//===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "bolt/Rewrite/RewriteInstance.h" #include "bolt/Core/AddressMap.h" #include "bolt/Core/BinaryContext.h" #include "bolt/Core/BinaryEmitter.h" #include "bolt/Core/BinaryFunction.h" #include "bolt/Core/DebugData.h" #include "bolt/Core/Exceptions.h" #include "bolt/Core/FunctionLayout.h" #include "bolt/Core/MCPlusBuilder.h" #include "bolt/Core/ParallelUtilities.h" #include "bolt/Core/Relocation.h" #include "bolt/Passes/BinaryPasses.h" #include "bolt/Passes/CacheMetrics.h" #include "bolt/Passes/ReorderFunctions.h" #include "bolt/Profile/BoltAddressTranslation.h" #include "bolt/Profile/DataAggregator.h" #include "bolt/Profile/DataReader.h" #include "bolt/Profile/YAMLProfileReader.h" #include "bolt/Profile/YAMLProfileWriter.h" #include "bolt/Rewrite/BinaryPassManager.h" #include "bolt/Rewrite/DWARFRewriter.h" #include "bolt/Rewrite/ExecutableFileMemoryManager.h" #include "bolt/Rewrite/JITLinkLinker.h" #include "bolt/Rewrite/MetadataRewriters.h" #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h" #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" #include "bolt/Utils/CommandLineOpts.h" #include "bolt/Utils/Utils.h" #include "llvm/ADT/AddressRanges.h" #include "llvm/ADT/STLExtras.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Timer.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #undef DEBUG_TYPE #define DEBUG_TYPE "bolt" using namespace llvm; using namespace object; using namespace bolt; extern cl::opt X86AlignBranchBoundary; extern cl::opt X86AlignBranchWithin32BBoundaries; namespace opts { extern cl::list HotTextMoveSections; extern cl::opt Hugify; extern cl::opt Instrument; extern cl::opt JumpTables; extern cl::opt KeepNops; extern cl::opt Lite; extern cl::list ReorderData; extern cl::opt ReorderFunctions; extern cl::opt TerminalTrap; extern cl::opt TimeBuild; extern cl::opt TimeRewrite; cl::opt AllowStripped("allow-stripped", cl::desc("allow processing of stripped binaries"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt ForceToDataRelocations( "force-data-relocations", cl::desc("force relocations to data sections to always be processed"), cl::Hidden, cl::cat(BoltCategory)); cl::opt BoltID("bolt-id", cl::desc("add any string to tag this execution in the " "output binary via bolt info section"), cl::cat(BoltCategory)); cl::opt DumpDotAll( "dump-dot-all", cl::desc("dump function CFGs to graphviz format after each stage;" "enable '-print-loops' for color-coded blocks"), cl::Hidden, cl::cat(BoltCategory)); static cl::list ForceFunctionNames("funcs", cl::CommaSeparated, cl::desc("limit optimizations to functions from the list"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt FunctionNamesFile("funcs-file", cl::desc("file with list of functions to optimize"), cl::Hidden, cl::cat(BoltCategory)); static cl::list ForceFunctionNamesNR( "funcs-no-regex", cl::CommaSeparated, cl::desc("limit optimizations to functions from the list (non-regex)"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt FunctionNamesFileNR( "funcs-file-no-regex", cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden, cl::cat(BoltCategory)); cl::opt KeepTmp("keep-tmp", cl::desc("preserve intermediate .o file"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt LiteThresholdPct("lite-threshold-pct", cl::desc("threshold (in percent) for selecting functions to process in lite " "mode. Higher threshold means fewer functions to process. E.g " "threshold of 90 means only top 10 percent of functions with " "profile will be processed."), cl::init(0), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt LiteThresholdCount( "lite-threshold-count", cl::desc("similar to '-lite-threshold-pct' but specify threshold using " "absolute function call count. I.e. limit processing to functions " "executed at least the specified number of times."), cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt MaxFunctions("max-funcs", cl::desc("maximum number of functions to process"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt MaxDataRelocations( "max-data-relocations", cl::desc("maximum number of data relocations to process"), cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintAll("print-all", cl::desc("print functions after each stage"), cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintProfile("print-profile", cl::desc("print functions after attaching profile"), cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintCFG("print-cfg", cl::desc("print functions after CFG construction"), cl::Hidden, cl::cat(BoltCategory)); cl::opt PrintDisasm("print-disasm", cl::desc("print function after disassembly"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt PrintGlobals("print-globals", cl::desc("print global symbols after disassembly"), cl::Hidden, cl::cat(BoltCategory)); extern cl::opt PrintSections; static cl::opt PrintLoopInfo("print-loops", cl::desc("print loop related information"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt RelocationMode( "relocs", cl::desc("use relocations in the binary (default=autodetect)"), cl::cat(BoltCategory)); extern cl::opt SaveProfile; static cl::list SkipFunctionNames("skip-funcs", cl::CommaSeparated, cl::desc("list of functions to skip"), cl::value_desc("func1,func2,func3,..."), cl::Hidden, cl::cat(BoltCategory)); static cl::opt SkipFunctionNamesFile("skip-funcs-file", cl::desc("file with list of functions to skip"), cl::Hidden, cl::cat(BoltCategory)); cl::opt TrapOldCode("trap-old-code", cl::desc("insert traps in old function bodies (relocation mode)"), cl::Hidden, cl::cat(BoltCategory)); static cl::opt DWPPathName("dwp", cl::desc("Path and name to DWP file."), cl::Hidden, cl::init(""), cl::cat(BoltCategory)); static cl::opt UseGnuStack("use-gnu-stack", cl::desc("use GNU_STACK program header for new segment (workaround for " "issues with strip/objcopy)"), cl::ZeroOrMore, cl::cat(BoltCategory)); static cl::opt SequentialDisassembly("sequential-disassembly", cl::desc("performs disassembly sequentially"), cl::init(false), cl::cat(BoltOptCategory)); static cl::opt WriteBoltInfoSection( "bolt-info", cl::desc("write bolt info section in the output binary"), cl::init(true), cl::Hidden, cl::cat(BoltOutputCategory)); } // namespace opts // FIXME: implement a better way to mark sections for replacement. constexpr const char *RewriteInstance::SectionsToOverwrite[]; std::vector RewriteInstance::DebugSectionsToOverwrite = { ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str", ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists", ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info", ".debug_types", ".pseudo_probe"}; const char RewriteInstance::TimerGroupName[] = "rewrite"; const char RewriteInstance::TimerGroupDesc[] = "Rewrite passes"; namespace llvm { namespace bolt { extern const char *BoltRevision; // Weird location for createMCPlusBuilder, but this is here to avoid a // cyclic dependency of libCore (its natural place) and libTarget. libRewrite // can depend on libTarget, but not libCore. Since libRewrite is the only // user of this function, we define it here. MCPlusBuilder *createMCPlusBuilder(const Triple::ArchType Arch, const MCInstrAnalysis *Analysis, const MCInstrInfo *Info, const MCRegisterInfo *RegInfo, const MCSubtargetInfo *STI) { #ifdef X86_AVAILABLE if (Arch == Triple::x86_64) return createX86MCPlusBuilder(Analysis, Info, RegInfo, STI); #endif #ifdef AARCH64_AVAILABLE if (Arch == Triple::aarch64) return createAArch64MCPlusBuilder(Analysis, Info, RegInfo, STI); #endif #ifdef RISCV_AVAILABLE if (Arch == Triple::riscv64) return createRISCVMCPlusBuilder(Analysis, Info, RegInfo, STI); #endif llvm_unreachable("architecture unsupported by MCPlusBuilder"); } } // namespace bolt } // namespace llvm using ELF64LEPhdrTy = ELF64LEFile::Elf_Phdr; namespace { bool refersToReorderedSection(ErrorOr Section) { return llvm::any_of(opts::ReorderData, [&](const std::string &SectionName) { return Section && Section->getName() == SectionName; }); } } // anonymous namespace Expected> RewriteInstance::create(ELFObjectFileBase *File, const int Argc, const char *const *Argv, StringRef ToolPath, raw_ostream &Stdout, raw_ostream &Stderr) { Error Err = Error::success(); auto RI = std::make_unique(File, Argc, Argv, ToolPath, Stdout, Stderr, Err); if (Err) return std::move(Err); return std::move(RI); } RewriteInstance::RewriteInstance(ELFObjectFileBase *File, const int Argc, const char *const *Argv, StringRef ToolPath, raw_ostream &Stdout, raw_ostream &Stderr, Error &Err) : InputFile(File), Argc(Argc), Argv(Argv), ToolPath(ToolPath), SHStrTab(StringTableBuilder::ELF) { ErrorAsOutParameter EAO(&Err); auto ELF64LEFile = dyn_cast(InputFile); if (!ELF64LEFile) { Err = createStringError(errc::not_supported, "Only 64-bit LE ELF binaries are supported"); return; } bool IsPIC = false; const ELFFile &Obj = ELF64LEFile->getELFFile(); if (Obj.getHeader().e_type != ELF::ET_EXEC) { Stdout << "BOLT-INFO: shared object or position-independent executable " "detected\n"; IsPIC = true; } // Make sure we don't miss any output on core dumps. Stdout.SetUnbuffered(); Stderr.SetUnbuffered(); LLVM_DEBUG(dbgs().SetUnbuffered()); // Read RISCV subtarget features from input file std::unique_ptr Features; Triple TheTriple = File->makeTriple(); if (TheTriple.getArch() == llvm::Triple::riscv64) { Expected FeaturesOrErr = File->getFeatures(); if (auto E = FeaturesOrErr.takeError()) { Err = std::move(E); return; } else { Features.reset(new SubtargetFeatures(*FeaturesOrErr)); } } Relocation::Arch = TheTriple.getArch(); auto BCOrErr = BinaryContext::createBinaryContext( TheTriple, File->getFileName(), Features.get(), IsPIC, DWARFContext::create(*File, DWARFContext::ProcessDebugRelocations::Ignore, nullptr, opts::DWPPathName, WithColor::defaultErrorHandler, WithColor::defaultWarningHandler), JournalingStreams{Stdout, Stderr}); if (Error E = BCOrErr.takeError()) { Err = std::move(E); return; } BC = std::move(BCOrErr.get()); BC->initializeTarget(std::unique_ptr( createMCPlusBuilder(BC->TheTriple->getArch(), BC->MIA.get(), BC->MII.get(), BC->MRI.get(), BC->STI.get()))); BAT = std::make_unique(); if (opts::UpdateDebugSections) DebugInfoRewriter = std::make_unique(*BC); if (opts::Instrument) BC->setRuntimeLibrary(std::make_unique()); else if (opts::Hugify) BC->setRuntimeLibrary(std::make_unique()); } RewriteInstance::~RewriteInstance() {} Error RewriteInstance::setProfile(StringRef Filename) { if (!sys::fs::exists(Filename)) return errorCodeToError(make_error_code(errc::no_such_file_or_directory)); if (ProfileReader) { // Already exists return make_error(Twine("multiple profiles specified: ") + ProfileReader->getFilename() + " and " + Filename, inconvertibleErrorCode()); } // Spawn a profile reader based on file contents. if (DataAggregator::checkPerfDataMagic(Filename)) ProfileReader = std::make_unique(Filename); else if (YAMLProfileReader::isYAML(Filename)) ProfileReader = std::make_unique(Filename); else ProfileReader = std::make_unique(Filename); return Error::success(); } /// Return true if the function \p BF should be disassembled. static bool shouldDisassemble(const BinaryFunction &BF) { if (BF.isPseudo()) return false; if (opts::processAllFunctions()) return true; return !BF.isIgnored(); } // Return if a section stored in the image falls into a segment address space. // If not, Set \p Overlap to true if there's a partial overlap. template static bool checkOffsets(const typename ELFT::Phdr &Phdr, const typename ELFT::Shdr &Sec, bool &Overlap) { // SHT_NOBITS sections don't need to have an offset inside the segment. if (Sec.sh_type == ELF::SHT_NOBITS) return true; // Only non-empty sections can be at the end of a segment. uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; AddressRange SectionAddressRange((uint64_t)Sec.sh_offset, Sec.sh_offset + SectionSize); AddressRange SegmentAddressRange(Phdr.p_offset, Phdr.p_offset + Phdr.p_filesz); if (SegmentAddressRange.contains(SectionAddressRange)) return true; Overlap = SegmentAddressRange.intersects(SectionAddressRange); return false; } // Check that an allocatable section belongs to a virtual address // space of a segment. template static bool checkVMA(const typename ELFT::Phdr &Phdr, const typename ELFT::Shdr &Sec, bool &Overlap) { // Only non-empty sections can be at the end of a segment. uint64_t SectionSize = Sec.sh_size ? Sec.sh_size : 1ull; AddressRange SectionAddressRange((uint64_t)Sec.sh_addr, Sec.sh_addr + SectionSize); AddressRange SegmentAddressRange(Phdr.p_vaddr, Phdr.p_vaddr + Phdr.p_memsz); if (SegmentAddressRange.contains(SectionAddressRange)) return true; Overlap = SegmentAddressRange.intersects(SectionAddressRange); return false; } void RewriteInstance::markGnuRelroSections() { using ELFT = ELF64LE; using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; auto ELF64LEFile = cast(InputFile); const ELFFile &Obj = ELF64LEFile->getELFFile(); auto handleSection = [&](const ELFT::Phdr &Phdr, SectionRef SecRef) { BinarySection *BinarySection = BC->getSectionForSectionRef(SecRef); // If the section is non-allocatable, ignore it for GNU_RELRO purposes: // it can't be made read-only after runtime relocations processing. if (!BinarySection || !BinarySection->isAllocatable()) return; const ELFShdrTy *Sec = cantFail(Obj.getSection(SecRef.getIndex())); bool ImageOverlap{false}, VMAOverlap{false}; bool ImageContains = checkOffsets(Phdr, *Sec, ImageOverlap); bool VMAContains = checkVMA(Phdr, *Sec, VMAOverlap); if (ImageOverlap) { if (opts::Verbosity >= 1) BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset " << "overlap with section " << BinarySection->getName() << '\n'; return; } if (VMAOverlap) { if (opts::Verbosity >= 1) BC->errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap " << "with section " << BinarySection->getName() << '\n'; return; } if (!ImageContains || !VMAContains) return; BinarySection->setRelro(); if (opts::Verbosity >= 1) BC->outs() << "BOLT-INFO: marking " << BinarySection->getName() << " as GNU_RELRO\n"; }; for (const ELFT::Phdr &Phdr : cantFail(Obj.program_headers())) if (Phdr.p_type == ELF::PT_GNU_RELRO) for (SectionRef SecRef : InputFile->sections()) handleSection(Phdr, SecRef); } Error RewriteInstance::discoverStorage() { NamedRegionTimer T("discoverStorage", "discover storage", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); auto ELF64LEFile = cast(InputFile); const ELFFile &Obj = ELF64LEFile->getELFFile(); BC->StartFunctionAddress = Obj.getHeader().e_entry; NextAvailableAddress = 0; uint64_t NextAvailableOffset = 0; Expected PHsOrErr = Obj.program_headers(); if (Error E = PHsOrErr.takeError()) return E; ELF64LE::PhdrRange PHs = PHsOrErr.get(); for (const ELF64LE::Phdr &Phdr : PHs) { switch (Phdr.p_type) { case ELF::PT_LOAD: BC->FirstAllocAddress = std::min(BC->FirstAllocAddress, static_cast(Phdr.p_vaddr)); NextAvailableAddress = std::max(NextAvailableAddress, Phdr.p_vaddr + Phdr.p_memsz); NextAvailableOffset = std::max(NextAvailableOffset, Phdr.p_offset + Phdr.p_filesz); BC->SegmentMapInfo[Phdr.p_vaddr] = SegmentInfo{ Phdr.p_vaddr, Phdr.p_memsz, Phdr.p_offset, Phdr.p_filesz, Phdr.p_align, ((Phdr.p_flags & ELF::PF_X) != 0)}; if (BC->TheTriple->getArch() == llvm::Triple::x86_64 && Phdr.p_vaddr >= BinaryContext::KernelStartX86_64) BC->IsLinuxKernel = true; break; case ELF::PT_INTERP: BC->HasInterpHeader = true; break; } } if (BC->IsLinuxKernel) BC->outs() << "BOLT-INFO: Linux kernel binary detected\n"; for (const SectionRef &Section : InputFile->sections()) { Expected SectionNameOrErr = Section.getName(); if (Error E = SectionNameOrErr.takeError()) return E; StringRef SectionName = SectionNameOrErr.get(); if (SectionName == BC->getMainCodeSectionName()) { BC->OldTextSectionAddress = Section.getAddress(); BC->OldTextSectionSize = Section.getSize(); Expected SectionContentsOrErr = Section.getContents(); if (Error E = SectionContentsOrErr.takeError()) return E; StringRef SectionContents = SectionContentsOrErr.get(); BC->OldTextSectionOffset = SectionContents.data() - InputFile->getData().data(); } if (!opts::HeatmapMode && !(opts::AggregateOnly && BAT->enabledFor(InputFile)) && (SectionName.starts_with(getOrgSecPrefix()) || SectionName == getBOLTTextSectionName())) return createStringError( errc::function_not_supported, "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize"); } if (!NextAvailableAddress || !NextAvailableOffset) return createStringError(errc::executable_format_error, "no PT_LOAD pheader seen"); BC->outs() << "BOLT-INFO: first alloc address is 0x" << Twine::utohexstr(BC->FirstAllocAddress) << '\n'; FirstNonAllocatableOffset = NextAvailableOffset; NextAvailableAddress = alignTo(NextAvailableAddress, BC->PageAlign); NextAvailableOffset = alignTo(NextAvailableOffset, BC->PageAlign); // Hugify: Additional huge page from left side due to // weird ASLR mapping addresses (4KB aligned) if (opts::Hugify && !BC->HasFixedLoadAddress) NextAvailableAddress += BC->PageAlign; if (!opts::UseGnuStack && !BC->IsLinuxKernel) { // This is where the black magic happens. Creating PHDR table in a segment // other than that containing ELF header is tricky. Some loaders and/or // parts of loaders will apply e_phoff from ELF header assuming both are in // the same segment, while others will do the proper calculation. // We create the new PHDR table in such a way that both of the methods // of loading and locating the table work. There's a slight file size // overhead because of that. // // NB: bfd's strip command cannot do the above and will corrupt the // binary during the process of stripping non-allocatable sections. if (NextAvailableOffset <= NextAvailableAddress - BC->FirstAllocAddress) NextAvailableOffset = NextAvailableAddress - BC->FirstAllocAddress; else NextAvailableAddress = NextAvailableOffset + BC->FirstAllocAddress; assert(NextAvailableOffset == NextAvailableAddress - BC->FirstAllocAddress && "PHDR table address calculation error"); BC->outs() << "BOLT-INFO: creating new program header table at address 0x" << Twine::utohexstr(NextAvailableAddress) << ", offset 0x" << Twine::utohexstr(NextAvailableOffset) << '\n'; PHDRTableAddress = NextAvailableAddress; PHDRTableOffset = NextAvailableOffset; // Reserve space for 3 extra pheaders. unsigned Phnum = Obj.getHeader().e_phnum; Phnum += 3; NextAvailableAddress += Phnum * sizeof(ELF64LEPhdrTy); NextAvailableOffset += Phnum * sizeof(ELF64LEPhdrTy); } // Align at cache line. NextAvailableAddress = alignTo(NextAvailableAddress, 64); NextAvailableOffset = alignTo(NextAvailableOffset, 64); NewTextSegmentAddress = NextAvailableAddress; NewTextSegmentOffset = NextAvailableOffset; BC->LayoutStartAddress = NextAvailableAddress; // Tools such as objcopy can strip section contents but leave header // entries. Check that at least .text is mapped in the file. if (!getFileOffsetForAddress(BC->OldTextSectionAddress)) return createStringError(errc::executable_format_error, "BOLT-ERROR: input binary is not a valid ELF " "executable as its text section is not " "mapped to a valid segment"); return Error::success(); } Error RewriteInstance::run() { assert(BC && "failed to create a binary context"); BC->outs() << "BOLT-INFO: Target architecture: " << Triple::getArchTypeName( (llvm::Triple::ArchType)InputFile->getArch()) << "\n"; BC->outs() << "BOLT-INFO: BOLT version: " << BoltRevision << "\n"; if (Error E = discoverStorage()) return E; if (Error E = readSpecialSections()) return E; adjustCommandLineOptions(); discoverFileObjects(); if (opts::Instrument && !BC->IsStaticExecutable) if (Error E = discoverRtFiniAddress()) return E; preprocessProfileData(); // Skip disassembling if we have a translation table and we are running an // aggregation job. if (opts::AggregateOnly && BAT->enabledFor(InputFile)) { // YAML profile in BAT mode requires CFG for .bolt.org.text functions if (!opts::SaveProfile.empty() || opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML) { selectFunctionsToProcess(); disassembleFunctions(); processMetadataPreCFG(); buildFunctionsCFG(); } processProfileData(); return Error::success(); } selectFunctionsToProcess(); readDebugInfo(); disassembleFunctions(); processMetadataPreCFG(); buildFunctionsCFG(); processProfileData(); // Save input binary metadata if BAT section needs to be emitted if (opts::EnableBAT) BAT->saveMetadata(*BC); postProcessFunctions(); processMetadataPostCFG(); if (opts::DiffOnly) return Error::success(); preregisterSections(); runOptimizationPasses(); finalizeMetadataPreEmit(); emitAndLink(); updateMetadata(); if (opts::Instrument && !BC->IsStaticExecutable) updateRtFiniReloc(); if (opts::OutputFilename == "/dev/null") { BC->outs() << "BOLT-INFO: skipping writing final binary to disk\n"; return Error::success(); } else if (BC->IsLinuxKernel) { BC->errs() << "BOLT-WARNING: Linux kernel support is experimental\n"; } // Rewrite allocatable contents and copy non-allocatable parts with mods. rewriteFile(); return Error::success(); } void RewriteInstance::discoverFileObjects() { NamedRegionTimer T("discoverFileObjects", "discover file objects", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); // For local symbols we want to keep track of associated FILE symbol name for // disambiguation by combined name. StringRef FileSymbolName; bool SeenFileName = false; struct SymbolRefHash { size_t operator()(SymbolRef const &S) const { return std::hash{}(S.getRawDataRefImpl().p); } }; std::unordered_map SymbolToFileName; for (const ELFSymbolRef &Symbol : InputFile->symbols()) { Expected NameOrError = Symbol.getName(); if (NameOrError && NameOrError->starts_with("__asan_init")) { BC->errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer " "support. Cannot optimize.\n"; exit(1); } if (NameOrError && NameOrError->starts_with("__llvm_coverage_mapping")) { BC->errs() << "BOLT-ERROR: input file was compiled or linked with coverage " "support. Cannot optimize.\n"; exit(1); } if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Undefined) continue; if (cantFail(Symbol.getType()) == SymbolRef::ST_File) { FileSymbols.emplace_back(Symbol); StringRef Name = cantFail(std::move(NameOrError), "cannot get symbol name for file"); // Ignore Clang LTO artificial FILE symbol as it is not always generated, // and this uncertainty is causing havoc in function name matching. if (Name == "ld-temp.o") continue; FileSymbolName = Name; SeenFileName = true; continue; } if (!FileSymbolName.empty() && !(cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)) SymbolToFileName[Symbol] = FileSymbolName; } // Sort symbols in the file by value. Ignore symbols from non-allocatable // sections. We memoize getAddress(), as it has rather high overhead. struct SymbolInfo { uint64_t Address; SymbolRef Symbol; }; std::vector SortedSymbols; auto isSymbolInMemory = [this](const SymbolRef &Sym) { if (cantFail(Sym.getType()) == SymbolRef::ST_File) return false; if (cantFail(Sym.getFlags()) & SymbolRef::SF_Absolute) return true; if (cantFail(Sym.getFlags()) & SymbolRef::SF_Undefined) return false; BinarySection Section(*BC, *cantFail(Sym.getSection())); return Section.isAllocatable(); }; for (const SymbolRef &Symbol : InputFile->symbols()) if (isSymbolInMemory(Symbol)) SortedSymbols.push_back({cantFail(Symbol.getAddress()), Symbol}); auto CompareSymbols = [this](const SymbolInfo &A, const SymbolInfo &B) { if (A.Address != B.Address) return A.Address < B.Address; const bool AMarker = BC->isMarker(A.Symbol); const bool BMarker = BC->isMarker(B.Symbol); if (AMarker || BMarker) { return AMarker && !BMarker; } const auto AType = cantFail(A.Symbol.getType()); const auto BType = cantFail(B.Symbol.getType()); if (AType == SymbolRef::ST_Function && BType != SymbolRef::ST_Function) return true; if (BType == SymbolRef::ST_Debug && AType != SymbolRef::ST_Debug) return true; return false; }; llvm::stable_sort(SortedSymbols, CompareSymbols); auto LastSymbol = SortedSymbols.end(); if (!SortedSymbols.empty()) --LastSymbol; // For aarch64, the ABI defines mapping symbols so we identify data in the // code section (see IHI0056B). $d identifies data contents. // Compilers usually merge multiple data objects in a single $d-$x interval, // but we need every data object to be marked with $d. Because of that we // create a vector of MarkerSyms with all locations of data objects. struct MarkerSym { uint64_t Address; MarkerSymType Type; }; std::vector SortedMarkerSymbols; auto addExtraDataMarkerPerSymbol = [&]() { bool IsData = false; uint64_t LastAddr = 0; for (const auto &SymInfo : SortedSymbols) { if (LastAddr == SymInfo.Address) // don't repeat markers continue; MarkerSymType MarkerType = BC->getMarkerType(SymInfo.Symbol); if (MarkerType != MarkerSymType::NONE) { SortedMarkerSymbols.push_back(MarkerSym{SymInfo.Address, MarkerType}); LastAddr = SymInfo.Address; IsData = MarkerType == MarkerSymType::DATA; continue; } if (IsData) { SortedMarkerSymbols.push_back({SymInfo.Address, MarkerSymType::DATA}); LastAddr = SymInfo.Address; } } }; if (BC->isAArch64() || BC->isRISCV()) { addExtraDataMarkerPerSymbol(); LastSymbol = std::stable_partition( SortedSymbols.begin(), SortedSymbols.end(), [this](const SymbolInfo &S) { return !BC->isMarker(S.Symbol); }); if (!SortedSymbols.empty()) --LastSymbol; } BinaryFunction *PreviousFunction = nullptr; unsigned AnonymousId = 0; const auto SortedSymbolsEnd = LastSymbol == SortedSymbols.end() ? LastSymbol : std::next(LastSymbol); for (auto Iter = SortedSymbols.begin(); Iter != SortedSymbolsEnd; ++Iter) { const SymbolRef &Symbol = Iter->Symbol; const uint64_t SymbolAddress = Iter->Address; const auto SymbolFlags = cantFail(Symbol.getFlags()); const SymbolRef::Type SymbolType = cantFail(Symbol.getType()); if (SymbolType == SymbolRef::ST_File) continue; StringRef SymName = cantFail(Symbol.getName(), "cannot get symbol name"); if (SymbolAddress == 0) { if (opts::Verbosity >= 1 && SymbolType == SymbolRef::ST_Function) BC->errs() << "BOLT-WARNING: function with 0 address seen\n"; continue; } // Ignore input hot markers if (SymName == "__hot_start" || SymName == "__hot_end") continue; FileSymRefs.emplace(SymbolAddress, Symbol); // Skip section symbols that will be registered by disassemblePLT(). if (SymbolType == SymbolRef::ST_Debug) { ErrorOr BSection = BC->getSectionForAddress(SymbolAddress); if (BSection && getPLTSectionInfo(BSection->getName())) continue; } /// It is possible we are seeing a globalized local. LLVM might treat it as /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to /// change the prefix to enforce global scope of the symbol. std::string Name = SymName.starts_with(BC->AsmInfo->getPrivateGlobalPrefix()) ? "PG" + std::string(SymName) : std::string(SymName); // Disambiguate all local symbols before adding to symbol table. // Since we don't