function signature, the value would be very low anyway, so we choose // to not support that. // Both variadic functions and operator() (especially relevant for lambdas) // should be supported in the future. if (!FD || FD->isOverloadedOperator() || FD->isVariadic()) return; // Find argument index for N. for (unsigned I = 0; I < CE->getNumArgs() && I < FD->getNumParams(); ++I) { if (CE->getArg(I) != OuterNode.ASTNode.get()) continue; // Extract matching argument from function declaration. if (const ParmVarDecl *PVD = FD->getParamDecl(I)) HI.CalleeArgInfo.emplace(toHoverInfoParam(PVD, PP)); break; } if (!HI.CalleeArgInfo) return; // If we found a matching argument, also figure out if it's a // [const-]reference. For this we need to walk up the AST from the arg itself // to CallExpr and check all implicit casts, constructor calls, etc. HoverInfo::PassType PassType; if (const auto *E = N->ASTNode.get()) { if (E->getType().isConstQualified()) PassType.PassBy = HoverInfo::PassType::ConstRef; } for (auto *CastNode = N->Parent; CastNode != OuterNode.Parent && !PassType.Converted; CastNode = CastNode->Parent) { if (const auto *ImplicitCast = CastNode->ASTNode.get()) { switch (ImplicitCast->getCastKind()) { case CK_NoOp: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: // If it was a reference before, it's still a reference. if (PassType.PassBy != HoverInfo::PassType::Value) PassType.PassBy = ImplicitCast->getType().isConstQualified() ? HoverInfo::PassType::ConstRef : HoverInfo::PassType::Ref; break; case CK_LValueToRValue: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToPointer: case CK_NullToMemberPointer: // No longer a reference, but we do not show this as type conversion. PassType.PassBy = HoverInfo::PassType::Value; break; default: PassType.PassBy = HoverInfo::PassType::Value; PassType.Converted = true; break; } } else if (const auto *CtorCall = CastNode->ASTNode.get()) { // We want to be smart about copy constructors. They should not show up as // type conversion, but instead as passing by value. if (CtorCall->getConstructor()->isCopyConstructor()) PassType.PassBy = HoverInfo::PassType::Value; else PassType.Converted = true; } else { // Unknown implicit node, assume type conversion. PassType.PassBy = HoverInfo::PassType::Value; PassType.Converted = true; } } HI.CallPassType.emplace(PassType); } } // namespace llvm::Optional getHover(ParsedAST &AST, Position Pos, format::FormatStyle Style, const SymbolIndex *Index) { PrintingPolicy PP = getPrintingPolicy(AST.getASTContext().getPrintingPolicy()); const SourceManager &SM = AST.getSourceManager(); auto CurLoc = sourceLocationInMainFile(SM, Pos); if (!CurLoc) { llvm::consumeError(CurLoc.takeError()); return llvm::None; } const auto &TB = AST.getTokens(); auto TokensTouchingCursor = syntax::spelledTokensTouching(*CurLoc, TB); // Early exit if there were no tokens around the cursor. if (TokensTouchingCursor.empty()) return llvm::None; // To be used as a backup for highlighting the selected token, we use back as // it aligns better with biases elsewhere (editors tend to send the position // for the left of the hovered token). CharSourceRange HighlightRange = TokensTouchingCursor.back().range(SM).toCharRange(SM); llvm::Optional HI; // Macros and deducedtype only works on identifiers and auto/decltype keywords // respectively. Therefore they are only trggered on whichever works for them, // similar to SelectionTree::create(). for (const auto &Tok : TokensTouchingCursor) { if (Tok.kind() == tok::identifier) { // Prefer the identifier token as a fallback highlighting range. HighlightRange = Tok.range(SM).toCharRange(SM); if (auto M = locateMacroAt(Tok, AST.getPreprocessor())) { HI = getHoverContents(*M, AST); break; } } else if (Tok.kind() == tok::kw_auto || Tok.kind() == tok::kw_decltype) { if (auto Deduced = getDeducedType(AST.getASTContext(), Tok.location())) { HI = getDeducedTypeHoverContents(*Deduced, Tok, AST.getASTContext(), PP, Index); HighlightRange = Tok.range(SM).toCharRange(SM); break; } // If we can't find interesting hover information for this // auto/decltype keyword, return nothing to avoid showing // irrelevant or incorrect informations. return llvm::None; } } // If it wasn't auto/decltype or macro, look for decls and expressions. if (!HI) { auto Offset = SM.getFileOffset(*CurLoc); // Editors send the position on the left of the hovered character. // So our selection tree should be biased right. (Tested with VSCode). SelectionTree ST = SelectionTree::createRight(AST.getASTContext(), TB, Offset, Offset); std::vector Result; if (const SelectionTree::Node *N = ST.commonAncestor()) { // FIXME: Fill in HighlightRange with range coming from N->ASTNode. auto Decls = explicitReferenceTargets(N->ASTNode, DeclRelation::Alias, AST.getHeuristicResolver()); if (!Decls.empty()) { HI = getHoverContents(Decls.front(), PP, Index); // Layout info only shown when hovering on the field/class itself. if (Decls.front() == N->ASTNode.get()) addLayoutInfo(*Decls.front(), *HI); // Look for a close enclosing expression to show the value of. if (!HI->Value) HI->Value = printExprValue(N, AST.getASTContext()); maybeAddCalleeArgInfo(N, *HI, PP); } else if (const Expr *E = N->ASTNode.get()) { HI = getHoverContents(E, AST, PP, Index); } // FIXME: support hovers for other nodes? // - built-in types } } if (!HI) return llvm::None; auto Replacements = format::reformat( Style, HI->Definition, tooling::Range(0, HI->Definition.size())); if (auto Formatted = tooling::applyAllReplacements(HI->Definition, Replacements)) HI->Definition = *Formatted; HI->SymRange = halfOpenToRange(SM, HighlightRange); return HI; } markup::Document HoverInfo::present() const { markup::Document Output; // Header contains a text of the form: // variable `var` // // class `X` // // function `foo` // // expression // // Note that we are making use of a level-3 heading because VSCode renders // level 1 and 2 headers in a huge font, see // https://github.com/microsoft/vscode/issues/88417 for details. markup::Paragraph &Header = Output.addHeading(3); if (Kind != index::SymbolKind::Unknown) Header.appendText(index::getSymbolKindString(Kind)).appendSpace(); assert(!Name.empty() && "hover triggered on a nameless symbol"); Header.appendCode(Name); // Put a linebreak after header to increase readability. Output.addRuler(); // Print Types on their own lines to reduce chances of getting line-wrapped by // editor, as they might be long. if (ReturnType) { // For functions we display signature in a list form, e.g.: // → `x` // Parameters: // - `bool param1` // - `int param2 = 5` Output.addParagraph().appendText("→ ").appendCode(*ReturnType); if (Parameters && !Parameters->empty()) { Output.addParagraph().appendText("Parameters: "); markup::BulletList &L = Output.addBulletList(); for (const auto &Param : *Parameters) { std::string Buffer; llvm::raw_string_ostream OS(Buffer); OS << Param; L.addItem().addParagraph().appendCode(std::move(OS.str())); } } } else if (Type) { Output.addParagraph().appendText("Type: ").appendCode(*Type); } if (Value) { markup::Paragraph &P = Output.addParagraph(); P.appendText("Value = "); P.appendCode(*Value); } if (Offset) Output.addParagraph().appendText( llvm::formatv("Offset: {0} byte{1}", *Offset, *Offset == 1 ? "" : "s") .str()); if (Size) { auto &P = Output.addParagraph().appendText( llvm::formatv("Size: {0} byte{1}", *Size, *Size == 1 ? "" : "s").str()); if (Padding && *Padding != 0) P.appendText(llvm::formatv(" (+{0} padding)", *Padding).str()); } if (CalleeArgInfo) { assert(CallPassType); std::string Buffer; llvm::raw_string_ostream OS(Buffer); OS << "Passed "; if (CallPassType->PassBy != HoverInfo::PassType::Value) { OS << "by "; if (CallPassType->PassBy == HoverInfo::PassType::ConstRef) OS << "const "; OS << "reference "; } if (CalleeArgInfo->Name) OS << "as " << CalleeArgInfo->Name; if (CallPassType->Converted && CalleeArgInfo->Type) OS << " (converted to " << CalleeArgInfo->Type << ")"; Output.addParagraph().appendText(OS.str()); } if (!Documentation.empty()) parseDocumentation(Documentation, Output); if (!Definition.empty()) { Output.addRuler(); std::string ScopeComment; // Drop trailing "::". if (!LocalScope.empty()) { // Container name, e.g. class, method, function. // We might want to propagate some info about container type to print // function foo, class X, method X::bar, etc. ScopeComment = "// In " + llvm::StringRef(LocalScope).rtrim(':').str() + '\n'; } else if (NamespaceScope && !NamespaceScope->empty()) { ScopeComment = "// In namespace " + llvm::StringRef(*NamespaceScope).rtrim(':').str() + '\n'; } std::string DefinitionWithAccess = !AccessSpecifier.empty() ? AccessSpecifier + ": " + Definition : Definition; // Note that we don't print anything for global namespace, to not annoy // non-c++ projects or projects that are not making use of namespaces. Output.addCodeBlock(ScopeComment + DefinitionWithAccess); } return Output; } // If the backtick at `Offset` starts a probable quoted range, return the range // (including the quotes). llvm::Optional getBacktickQuoteRange(llvm::StringRef Line, unsigned Offset) { assert(Line[Offset] == '`'); // The open-quote is usually preceded by whitespace. llvm::StringRef Prefix = Line.substr(0, Offset); constexpr llvm::StringLiteral BeforeStartChars = " \t(="; if (!Prefix.empty() && !BeforeStartChars.contains(Prefix.back())) return llvm::None; // The quoted string must be nonempty and usually has no leading/trailing ws. auto Next = Line.find('`', Offset + 1); if (Next == llvm::StringRef::npos) return llvm::None; llvm::StringRef Contents = Line.slice(Offset + 1, Next); if (Contents.empty() || isWhitespace(Contents.front()) || isWhitespace(Contents.back())) return llvm::None; // The close-quote is usually followed by whitespace or punctuation. llvm::StringRef Suffix = Line.substr(Next + 1); constexpr llvm::StringLiteral AfterEndChars = " \t)=.,;:"; if (!Suffix.empty() && !AfterEndChars.contains(Suffix.front())) return llvm::None; return Line.slice(Offset, Next + 1); } void parseDocumentationLine(llvm::StringRef Line, markup::Paragraph &Out) { // Probably this is appendText(Line), but scan for something interesting. for (unsigned I = 0; I < Line.size(); ++I) { switch (Line[I]) { case '`': if (auto Range = getBacktickQuoteRange(Line, I)) { Out.appendText(Line.substr(0, I)); Out.appendCode(Range->trim("`"), /*Preserve=*/true); return parseDocumentationLine(Line.substr(I + Range->size()), Out); } break; } } Out.appendText(Line).appendSpace(); } void parseDocumentation(llvm::StringRef Input, markup::Document &Output) { std::vector ParagraphLines; auto FlushParagraph = [&] { if (ParagraphLines.empty()) return; auto &P = Output.addParagraph(); for (llvm::StringRef Line : ParagraphLines) parseDocumentationLine(Line, P); ParagraphLines.clear(); }; llvm::StringRef Line, Rest; for (std::tie(Line, Rest) = Input.split('\n'); !(Line.empty() && Rest.empty()); std::tie(Line, Rest) = Rest.split('\n')) { // After a linebreak remove spaces to avoid 4 space markdown code blocks. // FIXME: make FlushParagraph handle this. Line = Line.ltrim(); if (!Line.empty()) ParagraphLines.push_back(Line); if (isParagraphBreak(Rest) || isHardLineBreakAfter(Line, Rest)) { FlushParagraph(); } } FlushParagraph(); } llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const HoverInfo::Param &P) { std::vector Output; if (P.Type) Output.push_back(*P.Type); if (P.Name) Output.push_back(*P.Name); OS << llvm::join(Output, " "); if (P.Default) OS << " = " << *P.Default; return OS; } } // namespace clangd } // namespace clang