know if we will see a global with the same name, // always modify the local name. // // NOTE: the naming convention for local symbols should match // the one we use for profile data. std::string UniqueName; std::string AlternativeName; if (Name.empty()) { UniqueName = "ANONYMOUS." + std::to_string(AnonymousId++); } else if (SymbolFlags & SymbolRef::SF_Global) { if (const BinaryData *BD = BC->getBinaryDataByName(Name)) { if (BD->getSize() == ELFSymbolRef(Symbol).getSize() && BD->getAddress() == SymbolAddress) { if (opts::Verbosity > 1) BC->errs() << "BOLT-WARNING: ignoring duplicate global symbol " << Name << "\n"; // Ignore duplicate entry - possibly a bug in the linker continue; } BC->errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name << "\" is not unique\n"; exit(1); } UniqueName = Name; } else { // If we have a local file name, we should create 2 variants for the // function name. The reason is that perf profile might have been // collected on a binary that did not have the local file name (e.g. as // a side effect of stripping debug info from the binary): // // primary: / // alternative: // // // The field is used for disambiguation of local symbols since there // could be identical function names coming from identical file names // (e.g. from different directories). std::string AltPrefix; auto SFI = SymbolToFileName.find(Symbol); if (SymbolType == SymbolRef::ST_Function && SFI != SymbolToFileName.end()) AltPrefix = Name + "/" + std::string(SFI->second); UniqueName = NR.uniquify(Name); if (!AltPrefix.empty()) AlternativeName = NR.uniquify(AltPrefix); } uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); uint64_t SymbolAlignment = Symbol.getAlignment(); auto registerName = [&](uint64_t FinalSize) { // Register names even if it's not a function, e.g. for an entry point. BC->registerNameAtAddress(UniqueName, SymbolAddress, FinalSize, SymbolAlignment, SymbolFlags); if (!AlternativeName.empty()) BC->registerNameAtAddress(AlternativeName, SymbolAddress, FinalSize, SymbolAlignment, SymbolFlags); }; section_iterator Section = cantFail(Symbol.getSection(), "cannot get symbol section"); if (Section == InputFile->section_end()) { // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we // need to record it to handle relocations against it. For other instances // of absolute symbols, we record for pretty printing. LLVM_DEBUG(if (opts::Verbosity > 1) { dbgs() << "BOLT-INFO: absolute sym " << UniqueName << "\n"; }); registerName(SymbolSize); continue; } if (SymName == getBOLTReservedStart() || SymName == getBOLTReservedEnd()) { registerName(SymbolSize); continue; } LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName << " for function\n"); if (SymbolAddress == Section->getAddress() + Section->getSize()) { assert(SymbolSize == 0 && "unexpect non-zero sized symbol at end of section"); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: rejecting as symbol points to end of its section\n"); registerName(SymbolSize); continue; } if (!Section->isText()) { assert(SymbolType != SymbolRef::ST_Function && "unexpected function inside non-code section"); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n"); registerName(SymbolSize); continue; } // Assembly functions could be ST_NONE with 0 size. Check that the // corresponding section is a code section and they are not inside any // other known function to consider them. // // Sometimes assembly functions are not marked as functions and neither are // their local labels. The only way to tell them apart is to look at // symbol scope - global vs local. if (PreviousFunction && SymbolType != SymbolRef::ST_Function) { if (PreviousFunction->containsAddress(SymbolAddress)) { if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); } else if (SymbolAddress == PreviousFunction->getAddress() && !SymbolSize) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n"); } else if (opts::Verbosity > 1) { BC->errs() << "BOLT-WARNING: symbol " << UniqueName << " seen in the middle of function " << *PreviousFunction << ". Could be a new entry.\n"; } registerName(SymbolSize); continue; } else if (PreviousFunction->getSize() == 0 && PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n"); registerName(SymbolSize); continue; } } if (PreviousFunction && PreviousFunction->containsAddress(SymbolAddress) && PreviousFunction->getAddress() != SymbolAddress) { if (PreviousFunction->isSymbolValidInScope(Symbol, SymbolSize)) { if (opts::Verbosity >= 1) BC->outs() << "BOLT-INFO: skipping possibly another entry for function " << *PreviousFunction << " : " << UniqueName << '\n'; registerName(SymbolSize); } else { BC->outs() << "BOLT-INFO: using " << UniqueName << " as another entry to " << "function " << *PreviousFunction << '\n'; registerName(0); PreviousFunction->addEntryPointAtOffset(SymbolAddress - PreviousFunction->getAddress()); // Remove the symbol from FileSymRefs so that we can skip it from // in the future. auto SI = llvm::find_if( llvm::make_range(FileSymRefs.equal_range(SymbolAddress)), [&](auto SymIt) { return SymIt.second == Symbol; }); assert(SI != FileSymRefs.end() && "symbol expected to be present"); assert(SI->second == Symbol && "wrong symbol found"); FileSymRefs.erase(SI); } continue; } // Checkout for conflicts with function data from FDEs. bool IsSimple = true; auto FDEI = CFIRdWrt->getFDEs().lower_bound(SymbolAddress); if (FDEI != CFIRdWrt->getFDEs().end()) { const dwarf::FDE &FDE = *FDEI->second; if (FDEI->first != SymbolAddress) { // There's no matching starting address in FDE. Make sure the previous // FDE does not contain this address. if (FDEI != CFIRdWrt->getFDEs().begin()) { --FDEI; const dwarf::FDE &PrevFDE = *FDEI->second; uint64_t PrevStart = PrevFDE.getInitialLocation(); uint64_t PrevLength = PrevFDE.getAddressRange(); if (SymbolAddress > PrevStart && SymbolAddress < PrevStart + PrevLength) { BC->errs() << "BOLT-ERROR: function " << UniqueName << " is in conflict with FDE [" << Twine::utohexstr(PrevStart) << ", " << Twine::utohexstr(PrevStart + PrevLength) << "). Skipping.\n"; IsSimple = false; } } } else if (FDE.getAddressRange() != SymbolSize) { if (SymbolSize) { // Function addresses match but sizes differ. BC->errs() << "BOLT-WARNING: sizes differ for function " << UniqueName << ". FDE : " << FDE.getAddressRange() << "; symbol table : " << SymbolSize << ". Using max size.\n"; } SymbolSize = std::max(SymbolSize, FDE.getAddressRange()); if (BC->getBinaryDataAtAddress(SymbolAddress)) { BC->setBinaryDataSize(SymbolAddress, SymbolSize); } else { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x" << Twine::utohexstr(SymbolAddress) << "\n"); } } } BinaryFunction *BF = nullptr; // Since function may not have yet obtained its real size, do a search // using the list of registered functions instead of calling // getBinaryFunctionAtAddress(). auto BFI = BC->getBinaryFunctions().find(SymbolAddress); if (BFI != BC->getBinaryFunctions().end()) { BF = &BFI->second; // Duplicate the function name. Make sure everything matches before we add // an alternative name. if (SymbolSize != BF->getSize()) { if (opts::Verbosity >= 1) { if (SymbolSize && BF->getSize()) BC->errs() << "BOLT-WARNING: size mismatch for duplicate entries " << *BF << " and " << UniqueName << '\n'; BC->outs() << "BOLT-INFO: adjusting size of function " << *BF << " old " << BF->getSize() << " new " << SymbolSize << "\n"; } BF->setSize(std::max(SymbolSize, BF->getSize())); BC->setBinaryDataSize(SymbolAddress, BF->getSize()); } BF->addAlternativeName(UniqueName); } else { ErrorOr Section = BC->getSectionForAddress(SymbolAddress); // Skip symbols from invalid sections if (!Section) { BC->errs() << "BOLT-WARNING: " << UniqueName << " (0x" << Twine::utohexstr(SymbolAddress) << ") does not have any section\n"; continue; } // Skip symbols from zero-sized sections. if (!Section->getSize()) continue; BF = BC->createBinaryFunction(UniqueName, *Section, SymbolAddress, SymbolSize); if (!IsSimple) BF->setSimple(false); } // Check if it's a cold function fragment. if (FunctionFragmentTemplate.match(SymName)) { static bool PrintedWarning = false; if (!PrintedWarning) { PrintedWarning = true; BC->errs() << "BOLT-WARNING: split function detected on input : " << SymName; if (BC->HasRelocations) BC->errs() << ". The support is limited in relocation mode\n"; else BC->errs() << '\n'; } BC->HasSplitFunctions = true; BF->IsFragment = true; } if (!AlternativeName.empty()) BF->addAlternativeName(AlternativeName); registerName(SymbolSize); PreviousFunction = BF; } // Read dynamic relocation first as their presence affects the way we process // static relocations. E.g. we will ignore a static relocation at an address // that is a subject to dynamic relocation processing. processDynamicRelocations(); // Process PLT section. disassemblePLT(); // See if we missed any functions marked by FDE. for (const auto &FDEI : CFIRdWrt->getFDEs()) { const uint64_t Address = FDEI.first; const dwarf::FDE *FDE = FDEI.second; const BinaryFunction *BF = BC->getBinaryFunctionAtAddress(Address); if (BF) continue; BF = BC->getBinaryFunctionContainingAddress(Address); if (BF) { BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) << ") conflicts with function " << *BF << '\n'; continue; } if (opts::Verbosity >= 1) BC->errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address) << ", 0x" << Twine::utohexstr(Address + FDE->getAddressRange()) << ") has no corresponding symbol table entry\n"; ErrorOr Section = BC->getSectionForAddress(Address); assert(Section && "cannot get section for address from FDE"); std::string FunctionName = "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address).str(); BC->createBinaryFunction(FunctionName, *Section, Address, FDE->getAddressRange()); } BC->setHasSymbolsWithFileName(SeenFileName); // Now that all the functions were created - adjust their boundaries. adjustFunctionBoundaries(); // Annotate functions with code/data markers in AArch64 for (auto ISym = SortedMarkerSymbols.begin(); ISym != SortedMarkerSymbols.end(); ++ISym) { auto *BF = BC->getBinaryFunctionContainingAddress(ISym->Address, true, true); if (!BF) { // Stray marker continue; } const auto EntryOffset = ISym->Address - BF->getAddress(); if (ISym->Type == MarkerSymType::CODE) { BF->markCodeAtOffset(EntryOffset); continue; } if (ISym->Type == MarkerSymType::DATA) { BF->markDataAtOffset(EntryOffset); BC->AddressToConstantIslandMap[ISym->Address] = BF; continue; } llvm_unreachable("Unknown marker"); } if (BC->isAArch64()) { // Check for dynamic relocations that might be contained in // constant islands. for (const BinarySection &Section : BC->allocatableSections()) { const uint64_t SectionAddress = Section.getAddress(); for (const Relocation &Rel : Section.dynamicRelocations()) { const uint64_t RelAddress = SectionAddress + Rel.Offset; BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(RelAddress, /*CheckPastEnd*/ false, /*UseMaxSize*/ true); if (BF) { assert(Rel.isRelative() && "Expected relative relocation for island"); BC->logBOLTErrorsAndQuitOnFatal( BF->markIslandDynamicRelocationAtAddress(RelAddress)); } } } } if (!BC->IsLinuxKernel) { // Read all relocations now that we have binary functions mapped. processRelocations(); } registerFragments(); FileSymbols.clear(); FileSymRefs.clear(); discoverBOLTReserved(); } void RewriteInstance::discoverBOLTReserved() { BinaryData *StartBD = BC->getBinaryDataByName(getBOLTReservedStart()); BinaryData *EndBD = BC->getBinaryDataByName(getBOLTReservedEnd()); if (!StartBD != !EndBD) { BC->errs() << "BOLT-ERROR: one of the symbols is missing from the binary: " << getBOLTReservedStart() << ", " << getBOLTReservedEnd() << '\n'; exit(1); } if (!StartBD) return; if (StartBD->getAddress() >= EndBD->getAddress()) { BC->errs() << "BOLT-ERROR: invalid reserved space boundaries\n"; exit(1); } BC->BOLTReserved = AddressRange(StartBD->getAddress(), EndBD->getAddress()); BC->outs() << "BOLT-INFO: using reserved space for allocating new sections\n"; PHDRTableOffset = 0; PHDRTableAddress = 0; NewTextSegmentAddress = 0; NewTextSegmentOffset = 0; NextAvailableAddress = BC->BOLTReserved.start(); } Error RewriteInstance::discoverRtFiniAddress() { // Use DT_FINI if it's available. if (BC->FiniAddress) { BC->FiniFunctionAddress = BC->FiniAddress; return Error::success(); } if (!BC->FiniArrayAddress || !BC->FiniArraySize) { return createStringError( std::errc::not_supported, "Instrumentation needs either DT_FINI or DT_FINI_ARRAY"); } if (*BC->FiniArraySize < BC->AsmInfo->getCodePointerSize()) { return createStringError(std::errc::not_supported, "Need at least 1 DT_FINI_ARRAY slot"); } ErrorOr FiniArraySection = BC->getSectionForAddress(*BC->FiniArrayAddress); if (auto EC = FiniArraySection.getError()) return errorCodeToError(EC); if (const Relocation *Reloc = FiniArraySection->getDynamicRelocationAt(0)) { BC->FiniFunctionAddress = Reloc->Addend; return Error::success(); } if (const Relocation *Reloc = FiniArraySection->getRelocationAt(0)) { BC->FiniFunctionAddress = Reloc->Value; return Error::success(); } return createStringError(std::errc::not_supported, "No relocation for first DT_FINI_ARRAY slot"); } void RewriteInstance::updateRtFiniReloc() { // Updating DT_FINI is handled by patchELFDynamic. if (BC->FiniAddress) return; const RuntimeLibrary *RT = BC->getRuntimeLibrary(); if (!RT || !RT->getRuntimeFiniAddress()) return; assert(BC->FiniArrayAddress && BC->FiniArraySize && "inconsistent .fini_array state"); ErrorOr FiniArraySection = BC->getSectionForAddress(*BC->FiniArrayAddress); assert(FiniArraySection && ".fini_array removed"); if (std::optional Reloc = FiniArraySection->takeDynamicRelocationAt(0)) { assert(Reloc->Addend == BC->FiniFunctionAddress && "inconsistent .fini_array dynamic relocation"); Reloc->Addend = RT->getRuntimeFiniAddress(); FiniArraySection->addDynamicRelocation(*Reloc); } // Update the static relocation by adding a pending relocation which will get // patched when flushPendingRelocations is called in rewriteFile. Note that // flushPendingRelocations will calculate the value to patch as // "Symbol + Addend". Since we don't have a symbol, just set the addend to the // desired value. FiniArraySection->addPendingRelocation(Relocation{ /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(), /*Addend*/ RT->getRuntimeFiniAddress(), /*Value*/ 0}); } void RewriteInstance::registerFragments() { if (!BC->HasSplitFunctions) return; // Process fragments with ambiguous parents separately as they are typically a // vanishing minority of cases and require expensive symbol table lookups. std::vector> AmbiguousFragments; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!Function.isFragment()) continue; for (StringRef Name : Function.getNames()) { StringRef BaseName = NR.restore(Name); const bool IsGlobal = BaseName == Name; SmallVector Matches; if (!FunctionFragmentTemplate.match(BaseName, &Matches)) continue; StringRef ParentName = Matches[1]; const BinaryData *BD = BC->getBinaryDataByName(ParentName); const uint64_t NumPossibleLocalParents = NR.getUniquifiedNameCount(ParentName); // The most common case: single local parent fragment. if (!BD && NumPossibleLocalParents == 1) { BD = BC->getBinaryDataByName(NR.getUniqueName(ParentName, 1)); } else if (BD && (!NumPossibleLocalParents || IsGlobal)) { // Global parent and either no local candidates (second most common), or // the fragment is global as well (uncommon). } else { // Any other case: need to disambiguate using FILE symbols. AmbiguousFragments.emplace_back(ParentName, &Function); continue; } if (BD) { BinaryFunction *BF = BC->getFunctionForSymbol(BD->getSymbol()); if (BF) { BC->registerFragment(Function, *BF); continue; } } BC->errs() << "BOLT-ERROR: parent function not found for " << Function << '\n'; exit(1); } } if (AmbiguousFragments.empty()) return; if (!BC->hasSymbolsWithFileName()) { BC->errs() << "BOLT-ERROR: input file has split functions but does not " "have FILE symbols. If the binary was stripped, preserve " "FILE symbols with --keep-file-symbols strip option\n"; exit(1); } // The first global symbol is identified by the symbol table sh_info value. // Used as local symbol search stopping point. auto *ELF64LEFile = cast(InputFile); const ELFFile &Obj = ELF64LEFile->getELFFile(); auto *SymTab = llvm::find_if(cantFail(Obj.sections()), [](const auto &Sec) { return Sec.sh_type == ELF::SHT_SYMTAB; }); assert(SymTab); // Symtab sh_info contains the value one greater than the symbol table index // of the last local symbol. ELFSymbolRef LocalSymEnd = ELF64LEFile->toSymbolRef(SymTab, SymTab->sh_info); for (auto &Fragment : AmbiguousFragments) { const StringRef &ParentName = Fragment.first; BinaryFunction *BF = Fragment.second; const uint64_t Address = BF->getAddress(); // Get fragment's own symbol const auto SymIt = llvm::find_if( llvm::make_range(FileSymRefs.equal_range(Address)), [&](auto SI) { StringRef Name = cantFail(SI.second.getName()); return Name.contains(ParentName); }); if (SymIt == FileSymRefs.end()) { BC->errs() << "BOLT-ERROR: symbol lookup failed for function at address 0x" << Twine::utohexstr(Address) << '\n'; exit(1); } // Find containing FILE symbol ELFSymbolRef Symbol = SymIt->second; auto FSI = llvm::upper_bound(FileSymbols, Symbol); if (FSI == FileSymbols.begin()) { BC->errs() << "BOLT-ERROR: owning FILE symbol not found for symbol " << cantFail(Symbol.getName()) << '\n'; exit(1); } ELFSymbolRef StopSymbol = LocalSymEnd; if (FSI != FileSymbols.end()) StopSymbol = *FSI; uint64_t ParentAddress{0}; // BOLT split fragment symbols are emitted just before the main function // symbol. for (ELFSymbolRef NextSymbol = Symbol; NextSymbol < StopSymbol; NextSymbol.moveNext()) { StringRef Name = cantFail(NextSymbol.getName()); if (Name == ParentName) { ParentAddress = cantFail(NextSymbol.getValue()); goto registerParent; } if (Name.starts_with(ParentName)) // With multi-way splitting, there are multiple fragments with different // suffixes. Parent follows the last fragment. continue; break; } // Iterate over local file symbols and check symbol names to match parent. for (ELFSymbolRef Symbol(FSI[-1]); Symbol < StopSymbol; Symbol.moveNext()) { if (cantFail(Symbol.getName()) == ParentName) { ParentAddress = cantFail(Symbol.getAddress()); break; } } registerParent: // No local parent is found, use global parent function. if (!ParentAddress) if (BinaryData *ParentBD = BC->getBinaryDataByName(ParentName)) ParentAddress = ParentBD->getAddress(); if (BinaryFunction *ParentBF = BC->getBinaryFunctionAtAddress(ParentAddress)) { BC->registerFragment(*BF, *ParentBF); continue; } BC->errs() << "BOLT-ERROR: parent function not found for " << *BF << '\n'; exit(1); } } void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress, uint64_t EntryAddress, uint64_t EntrySize) { if (!TargetAddress) return; auto setPLTSymbol = [&](BinaryFunction *BF, StringRef Name) { const unsigned PtrSize = BC->AsmInfo->getCodePointerSize(); MCSymbol *TargetSymbol = BC->registerNameAtAddress( Name.str() + "@GOT", TargetAddress, PtrSize, PtrSize); BF->setPLTSymbol(TargetSymbol); }; BinaryFunction *BF = BC->getBinaryFunctionAtAddress(EntryAddress); if (BF && BC->isAArch64()) { // Handle IFUNC trampoline with symbol setPLTSymbol(BF, BF->getOneName()); return; } const Relocation *Rel = BC->getDynamicRelocationAt(TargetAddress); if (!Rel) return; MCSymbol *Symbol = Rel->Symbol; if (!Symbol) { if (BC->isRISCV() || !Rel->Addend || !Rel->isIRelative()) return; // IFUNC trampoline without symbol BinaryFunction *TargetBF = BC->getBinaryFunctionAtAddress(Rel->Addend); if (!TargetBF) { BC->errs() << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at " << Twine::utohexstr(Rel->Addend) << ", skipping\n"; return; } Symbol = TargetBF->getSymbol(); } ErrorOr Section = BC->getSectionForAddress(EntryAddress); assert(Section && "cannot get section for address"); if (!BF) BF = BC->createBinaryFunction(Symbol->getName().str() + "@PLT", *Section, EntryAddress, 0, EntrySize, Section->getAlignment()); else BF->addAlternativeName(Symbol->getName().str() + "@PLT"); setPLTSymbol(BF, Symbol->getName()); } void RewriteInstance::disassemblePLTInstruction(const BinarySection &Section, uint64_t InstrOffset, MCInst &Instruction, uint64_t &InstrSize) { const uint64_t SectionAddress = Section.getAddress(); const uint64_t SectionSize = Section.getSize(); StringRef PLTContents = Section.getContents(); ArrayRef PLTData( reinterpret_cast(PLTContents.data()), SectionSize); const uint64_t InstrAddr = SectionAddress + InstrOffset; if (!BC->DisAsm->getInstruction(Instruction, InstrSize, PLTData.slice(InstrOffset), InstrAddr, nulls())) { BC->errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " << Section.getName() << formatv(" at offset {0:x}\n", InstrOffset); exit(1); } } void RewriteInstance::disassemblePLTSectionAArch64(BinarySection &Section) { const uint64_t SectionAddress = Section.getAddress(); const uint64_t SectionSize = Section.getSize(); uint64_t InstrOffset = 0; // Locate new plt entry while (InstrOffset < SectionSize) { InstructionListType Instructions; MCInst Instruction; uint64_t EntryOffset = InstrOffset; uint64_t EntrySize = 0; uint64_t InstrSize; // Loop through entry instructions while (InstrOffset < SectionSize) { disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); EntrySize += InstrSize; if (!BC->MIB->isIndirectBranch(Instruction)) { Instructions.emplace_back(Instruction); InstrOffset += InstrSize; continue; } const uint64_t EntryAddress = SectionAddress + EntryOffset; const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( Instruction, Instructions.begin(), Instructions.end(), EntryAddress); createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); break; } // Branch instruction InstrOffset += InstrSize; // Skip nops if any while (InstrOffset < SectionSize) { disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); if (!BC->MIB->isNoop(Instruction)) break; InstrOffset += InstrSize; } } } void RewriteInstance::disassemblePLTSectionRISCV(BinarySection &Section) { const uint64_t SectionAddress = Section.getAddress(); const uint64_t SectionSize = Section.getSize(); StringRef PLTContents = Section.getContents(); ArrayRef PLTData( reinterpret_cast(PLTContents.data()), SectionSize); auto disassembleInstruction = [&](uint64_t InstrOffset, MCInst &Instruction, uint64_t &InstrSize) { const uint64_t InstrAddr = SectionAddress + InstrOffset; if (!BC->DisAsm->getInstruction(Instruction, InstrSize, PLTData.slice(InstrOffset), InstrAddr, nulls())) { BC->errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section " << Section.getName() << " at offset 0x" << Twine::utohexstr(InstrOffset) << '\n'; exit(1); } }; // Skip the first special entry since no relocation points to it. uint64_t InstrOffset = 32; while (InstrOffset < SectionSize) { InstructionListType Instructions; MCInst Instruction; const uint64_t EntryOffset = InstrOffset; const uint64_t EntrySize = 16; uint64_t InstrSize; while (InstrOffset < EntryOffset + EntrySize) { disassembleInstruction(InstrOffset, Instruction, InstrSize); Instructions.emplace_back(Instruction); InstrOffset += InstrSize; } const uint64_t EntryAddress = SectionAddress + EntryOffset; const uint64_t TargetAddress = BC->MIB->analyzePLTEntry( Instruction, Instructions.begin(), Instructions.end(), EntryAddress); createPLTBinaryFunction(TargetAddress, EntryAddress, EntrySize); } } void RewriteInstance::disassemblePLTSectionX86(BinarySection &Section, uint64_t EntrySize) { const uint64_t SectionAddress = Section.getAddress(); const uint64_t SectionSize = Section.getSize(); for (uint64_t EntryOffset = 0; EntryOffset + EntrySize <= SectionSize; EntryOffset += EntrySize) { MCInst Instruction; uint64_t InstrSize, InstrOffset = EntryOffset; while (InstrOffset < EntryOffset + EntrySize) { disassemblePLTInstruction(Section, InstrOffset, Instruction, InstrSize); // Check if the entry size needs adjustment. if (EntryOffset == 0 && BC->MIB->isTerminateBranch(Instruction) && EntrySize == 8) EntrySize = 16; if (BC->MIB->isIndirectBranch(Instruction)) break; InstrOffset += InstrSize; } if (InstrOffset + InstrSize > EntryOffset + EntrySize) continue; uint64_t TargetAddress; if (!BC->MIB->evaluateMemOperandTarget(Instruction, TargetAddress, SectionAddress + InstrOffset, InstrSize)) { BC->errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x" << Twine::utohexstr(SectionAddress + InstrOffset) << '\n'; exit(1); } createPLTBinaryFunction(TargetAddress, SectionAddress + EntryOffset, EntrySize); } } void RewriteInstance::disassemblePLT() { auto analyzeOnePLTSection = [&](BinarySection &Section, uint64_t EntrySize) { if (BC->isAArch64()) return disassemblePLTSectionAArch64(Section); if (BC->isRISCV()) return disassemblePLTSectionRISCV(Section); if (BC->isX86()) return disassemblePLTSectionX86(Section, EntrySize); llvm_unreachable("Unmplemented PLT"); }; for (BinarySection &Section : BC->allocatableSections()) { const PLTSectionInfo *PLTSI = getPLTSectionInfo(Section.getName()); if (!PLTSI) continue; analyzeOnePLTSection(Section, PLTSI->EntrySize); BinaryFunction *PltBF; auto BFIter = BC->getBinaryFunctions().find(Section.getAddress()); if (BFIter != BC->getBinaryFunctions().end()) { PltBF = &BFIter->second; } else { // If we did not register any function at the start of the section, // then it must be a general PLT entry. Add a function at the location. PltBF = BC->createBinaryFunction( "__BOLT_PSEUDO_" + Section.getName().str(), Section, Section.getAddress(), 0, PLTSI->EntrySize, Section.getAlignment()); } PltBF->setPseudo(true); } } void RewriteInstance::adjustFunctionBoundaries() { for (auto BFI = BC->getBinaryFunctions().begin(), BFE = BC->getBinaryFunctions().end(); BFI != BFE; ++BFI) { BinaryFunction &Function = BFI->second; const BinaryFunction *NextFunction = nullptr; if (std::next(BFI) != BFE) NextFunction = &std::next(BFI)->second; // Check if there's a symbol or a function with a larger address in the // same section. If there is - it determines the maximum size for the // current function. Otherwise, it is the size of a containing section // the defines it. // // NOTE: ignore some symbols that could be tolerated inside the body // of a function. auto NextSymRefI = FileSymRefs.upper_bound(Function.getAddress()); while (NextSymRefI != FileSymRefs.end()) { SymbolRef &Symbol = NextSymRefI->second; const uint64_t SymbolAddress = NextSymRefI->first; const uint64_t SymbolSize = ELFSymbolRef(Symbol).getSize(); if (NextFunction && SymbolAddress >= NextFunction->getAddress()) break; if (!Function.isSymbolValidInScope(Symbol, SymbolSize)) break; // Skip basic block labels. This happens on RISC-V with linker relaxation // enabled because every branch needs a relocation and corresponding // symbol. We don't want to add such symbols as entry points. const auto PrivateLabelPrefix = BC->AsmInfo->getPrivateLabelPrefix(); if (!PrivateLabelPrefix.empty() && cantFail(Symbol.getName()).starts_with(PrivateLabelPrefix)) { ++NextSymRefI; continue; } // This is potentially another entry point into the function. uint64_t EntryOffset = NextSymRefI->first - Function.getAddress(); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function " << Function << " at offset 0x" << Twine::utohexstr(EntryOffset) << '\n'); Function.addEntryPointAtOffset(EntryOffset); ++NextSymRefI; } // Function runs at most till the end of the containing section. uint64_t NextObjectAddress = Function.getOriginSection()->getEndAddress(); // Or till the next object marked by a symbol. if (NextSymRefI != FileSymRefs.end()) NextObjectAddress = std::min(NextSymRefI->first, NextObjectAddress); // Or till the next function not marked by a symbol. if (NextFunction) NextObjectAddress = std::min(NextFunction->getAddress(), NextObjectAddress); const uint64_t MaxSize = NextObjectAddress - Function.getAddress(); if (MaxSize < Function.getSize()) { BC->errs() << "BOLT-ERROR: symbol seen in the middle of the function " << Function << ". Skipping.\n"; Function.setSimple(false); Function.setMaxSize(Function.getSize()); continue; } Function.setMaxSize(MaxSize); if (!Function.getSize() && Function.isSimple()) { // Some assembly functions have their size set to 0, use the max // size as their real size. if (opts::Verbosity >= 1) BC->outs() << "BOLT-INFO: setting size of function " << Function << " to " << Function.getMaxSize() << " (was 0)\n"; Function.setSize(Function.getMaxSize()); } } } void RewriteInstance::relocateEHFrameSection() { assert(EHFrameSection && "Non-empty .eh_frame section expected."); BinarySection *RelocatedEHFrameSection = getSection(".relocated" + getEHFrameSectionName()); assert(RelocatedEHFrameSection && "Relocated eh_frame section should be preregistered."); DWARFDataExtractor DE(EHFrameSection->getContents(), BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize()); auto createReloc = [&](uint64_t Value, uint64_t Offset, uint64_t DwarfType) { if (DwarfType == dwarf::DW_EH_PE_omit) return; // Only fix references that are relative to other locations. if (!(DwarfType & dwarf::DW_EH_PE_pcrel) && !(DwarfType & dwarf::DW_EH_PE_textrel) && !(DwarfType & dwarf::DW_EH_PE_funcrel) && !(DwarfType & dwarf::DW_EH_PE_datarel)) return; if (!(DwarfType & dwarf::DW_EH_PE_sdata4)) return; uint64_t RelType; switch (DwarfType & 0x0f) { default: llvm_unreachable("unsupported DWARF encoding type"); case dwarf::DW_EH_PE_sdata4: case dwarf::DW_EH_PE_udata4: RelType = Relocation::getPC32(); Offset -= 4; break; case dwarf::DW_EH_PE_sdata8: case dwarf::DW_EH_PE_udata8: RelType = Relocation::getPC64(); Offset -= 8; break; } // Create a relocation against an absolute value since the goal is to // preserve the contents of the section independent of the new values // of referenced symbols. RelocatedEHFrameSection->addRelocation(Offset, nullptr, RelType, Value); }; Error E = EHFrameParser::parse(DE, EHFrameSection->getAddress(), createReloc); check_error(std::move(E), "failed to patch EH frame"); } Error RewriteInstance::readSpecialSections() { NamedRegionTimer T("readSpecialSections", "read special sections", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); bool HasTextRelocations = false; bool HasSymbolTable = false; bool HasDebugInfo = false; // Process special sections. for (const SectionRef &Section : InputFile->sections()) { Expected SectionNameOrErr = Section.getName(); check_error(SectionNameOrErr.takeError(), "cannot get section name"); StringRef SectionName = *SectionNameOrErr; if (Error E = Section.getContents().takeError()) return E; BC->registerSection(Section); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: registering section " << SectionName << " @ 0x" << Twine::utohexstr(Section.getAddress()) << ":0x" << Twine::utohexstr(Section.getAddress() + Section.getSize()) << "\n"); if (isDebugSection(SectionName)) HasDebugInfo = true; } // Set IsRelro section attribute based on PT_GNU_RELRO segment. markGnuRelroSections(); if (HasDebugInfo && !opts::UpdateDebugSections && !opts::AggregateOnly) { BC->errs() << "BOLT-WARNING: debug info will be stripped from the binary. " "Use -update-debug-sections to keep it.\n"; } HasTextRelocations = (bool)BC->getUniqueSectionByName( ".rela" + std::string(BC->getMainCodeSectionName())); HasSymbolTable = (bool)BC->getUniqueSectionByName(".symtab"); EHFrameSection = BC->getUniqueSectionByName(".eh_frame"); if (ErrorOr BATSec = BC->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME)) { BC->HasBATSection = true; // Do not read BAT when plotting a heatmap if (!opts::HeatmapMode) { if (std::error_code EC = BAT->parse(BC->outs(), BATSec->getContents())) { BC->errs() << "BOLT-ERROR: failed to parse BOLT address translation " "table.\n"; exit(1); } } } if (opts::PrintSections) { BC->outs() << "BOLT-INFO: Sections from original binary:\n"; BC->printSections(BC->outs()); } if (opts::RelocationMode == cl::BOU_TRUE && !HasTextRelocations) { BC->errs() << "BOLT-ERROR: relocations against code are missing from the input " "file. Cannot proceed in relocations mode (-relocs).\n"; exit(1); } BC->HasRelocations = HasTextRelocations && (opts::RelocationMode != cl::BOU_FALSE); if (BC->IsLinuxKernel && BC->HasRelocations) { BC->outs() << "BOLT-INFO: disabling relocation mode for Linux kernel\n"; BC->HasRelocations = false; } BC->IsStripped = !HasSymbolTable; if (BC->IsStripped && !opts::AllowStripped) { BC->errs() << "BOLT-ERROR: stripped binaries are not supported. If you know " "what you're doing, use --allow-stripped to proceed"; exit(1); } // Force non-relocation mode for heatmap generation if (opts::HeatmapMode) BC->HasRelocations = false; if (BC->HasRelocations) BC->outs() << "BOLT-INFO: enabling " << (opts::StrictMode ? "strict " : "") << "relocation mode\n"; // Read EH frame for function boundaries info. Expected EHFrameOrError = BC->DwCtx->getEHFrame(); if (!EHFrameOrError) report_error("expected valid eh_frame section", EHFrameOrError.takeError()); CFIRdWrt.reset(new CFIReaderWriter(*BC, *EHFrameOrError.get())); processSectionMetadata(); // Read .dynamic/PT_DYNAMIC. return readELFDynamic(); } void RewriteInstance::adjustCommandLineOptions() { if (BC->isAArch64() && !BC->HasRelocations) BC->errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully " "supported\n"; if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) RtLibrary->adjustCommandLineOptions(*BC); if (BC->isX86() && BC->MAB->allowAutoPadding()) { if (!BC->HasRelocations) { BC->errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in " "non-relocation mode\n"; exit(1); } BC->outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout " "may take several minutes\n"; } if (opts::SplitEH && !BC->HasRelocations) { BC->errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n"; opts::SplitEH = false; } if (opts::StrictMode && !BC->HasRelocations) { BC->errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation " "mode\n"; opts::StrictMode = false; } if (BC->HasRelocations && opts::AggregateOnly && !opts::StrictMode.getNumOccurrences()) { BC->outs() << "BOLT-INFO: enabling strict relocation mode for aggregation " "purposes\n"; opts::StrictMode = true; } if (!BC->HasRelocations && opts::ReorderFunctions != ReorderFunctions::RT_NONE) { BC->errs() << "BOLT-ERROR: function reordering only works when " << "relocations are enabled\n"; exit(1); } if (opts::Instrument || (opts::ReorderFunctions != ReorderFunctions::RT_NONE && !opts::HotText.getNumOccurrences())) { opts::HotText = true; } else if (opts::HotText && !BC->HasRelocations) { BC->errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n"; opts::HotText = false; } if (opts::HotText && opts::HotTextMoveSections.getNumOccurrences() == 0) { opts::HotTextMoveSections.addValue(".stub"); opts::HotTextMoveSections.addValue(".mover"); opts::HotTextMoveSections.addValue(".never_hugify"); } if (opts::UseOldText && !BC->OldTextSectionAddress) { BC->errs() << "BOLT-WARNING: cannot use old .text as the section was not found" "\n"; opts::UseOldText = false; } if (opts::UseOldText && !BC->HasRelocations) { BC->errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n"; opts::UseOldText = false; } if (!opts::AlignText.getNumOccurrences()) opts::AlignText = BC->PageAlign; if (opts::AlignText < opts::AlignFunctions) opts::AlignText = (unsigned)opts::AlignFunctions; if (BC->isX86() && opts::Lite.getNumOccurrences() == 0 && !opts::StrictMode && !opts::UseOldText) opts::Lite = true; if (opts::Lite && opts::UseOldText) { BC->errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. " "Disabling -use-old-text.\n"; opts::UseOldText = false; } if (opts::Lite && opts::StrictMode) { BC->errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n"; exit(1); } if (opts::Lite) BC->outs() << "BOLT-INFO: enabling lite mode\n"; if (BC->IsLinuxKernel) { if (!opts::KeepNops.getNumOccurrences()) opts::KeepNops = true; // Linux kernel may resume execution after a trap instruction in some cases. if (!opts::TerminalTrap.getNumOccurrences()) opts::TerminalTrap = false; } } namespace { template int64_t getRelocationAddend(const ELFObjectFile *Obj, const RelocationRef &RelRef) { using ELFShdrTy = typename ELFT::Shdr; using Elf_Rela = typename ELFT::Rela; int64_t Addend = 0; const ELFFile &EF = Obj->getELFFile(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); switch (RelocationSection->sh_type) { default: llvm_unreachable("unexpected relocation section type"); case ELF::SHT_REL: break; case ELF::SHT_RELA: { const Elf_Rela *RelA = Obj->getRela(Rel); Addend = RelA->r_addend; break; } } return Addend; } int64_t getRelocationAddend(const ELFObjectFileBase *Obj, const RelocationRef &Rel) { return getRelocationAddend(cast(Obj), Rel); } template uint32_t getRelocationSymbol(const ELFObjectFile *Obj, const RelocationRef &RelRef) { using ELFShdrTy = typename ELFT::Shdr; uint32_t Symbol = 0; const ELFFile &EF = Obj->getELFFile(); DataRefImpl Rel = RelRef.getRawDataRefImpl(); const ELFShdrTy *RelocationSection = cantFail(EF.getSection(Rel.d.a)); switch (RelocationSection->sh_type) { default: llvm_unreachable("unexpected relocation section type"); case ELF::SHT_REL: Symbol = Obj->getRel(Rel)->getSymbol(EF.isMips64EL()); break; case ELF::SHT_RELA: Symbol = Obj->getRela(Rel)->getSymbol(EF.isMips64EL()); break; } return Symbol; } uint32_t getRelocationSymbol(const ELFObjectFileBase *Obj, const RelocationRef &Rel) { return getRelocationSymbol(cast(Obj), Rel); } } // anonymous namespace bool RewriteInstance::analyzeRelocation( const RelocationRef &Rel, uint64_t &RType, std::string &SymbolName, bool &IsSectionRelocation, uint64_t &SymbolAddress, int64_t &Addend, uint64_t &ExtractedValue, bool &Skip) const { Skip = false; if (!Relocation::isSupported(RType)) return false; auto IsWeakReference = [](const SymbolRef &Symbol) { Expected SymFlagsOrErr = Symbol.getFlags(); if (!SymFlagsOrErr) return false; return (*SymFlagsOrErr & SymbolRef::SF_Undefined) && (*SymFlagsOrErr & SymbolRef::SF_Weak); }; const bool IsAArch64 = BC->isAArch64(); const size_t RelSize = Relocation::getSizeForType(RType); ErrorOr Value = BC->getUnsignedValueAtAddress(Rel.getOffset(), RelSize); assert(Value && "failed to extract relocated value"); if ((Skip = Relocation::skipRelocationProcess(RType, *Value))) return true; ExtractedValue = Relocation::extractValue(RType, *Value, Rel.getOffset()); Addend = getRelocationAddend(InputFile, Rel); const bool IsPCRelative = Relocation::isPCRelative(RType); const uint64_t PCRelOffset = IsPCRelative && !IsAArch64 ? Rel.getOffset() : 0; bool SkipVerification = false; auto SymbolIter = Rel.getSymbol(); if (SymbolIter == InputFile->symbol_end()) { SymbolAddress = ExtractedValue - Addend + PCRelOffset; MCSymbol *RelSymbol = BC->getOrCreateGlobalSymbol(SymbolAddress, "RELSYMat"); SymbolName = std::string(RelSymbol->getName()); IsSectionRelocation = false; } else { const SymbolRef &Symbol = *SymbolIter; SymbolName = std::string(cantFail(Symbol.getName())); SymbolAddress = cantFail(Symbol.getAddress()); SkipVerification = (cantFail(Symbol.getType()) == SymbolRef::ST_Other); // Section symbols are marked as ST_Debug. IsSectionRelocation = (cantFail(Symbol.getType()) == SymbolRef::ST_Debug); // Check for PLT entry registered with symbol name if (!SymbolAddress && !IsWeakReference(Symbol) && (IsAArch64 || BC->isRISCV())) { const BinaryData *BD = BC->getPLTBinaryDataByName(SymbolName); SymbolAddress = BD ? BD->getAddress() : 0; } } // For PIE or dynamic libs, the linker may choose not to put the relocation // result at the address if it is a X86_64_64 one because it will emit a // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to // resolve it at run time. The static relocation result goes as the addend // of the dynamic relocation in this case. We can't verify these cases. // FIXME: perhaps we can try to find if it really emitted a corresponding // RELATIVE relocation at this offset with the correct value as the addend. if (!BC->HasFixedLoadAddress && RelSize == 8) SkipVerification = true; if (IsSectionRelocation && !IsAArch64) { ErrorOr Section = BC->getSectionForAddress(SymbolAddress); assert(Section && "section expected for section relocation"); SymbolName = "section " + std::string(Section->getName()); // Convert section symbol relocations to regular relocations inside // non-section symbols. if (Section->containsAddress(ExtractedValue) && !IsPCRelative) { SymbolAddress = ExtractedValue; Addend = 0; } else { Addend = ExtractedValue - (SymbolAddress - PCRelOffset); } } // If no symbol has been found or if it is a relocation requiring the // creation of a GOT entry, do not link against the symbol but against // whatever address was extracted from the instruction itself. We are // not creating a GOT entry as this was already processed by the linker. // For GOT relocs, do not subtract addend as the addend does not refer // to this instruction's target, but it refers to the target in the GOT // entry. if (Relocation::isGOT(RType)) { Addend = 0; SymbolAddress = ExtractedValue + PCRelOffset; } else if (Relocation::isTLS(RType)) { SkipVerification = true; } else if (!SymbolAddress) { assert(!IsSectionRelocation); if (ExtractedValue || Addend == 0 || IsPCRelative) { SymbolAddress = truncateToSize(ExtractedValue - Addend + PCRelOffset, RelSize); } else { // This is weird case. The extracted value is zero but the addend is // non-zero and the relocation is not pc-rel. Using the previous logic, // the SymbolAddress would end up as a huge number. Seen in // exceptions_pic.test. LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x" << Twine::utohexstr(Rel.getOffset()) << " value does not match addend for " << "relocation to undefined symbol.\n"); return true; } } auto verifyExtractedValue = [&]() { if (SkipVerification) return true; if (IsAArch64 || BC->isRISCV()) return true; if (SymbolName == "__hot_start" || SymbolName == "__hot_end") return true; if (RType == ELF::R_X86_64_PLT32) return true; return truncateToSize(ExtractedValue, RelSize) == truncateToSize(SymbolAddress + Addend - PCRelOffset, RelSize); }; (void)verifyExtractedValue; assert(verifyExtractedValue() && "mismatched extracted relocation value"); return true; } void RewriteInstance::processDynamicRelocations() { // Read .relr.dyn section containing compressed R_*_RELATIVE relocations. if (DynamicRelrSize > 0) { ErrorOr DynamicRelrSectionOrErr = BC->getSectionForAddress(*DynamicRelrAddress); if (!DynamicRelrSectionOrErr) report_error("unable to find section corresponding to DT_RELR", DynamicRelrSectionOrErr.getError()); if (DynamicRelrSectionOrErr->getSize() != DynamicRelrSize) report_error("section size mismatch for DT_RELRSZ", errc::executable_format_error); readDynamicRelrRelocations(*DynamicRelrSectionOrErr); } // Read relocations for PLT - DT_JMPREL. if (PLTRelocationsSize > 0) { ErrorOr PLTRelSectionOrErr = BC->getSectionForAddress(*PLTRelocationsAddress); if (!PLTRelSectionOrErr) report_error("unable to find section corresponding to DT_JMPREL", PLTRelSectionOrErr.getError()); if (PLTRelSectionOrErr->getSize() != PLTRelocationsSize) report_error("section size mismatch for DT_PLTRELSZ", errc::executable_format_error); readDynamicRelocations(PLTRelSectionOrErr->getSectionRef(), /*IsJmpRel*/ true); } // The rest of dynamic relocations - DT_RELA. // The static executable might have .rela.dyn secion and not have PT_DYNAMIC if (!DynamicRelocationsSize && BC->IsStaticExecutable) { ErrorOr DynamicRelSectionOrErr = BC->getUniqueSectionByName(getRelaDynSectionName()); if (DynamicRelSectionOrErr) { DynamicRelocationsAddress = DynamicRelSectionOrErr->getAddress(); DynamicRelocationsSize = DynamicRelSectionOrErr->getSize(); const SectionRef &SectionRef = DynamicRelSectionOrErr->getSectionRef(); DynamicRelativeRelocationsCount = std::distance( SectionRef.relocation_begin(), SectionRef.relocation_end()); } } if (DynamicRelocationsSize > 0) { ErrorOr DynamicRelSectionOrErr = BC->getSectionForAddress(*DynamicRelocationsAddress); if (!DynamicRelSectionOrErr) report_error("unable to find section corresponding to DT_RELA", DynamicRelSectionOrErr.getError()); auto DynamicRelSectionSize = DynamicRelSectionOrErr->getSize(); // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt if (DynamicRelocationsSize == DynamicRelSectionSize + PLTRelocationsSize) DynamicRelocationsSize = DynamicRelSectionSize; if (DynamicRelSectionSize != DynamicRelocationsSize) report_error("section size mismatch for DT_RELASZ", errc::executable_format_error); readDynamicRelocations(DynamicRelSectionOrErr->getSectionRef(), /*IsJmpRel*/ false); } } void RewriteInstance::processRelocations() { if (!BC->HasRelocations) return; for (const SectionRef &Section : InputFile->sections()) { section_iterator SecIter = cantFail(Section.getRelocatedSection()); if (SecIter == InputFile->section_end()) continue; if (BinarySection(*BC, Section).isAllocatable()) continue; readRelocations(Section); } if (NumFailedRelocations) BC->errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations << " relocations\n"; } void RewriteInstance::readDynamicRelocations(const SectionRef &Section, bool IsJmpRel) { assert(BinarySection(*BC, Section).isAllocatable() && "allocatable expected"); LLVM_DEBUG({ StringRef SectionName = cantFail(Section.getName()); dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName << ":\n"; }); for (const RelocationRef &Rel : Section.relocations()) { const uint64_t RType = Rel.getType(); if (Relocation::isNone(RType)) continue; StringRef SymbolName = ""; MCSymbol *Symbol = nullptr; uint64_t SymbolAddress = 0; const uint64_t Addend = getRelocationAddend(InputFile, Rel); symbol_iterator SymbolIter = Rel.getSymbol(); if (SymbolIter != InputFile->symbol_end()) { SymbolName = cantFail(SymbolIter->getName()); BinaryData *BD = BC->getBinaryDataByName(SymbolName); Symbol = BD ? BD->getSymbol() : BC->getOrCreateUndefinedGlobalSymbol(SymbolName); SymbolAddress = cantFail(SymbolIter->getAddress()); (void)SymbolAddress; } LLVM_DEBUG( SmallString<16> TypeName; Rel.getTypeName(TypeName); dbgs() << "BOLT-DEBUG: dynamic relocation at 0x" << Twine::utohexstr(Rel.getOffset()) << " : " << TypeName << " : " << SymbolName << " : " << Twine::utohexstr(SymbolAddress) << " : + 0x" << Twine::utohexstr(Addend) << '\n' ); if (IsJmpRel) IsJmpRelocation[RType] = true; if (Symbol) SymbolIndex[Symbol] = getRelocationSymbol(InputFile, Rel); BC->addDynamicRelocation(Rel.getOffset(), Symbol, RType, Addend); } } void RewriteInstance::readDynamicRelrRelocations(BinarySection &Section) { assert(Section.isAllocatable() && "allocatable expected"); LLVM_DEBUG({ StringRef SectionName = Section.getName(); dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName << ":\n"; }); const uint64_t RType = Relocation::getRelative(); const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; auto ExtractAddendValue = [&](uint64_t Address) -> uint64_t { ErrorOr Section = BC->getSectionForAddress(Address); assert(Section && "cannot get section for data address from RELR"); DataExtractor DE = DataExtractor(Section->getContents(), BC->AsmInfo->isLittleEndian(), PSize); uint64_t Offset = Address - Section->getAddress(); return DE.getUnsigned(&Offset, PSize); }; auto AddRelocation = [&](uint64_t Address) { uint64_t Addend = ExtractAddendValue(Address); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x" << Twine::utohexstr(Address) << " to 0x" << Twine::utohexstr(Addend) << '\n';); BC->addDynamicRelocation(Address, nullptr, RType, Addend); }; DataExtractor DE = DataExtractor(Section.getContents(), BC->AsmInfo->isLittleEndian(), PSize); uint64_t Offset = 0, Address = 0; uint64_t RelrCount = DynamicRelrSize / DynamicRelrEntrySize; while (RelrCount--) { assert(DE.isValidOffset(Offset)); uint64_t Entry = DE.getUnsigned(&Offset, DynamicRelrEntrySize); if ((Entry & 1) == 0) { AddRelocation(Entry); Address = Entry + PSize; } else { const uint64_t StartAddress = Address; while (Entry >>= 1) { if (Entry & 1) AddRelocation(Address); Address += PSize; } Address = StartAddress + MaxDelta; } } } void RewriteInstance::printRelocationInfo(const RelocationRef &Rel, StringRef SymbolName, uint64_t SymbolAddress, uint64_t Addend, uint64_t ExtractedValue) const { SmallString<16> TypeName; Rel.getTypeName(TypeName); const uint64_t Address = SymbolAddress + Addend; const uint64_t Offset = Rel.getOffset(); ErrorOr Section = BC->getSectionForAddress(SymbolAddress); BinaryFunction *Func = BC->getBinaryFunctionContainingAddress(Offset, false, BC->isAArch64()); dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ", Offset, TypeName, ExtractedValue) << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName, Section ? Section->getName() : "", SymbolAddress) << formatv("addend = {0:x}; address = {1:x}; in = ", Addend, Address); if (Func) dbgs() << Func->getPrintName(); else dbgs() << BC->getSectionForAddress(Rel.getOffset())->getName(); dbgs() << '\n'; } void RewriteInstance::readRelocations(const SectionRef &Section) { LLVM_DEBUG({ StringRef SectionName = cantFail(Section.getName()); dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName << ":\n"; }); if (BinarySection(*BC, Section).isAllocatable()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n"); return; } section_iterator SecIter = cantFail(Section.getRelocatedSection()); assert(SecIter != InputFile->section_end() && "relocated section expected"); SectionRef RelocatedSection = *SecIter; StringRef RelocatedSectionName = cantFail(RelocatedSection.getName()); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is " << RelocatedSectionName << '\n'); if (!BinarySection(*BC, RelocatedSection).isAllocatable()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against " << "non-allocatable section\n"); return; } const bool SkipRelocs = StringSwitch(RelocatedSectionName) .Cases(".plt", ".rela.plt", ".got.plt", ".eh_frame", ".gcc_except_table", true) .Default(false); if (SkipRelocs) { LLVM_DEBUG( dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n"); return; } for (const RelocationRef &Rel : Section.relocations()) handleRelocation(RelocatedSection, Rel); } void RewriteInstance::handleRelocation(const SectionRef &RelocatedSection, const RelocationRef &Rel) { const bool IsAArch64 = BC->isAArch64(); const bool IsFromCode = RelocatedSection.isText(); SmallString<16> TypeName; Rel.getTypeName(TypeName); uint64_t RType = Rel.getType(); if (Relocation::skipRelocationType(RType)) return; // Adjust the relocation type as the linker might have skewed it. if (BC->isX86() && (RType & ELF::R_X86_64_converted_reloc_bit)) { if (opts::Verbosity >= 1) dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n"; RType &= ~ELF::R_X86_64_converted_reloc_bit; } if (Relocation::isTLS(RType)) { // No special handling required for TLS relocations on X86. if (BC->isX86()) return; // The non-got related TLS relocations on AArch64 and RISC-V also could be // skipped. if (!Relocation::isGOT(RType)) return; } if (!IsAArch64 && BC->getDynamicRelocationAt(Rel.getOffset())) { LLVM_DEBUG({ dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel.getOffset()) << "dynamic relocation against it. Ignoring static relocation.\n"; }); return; } std::string SymbolName; uint64_t SymbolAddress; int64_t Addend; uint64_t ExtractedValue; bool IsSectionRelocation; bool Skip; if (!analyzeRelocation(Rel, RType, SymbolName, IsSectionRelocation, SymbolAddress, Addend, ExtractedValue, Skip)) { LLVM_DEBUG({ dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = " << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); }); ++NumFailedRelocations; return; } if (Skip) { LLVM_DEBUG({ dbgs() << "BOLT-DEBUG: skipping relocation @ offset = " << formatv("{0:x}; type name = {1}\n", Rel.getOffset(), TypeName); }); return; } const uint64_t Address = SymbolAddress + Addend; LLVM_DEBUG({ dbgs() << "BOLT-DEBUG: "; printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue); }); BinaryFunction *ContainingBF = nullptr; if (IsFromCode) { ContainingBF = BC->getBinaryFunctionContainingAddress(Rel.getOffset(), /*CheckPastEnd*/ false, /*UseMaxSize*/ true); assert(ContainingBF && "cannot find function for address in code"); if (!IsAArch64 && !ContainingBF->containsAddress(Rel.getOffset())) { if (opts::Verbosity >= 1) BC->outs() << formatv( "BOLT-INFO: {0} has relocations in padding area\n", *ContainingBF); ContainingBF->setSize(ContainingBF->getMaxSize()); ContainingBF->setSimple(false); return; } } MCSymbol *ReferencedSymbol = nullptr; if (!IsSectionRelocation) { if (BinaryData *BD = BC->getBinaryDataByName(SymbolName)) ReferencedSymbol = BD->getSymbol(); else if (BC->isGOTSymbol(SymbolName)) if (BinaryData *BD = BC->getGOTSymbol()) ReferencedSymbol = BD->getSymbol(); } ErrorOr ReferencedSection{std::errc::bad_address}; symbol_iterator SymbolIter = Rel.getSymbol(); if (SymbolIter != InputFile->symbol_end()) { SymbolRef Symbol = *SymbolIter; section_iterator Section = cantFail(Symbol.getSection(), "cannot get symbol section"); if (Section != InputFile->section_end()) { Expected SectionName = Section->getName(); if (SectionName && !SectionName->empty()) ReferencedSection = BC->getUniqueSectionByName(*SectionName); } else if (BC->isRISCV() && ReferencedSymbol && ContainingBF && (cantFail(Symbol.getFlags()) & SymbolRef::SF_Absolute)) { // This might be a relocation for an ABS symbols like __global_pointer$ on // RISC-V ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, Rel.getType(), 0, cantFail(Symbol.getValue())); return; } } if (!ReferencedSection) ReferencedSection = BC->getSectionForAddress(SymbolAddress); const bool IsToCode = ReferencedSection && ReferencedSection->isText(); // Special handling of PC-relative relocations. if (BC->isX86() && Relocation::isPCRelative(RType)) { if (!IsFromCode && IsToCode) { // PC-relative relocations from data to code are tricky since the // original information is typically lost after linking, even with // '--emit-relocs'. Such relocations are normally used by PIC-style // jump tables and they reference both the jump table and jump // targets by computing the difference between the two. If we blindly // apply the relocation, it will appear that it references an arbitrary // location in the code, possibly in a different function from the one // containing the jump table. // // For that reason, we only register the fact that there is a // PC-relative relocation at a given address against the code. // The actual referenced label/address will be determined during jump // table analysis. BC->addPCRelativeDataRelocation(Rel.getOffset()); } else if (ContainingBF && !IsSectionRelocation && ReferencedSymbol) { // If we know the referenced symbol, register the relocation from // the code. It's required to properly handle cases where // "symbol + addend" references an object different from "symbol". ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, ExtractedValue); } else { LLVM_DEBUG({ dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at" << formatv("{0:x} for {1}\n", Rel.getOffset(), SymbolName); }); } return; } bool ForceRelocation = BC->forceSymbolRelocations(SymbolName); if ((BC->isAArch64() || BC->isRISCV()) && Relocation::isGOT(RType)) ForceRelocation = true; if (!ReferencedSection && !ForceRelocation) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n"); return; } // Occasionally we may see a reference past the last byte of the function // typically as a result of __builtin_unreachable(). Check it here. BinaryFunction *ReferencedBF = BC->getBinaryFunctionContainingAddress( Address, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64); if (!IsSectionRelocation) { if (BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(SymbolAddress)) { if (BF != ReferencedBF) { // It's possible we are referencing a function without referencing any // code, e.g. when taking a bitmask action on a function address. BC->errs() << "BOLT-WARNING: non-standard function reference (e.g. bitmask)" << formatv(" detected against function {0} from ", *BF); if (IsFromCode) BC->errs() << formatv("function {0}\n", *ContainingBF); else BC->errs() << formatv("data section at {0:x}\n", Rel.getOffset()); LLVM_DEBUG(printRelocationInfo(Rel, SymbolName, SymbolAddress, Addend, ExtractedValue)); ReferencedBF = BF; } } } else if (ReferencedBF) { assert(ReferencedSection && "section expected for section relocation"); if (*ReferencedBF->getOriginSection() != *ReferencedSection) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n"); ReferencedBF = nullptr; } } // Workaround for a member function pointer de-virtualization bug. We check // if a non-pc-relative relocation in the code is pointing to (fptr - 1). if (IsToCode && ContainingBF && !Relocation::isPCRelative(RType) && (!ReferencedBF || (ReferencedBF->getAddress() != Address))) { if (const BinaryFunction *RogueBF = BC->getBinaryFunctionAtAddress(Address + 1)) { // Do an extra check that the function was referenced previously. // It's a linear search, but it should rarely happen. auto CheckReloc = [&](const Relocation &Rel) { return Rel.Symbol == RogueBF->getSymbol() && !Relocation::isPCRelative(Rel.Type); }; bool Found = llvm::any_of( llvm::make_second_range(ContainingBF->Relocations), CheckReloc); if (Found) { BC->errs() << "BOLT-WARNING: detected possible compiler de-virtualization " "bug: -1 addend used with non-pc-relative relocation against " << formatv("function {0} in function {1}\n", *RogueBF, *ContainingBF); return; } } } if (ForceRelocation) { std::string Name = Relocation::isGOT(RType) ? "__BOLT_got_zero" : SymbolName; ReferencedSymbol = BC->registerNameAtAddress(Name, 0, 0, 0); SymbolAddress = 0; if (Relocation::isGOT(RType)) Addend = Address; LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol " << SymbolName << " with addend " << Addend << '\n'); } else if (ReferencedBF) { ReferencedSymbol = ReferencedBF->getSymbol(); uint64_t RefFunctionOffset = 0; // Adjust the point of reference to a code location inside a function. if (ReferencedBF->containsAddress(Address, /*UseMaxSize = */ true)) { RefFunctionOffset = Address - ReferencedBF->getAddress(); if (Relocation::isInstructionReference(RType)) { // Instruction labels are created while disassembling so we just leave // the symbol empty for now. Since the extracted value is typically // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V // references an instruction but the patched value references the low // bits of a data address), we set the extracted value to the symbol // address in order to be able to correctly reconstruct the reference // later. ReferencedSymbol = nullptr; ExtractedValue = Address; } else if (RefFunctionOffset) { if (ContainingBF && ContainingBF != ReferencedBF) { ReferencedSymbol = ReferencedBF->addEntryPointAtOffset(RefFunctionOffset); } else { ReferencedSymbol = ReferencedBF->getOrCreateLocalLabel(Address, /*CreatePastEnd =*/true); // If ContainingBF != nullptr, it equals ReferencedBF (see // if-condition above) so we're handling a relocation from a function // to itself. RISC-V uses such relocations for branches, for example. // These should not be registered as externally references offsets. if (!ContainingBF) ReferencedBF->registerReferencedOffset(RefFunctionOffset); } if (opts::Verbosity > 1 && BinarySection(*BC, RelocatedSection).isWritable()) BC->errs() << "BOLT-WARNING: writable reference into the middle of the " << formatv("function {0} detected at address {1:x}\n", *ReferencedBF, Rel.getOffset()); } SymbolAddress = Address; Addend = 0; } LLVM_DEBUG({ dbgs() << " referenced function " << *ReferencedBF; if (Address != ReferencedBF->getAddress()) dbgs() << formatv(" at offset {0:x}", RefFunctionOffset); dbgs() << '\n'; }); } else { if (IsToCode && SymbolAddress) { // This can happen e.g. with PIC-style jump tables. LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for " "relocation against code\n"); } // In AArch64 there are zero reasons to keep a reference to the // "original" symbol plus addend. The original symbol is probably just a // section symbol. If we are here, this means we are probably accessing // data, so it is imperative to keep the original address. if (IsAArch64) { SymbolName = formatv("SYMBOLat{0:x}", Address); SymbolAddress = Address; Addend = 0; } if (BinaryData *BD = BC->getBinaryDataContainingAddress(SymbolAddress)) { // Note: this assertion is trying to check sanity of BinaryData objects // but AArch64 has inferred and incomplete object locations coming from // GOT/TLS or any other non-trivial relocation (that requires creation // of sections and whose symbol address is not really what should be // encoded in the instruction). So we essentially disabled this check // for AArch64 and live with bogus names for objects. assert((IsAArch64 || IsSectionRelocation || BD->nameStartsWith(SymbolName) || BD->nameStartsWith("PG" + SymbolName) || (BD->nameStartsWith("ANONYMOUS") && (BD->getSectionName().starts_with(".plt") || BD->getSectionName().ends_with(".plt")))) && "BOLT symbol names of all non-section relocations must match up " "with symbol names referenced in the relocation"); if (IsSectionRelocation) BC->markAmbiguousRelocations(*BD, Address); ReferencedSymbol = BD->getSymbol(); Addend += (SymbolAddress - BD->getAddress()); SymbolAddress = BD->getAddress(); assert(Address == SymbolAddress + Addend); } else { // These are mostly local data symbols but undefined symbols // in relocation sections can get through here too, from .plt. assert( (IsAArch64 || BC->isRISCV() || IsSectionRelocation || BC->getSectionNameForAddress(SymbolAddress)->starts_with(".plt")) && "known symbols should not resolve to anonymous locals"); if (IsSectionRelocation) { ReferencedSymbol = BC->getOrCreateGlobalSymbol(SymbolAddress, "SYMBOLat"); } else { SymbolRef Symbol = *Rel.getSymbol(); const uint64_t SymbolSize = IsAArch64 ? 0 : ELFSymbolRef(Symbol).getSize(); const uint64_t SymbolAlignment = IsAArch64 ? 1 : Symbol.getAlignment(); const uint32_t SymbolFlags = cantFail(Symbol.getFlags()); std::string Name; if (SymbolFlags & SymbolRef::SF_Global) { Name = SymbolName; } else { if (StringRef(SymbolName) .starts_with(BC->AsmInfo->getPrivateGlobalPrefix())) Name = NR.uniquify("PG" + SymbolName); else Name = NR.uniquify(SymbolName); } ReferencedSymbol = BC->registerNameAtAddress( Name, SymbolAddress, SymbolSize, SymbolAlignment, SymbolFlags); } if (IsSectionRelocation) { BinaryData *BD = BC->getBinaryDataByName(ReferencedSymbol->getName()); BC->markAmbiguousRelocations(*BD, Address); } } } auto checkMaxDataRelocations = [&]() { ++NumDataRelocations; LLVM_DEBUG(if (opts::MaxDataRelocations && NumDataRelocations + 1 == opts::MaxDataRelocations) { dbgs() << "BOLT-DEBUG: processing ending on data relocation " << NumDataRelocations << ": "; printRelocationInfo(Rel, ReferencedSymbol->getName(), SymbolAddress, Addend, ExtractedValue); }); return (!opts::MaxDataRelocations || NumDataRelocations < opts::MaxDataRelocations); }; if ((ReferencedSection && refersToReorderedSection(ReferencedSection)) || (opts::ForceToDataRelocations && checkMaxDataRelocations()) || // RISC-V has ADD/SUB data-to-data relocations BC->isRISCV()) ForceRelocation = true; if (IsFromCode) ContainingBF->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, ExtractedValue); else if (IsToCode || ForceRelocation) BC->addRelocation(Rel.getOffset(), ReferencedSymbol, RType, Addend, ExtractedValue); else LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n"); } void RewriteInstance::selectFunctionsToProcess() { // Extend the list of functions to process or skip from a file. auto populateFunctionNames = [](cl::opt &FunctionNamesFile, cl::list &FunctionNames) { if (FunctionNamesFile.empty()) return; std::ifstream FuncsFile(FunctionNamesFile, std::ios::in); std::string FuncName; while (std::getline(FuncsFile, FuncName)) FunctionNames.push_back(FuncName); }; populateFunctionNames(opts::FunctionNamesFile, opts::ForceFunctionNames); populateFunctionNames(opts::SkipFunctionNamesFile, opts::SkipFunctionNames); populateFunctionNames(opts::FunctionNamesFileNR, opts::ForceFunctionNamesNR); // Make a set of functions to process to speed up lookups. std::unordered_set ForceFunctionsNR( opts::ForceFunctionNamesNR.begin(), opts::ForceFunctionNamesNR.end()); if ((!opts::ForceFunctionNames.empty() || !opts::ForceFunctionNamesNR.empty()) && !opts::SkipFunctionNames.empty()) { BC->errs() << "BOLT-ERROR: cannot select functions to process and skip at the " "same time. Please use only one type of selection.\n"; exit(1); } uint64_t LiteThresholdExecCount = 0; if (opts::LiteThresholdPct) { if (opts::LiteThresholdPct > 100) opts::LiteThresholdPct = 100; std::vector TopFunctions; for (auto &BFI : BC->getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; if (ProfileReader->mayHaveProfileData(Function)) TopFunctions.push_back(&Function); } llvm::sort( TopFunctions, [](const BinaryFunction *A, const BinaryFunction *B) { return A->getKnownExecutionCount() < B->getKnownExecutionCount(); }); size_t Index = TopFunctions.size() * opts::LiteThresholdPct / 100; if (Index) --Index; LiteThresholdExecCount = TopFunctions[Index]->getKnownExecutionCount(); BC->outs() << "BOLT-INFO: limiting processing to functions with at least " << LiteThresholdExecCount << " invocations\n"; } LiteThresholdExecCount = std::max( LiteThresholdExecCount, static_cast(opts::LiteThresholdCount)); StringSet<> ReorderFunctionsUserSet; StringSet<> ReorderFunctionsLTOCommonSet; if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { std::vector FunctionNames; BC->logBOLTErrorsAndQuitOnFatal( ReorderFunctions::readFunctionOrderFile(FunctionNames)); for (const std::string &Function : FunctionNames) { ReorderFunctionsUserSet.insert(Function); if (std::optional LTOCommonName = getLTOCommonName(Function)) ReorderFunctionsLTOCommonSet.insert(*LTOCommonName); } } uint64_t NumFunctionsToProcess = 0; auto mustSkip = [&](const BinaryFunction &Function) { if (opts::MaxFunctions.getNumOccurrences() && NumFunctionsToProcess >= opts::MaxFunctions) return true; for (std::string &Name : opts::SkipFunctionNames) if (Function.hasNameRegex(Name)) return true; return false; }; auto shouldProcess = [&](const BinaryFunction &Function) { if (mustSkip(Function)) return false; // If the list is not empty, only process functions from the list. if (!opts::ForceFunctionNames.empty() || !ForceFunctionsNR.empty()) { // Regex check (-funcs and -funcs-file options). for (std::string &Name : opts::ForceFunctionNames) if (Function.hasNameRegex(Name)) return true; // Non-regex check (-funcs-no-regex and -funcs-file-no-regex). for (const StringRef Name : Function.getNames()) if (ForceFunctionsNR.count(Name.str())) return true; return false; } if (opts::Lite) { // Forcibly include functions specified in the -function-order file. if (opts::ReorderFunctions == ReorderFunctions::RT_USER) { for (const StringRef Name : Function.getNames()) if (ReorderFunctionsUserSet.contains(Name)) return true; for (const StringRef Name : Function.getNames()) if (std::optional LTOCommonName = getLTOCommonName(Name)) if (ReorderFunctionsLTOCommonSet.contains(*LTOCommonName)) return true; } if (ProfileReader && !ProfileReader->mayHaveProfileData(Function)) return false; if (Function.getKnownExecutionCount() < LiteThresholdExecCount) return false; } return true; }; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; // Pseudo functions are explicitly marked by us not to be processed. if (Function.isPseudo()) { Function.IsIgnored = true; Function.HasExternalRefRelocations = true; continue; } // Decide what to do with fragments after parent functions are processed. if (Function.isFragment()) continue; if (!shouldProcess(Function)) { if (opts::Verbosity >= 1) { BC->outs() << "BOLT-INFO: skipping processing " << Function << " per user request\n"; } Function.setIgnored(); } else { ++NumFunctionsToProcess; if (opts::MaxFunctions.getNumOccurrences() && NumFunctionsToProcess == opts::MaxFunctions) BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; } } if (!BC->HasSplitFunctions) return; // Fragment overrides: // - If the fragment must be skipped, then the parent must be skipped as well. // Otherwise, fragment should follow the parent function: // - if the parent is skipped, skip fragment, // - if the parent is processed, process the fragment(s) as well. for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!Function.isFragment()) continue; if (mustSkip(Function)) { for (BinaryFunction *Parent : Function.ParentFragments) { if (opts::Verbosity >= 1) { BC->outs() << "BOLT-INFO: skipping processing " << *Parent << " together with fragment function\n"; } Parent->setIgnored(); --NumFunctionsToProcess; } Function.setIgnored(); continue; } bool IgnoredParent = llvm::any_of(Function.ParentFragments, [&](BinaryFunction *Parent) { return Parent->isIgnored(); }); if (IgnoredParent) { if (opts::Verbosity >= 1) { BC->outs() << "BOLT-INFO: skipping processing " << Function << " together with parent function\n"; } Function.setIgnored(); } else { ++NumFunctionsToProcess; if (opts::Verbosity >= 1) { BC->outs() << "BOLT-INFO: processing " << Function << " as a sibling of non-ignored function\n"; } if (opts::MaxFunctions && NumFunctionsToProcess == opts::MaxFunctions) BC->outs() << "BOLT-INFO: processing ending on " << Function << '\n'; } } } void RewriteInstance::readDebugInfo() { NamedRegionTimer T("readDebugInfo", "read debug info", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (!opts::UpdateDebugSections) return; BC->preprocessDebugInfo(); } void RewriteInstance::preprocessProfileData() { if (!ProfileReader) return; NamedRegionTimer T("preprocessprofile", "pre-process profile data", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); BC->outs() << "BOLT-INFO: pre-processing profile using " << ProfileReader->getReaderName() << '\n'; if (BAT->enabledFor(InputFile)) { BC->outs() << "BOLT-INFO: profile collection done on a binary already " "processed by BOLT\n"; ProfileReader->setBAT(&*BAT); } if (Error E = ProfileReader->preprocessProfile(*BC.get())) report_error("cannot pre-process profile", std::move(E)); if (!BC->hasSymbolsWithFileName() && ProfileReader->hasLocalsWithFileName() && !opts::AllowStripped) { BC->errs() << "BOLT-ERROR: input binary does not have local file symbols " "but profile data includes function names with embedded file " "names. It appears that the input binary was stripped while a " "profiled binary was not. If you know what you are doing and " "wish to proceed, use -allow-stripped option.\n"; exit(1); } } void RewriteInstance::initializeMetadataManager() { if (BC->IsLinuxKernel) MetadataManager.registerRewriter(createLinuxKernelRewriter(*BC)); MetadataManager.registerRewriter(createBuildIDRewriter(*BC)); MetadataManager.registerRewriter(createPseudoProbeRewriter(*BC)); MetadataManager.registerRewriter(createSDTRewriter(*BC)); } void RewriteInstance::processSectionMetadata() { NamedRegionTimer T("processmetadata-section", "process section metadata", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); initializeMetadataManager(); MetadataManager.runSectionInitializers(); } void RewriteInstance::processMetadataPreCFG() { NamedRegionTimer T("processmetadata-precfg", "process metadata pre-CFG", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); MetadataManager.runInitializersPreCFG(); processProfileDataPreCFG(); } void RewriteInstance::processMetadataPostCFG() { NamedRegionTimer T("processmetadata-postcfg", "process metadata post-CFG", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); MetadataManager.runInitializersPostCFG(); } void RewriteInstance::processProfileDataPreCFG() { if (!ProfileReader) return; NamedRegionTimer T("processprofile-precfg", "process profile data pre-CFG", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (Error E = ProfileReader->readProfilePreCFG(*BC.get())) report_error("cannot read profile pre-CFG", std::move(E)); } void RewriteInstance::processProfileData() { if (!ProfileReader) return; NamedRegionTimer T("processprofile", "process profile data", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); if (Error E = ProfileReader->readProfile(*BC.get())) report_error("cannot read profile", std::move(E)); if (opts::PrintProfile || opts::PrintAll) { for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (Function.empty()) continue; Function.print(BC->outs(), "after attaching profile"); } } if (!opts::SaveProfile.empty() && !BAT->enabledFor(InputFile)) { YAMLProfileWriter PW(opts::SaveProfile); PW.writeProfile(*this); } if (opts::AggregateOnly && opts::ProfileFormat == opts::ProfileFormatKind::PF_YAML && !BAT->enabledFor(InputFile)) { YAMLProfileWriter PW(opts::OutputFilename); PW.writeProfile(*this); } // Release memory used by profile reader. ProfileReader.reset(); if (opts::AggregateOnly) { PrintProgramStats PPS(&*BAT); BC->logBOLTErrorsAndQuitOnFatal(PPS.runOnFunctions(*BC)); TimerGroup::printAll(outs()); exit(0); } } void RewriteInstance::disassembleFunctions() { NamedRegionTimer T("disassembleFunctions", "disassemble functions", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; ErrorOr> FunctionData = Function.getData(); if (!FunctionData) { BC->errs() << "BOLT-ERROR: corresponding section is non-executable or " << "empty for function " << Function << '\n'; exit(1); } // Treat zero-sized functions as non-simple ones. if (Function.getSize() == 0) { Function.setSimple(false); continue; } // Offset of the function in the file. const auto *FileBegin = reinterpret_cast(InputFile->getData().data()); Function.setFileOffset(FunctionData->begin() - FileBegin); if (!shouldDisassemble(Function)) { NamedRegionTimer T("scan", "scan functions", "buildfuncs", "Scan Binary Functions", opts::TimeBuild); Function.scanExternalRefs(); Function.setSimple(false); continue; } bool DisasmFailed{false}; handleAllErrors(Function.disassemble(), [&](const BOLTError &E) { DisasmFailed = true; if (E.isFatal()) { E.log(BC->errs()); exit(1); } if (opts::processAllFunctions()) { BC->errs() << BC->generateBugReportMessage( "function cannot be properly disassembled. " "Unable to continue in relocation mode.", Function); exit(1); } if (opts::Verbosity >= 1) BC->outs() << "BOLT-INFO: could not disassemble function " << Function << ". Will ignore.\n"; // Forcefully ignore the function. Function.setIgnored(); }); if (DisasmFailed) continue; if (opts::PrintAll || opts::PrintDisasm) Function.print(BC->outs(), "after disassembly"); } BC->processInterproceduralReferences(); BC->populateJumpTables(); for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!shouldDisassemble(Function)) continue; Function.postProcessEntryPoints(); Function.postProcessJumpTables(); } BC->clearJumpTableTempData(); BC->adjustCodePadding(); for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!shouldDisassemble(Function)) continue; if (!Function.isSimple()) { assert((!BC->HasRelocations || Function.getSize() == 0 || Function.hasIndirectTargetToSplitFragment()) && "unexpected non-simple function in relocation mode"); continue; } // Fill in CFI information for this function if (!Function.trapsOnEntry() && !CFIRdWrt->fillCFIInfoFor(Function)) { if (BC->HasRelocations) { BC->errs() << BC->generateBugReportMessage("unable to fill CFI.", Function); exit(1); } else { BC->errs() << "BOLT-WARNING: unable to fill CFI for function " << Function << ". Skipping.\n"; Function.setSimple(false); continue; } } // Parse LSDA. if (Function.getLSDAAddress() != 0 && !BC->getFragmentsToSkip().count(&Function)) { ErrorOr LSDASection = BC->getSectionForAddress(Function.getLSDAAddress()); check_error(LSDASection.getError(), "failed to get LSDA section"); ArrayRef LSDAData = ArrayRef( LSDASection->getData(), LSDASection->getContents().size()); BC->logBOLTErrorsAndQuitOnFatal( Function.parseLSDA(LSDAData, LSDASection->getAddress())); } } } void RewriteInstance::buildFunctionsCFG() { NamedRegionTimer T("buildCFG", "buildCFG", "buildfuncs", "Build Binary Functions", opts::TimeBuild); // Create annotation indices to allow lock-free execution BC->MIB->getOrCreateAnnotationIndex("JTIndexReg"); BC->MIB->getOrCreateAnnotationIndex("NOP"); ParallelUtilities::WorkFuncWithAllocTy WorkFun = [&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId) { bool HadErrors{false}; handleAllErrors(BF.buildCFG(AllocId), [&](const BOLTError &E) { if (!E.getMessage().empty()) E.log(BC->errs()); if (E.isFatal()) exit(1); HadErrors = true; }); if (HadErrors) return; if (opts::PrintAll) { auto L = BC->scopeLock(); BF.print(BC->outs(), "while building cfg"); } }; ParallelUtilities::PredicateTy SkipPredicate = [&](const BinaryFunction &BF) { return !shouldDisassemble(BF) || !BF.isSimple(); }; ParallelUtilities::runOnEachFunctionWithUniqueAllocId( *BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun, SkipPredicate, "disassembleFunctions-buildCFG", /*ForceSequential*/ opts::SequentialDisassembly || opts::PrintAll); BC->postProcessSymbolTable(); } void RewriteInstance::postProcessFunctions() { // We mark fragments as non-simple here, not during disassembly, // So we can build their CFGs. BC->skipMarkedFragments(); BC->clearFragmentsToSkip(); BC->TotalScore = 0; BC->SumExecutionCount = 0; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; // Set function as non-simple if it has dynamic relocations // in constant island, we don't want this function to be optimized // e.g. function splitting is unsupported. if (Function.hasDynamicRelocationAtIsland()) Function.setSimple(false); if (Function.empty()) continue; Function.postProcessCFG(); if (opts::PrintAll || opts::PrintCFG) Function.print(BC->outs(), "after building cfg"); if (opts::DumpDotAll) Function.dumpGraphForPass("00_build-cfg"); if (opts::PrintLoopInfo) { Function.calculateLoopInfo(); Function.printLoopInfo(BC->outs()); } BC->TotalScore += Function.getFunctionScore(); BC->SumExecutionCount += Function.getKnownExecutionCount(); } if (opts::PrintGlobals) { BC->outs() << "BOLT-INFO: Global symbols:\n"; BC->printGlobalSymbols(BC->outs()); } } void RewriteInstance::runOptimizationPasses() { NamedRegionTimer T("runOptimizationPasses", "run optimization passes", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); BC->logBOLTErrorsAndQuitOnFatal(BinaryFunctionPassManager::runAllPasses(*BC)); } void RewriteInstance::preregisterSections() { // Preregister sections before emission to set their order in the output. const unsigned ROFlags = BinarySection::getFlags(/*IsReadOnly*/ true, /*IsText*/ false, /*IsAllocatable*/ true); if (BinarySection *EHFrameSection = getSection(getEHFrameSectionName())) { // New .eh_frame. BC->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(), ELF::SHT_PROGBITS, ROFlags); // Fully register a relocatable copy of the original .eh_frame. BC->registerSection(".relocated.eh_frame", *EHFrameSection); } BC->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table", ELF::SHT_PROGBITS, ROFlags); BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS, ROFlags); BC->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold", ELF::SHT_PROGBITS, ROFlags); } void RewriteInstance::emitAndLink() { NamedRegionTimer T("emitAndLink", "emit and link", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); SmallString<0> ObjectBuffer; raw_svector_ostream OS(ObjectBuffer); // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB) // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these // two instances. std::unique_ptr Streamer = BC->createStreamer(OS); if (EHFrameSection) { if (opts::UseOldText || opts::StrictMode) { // The section is going to be regenerated from scratch. // Empty the contents, but keep the section reference. EHFrameSection->clearContents(); } else { // Make .eh_frame relocatable. relocateEHFrameSection(); } } emitBinaryContext(*Streamer, *BC, getOrgSecPrefix()); Streamer->finish(); if (Streamer->getContext().hadError()) { BC->errs() << "BOLT-ERROR: Emission failed.\n"; exit(1); } if (opts::KeepTmp) { SmallString<128> OutObjectPath; sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath); std::error_code EC; raw_fd_ostream FOS(OutObjectPath, EC); check_error(EC, "cannot create output object file"); FOS << ObjectBuffer; BC->outs() << "BOLT-INFO: intermediary output object file saved for debugging " "purposes: " << OutObjectPath << "\n"; } ErrorOr TextSection = BC->getUniqueSectionByName(BC->getMainCodeSectionName()); if (BC->HasRelocations && TextSection) BC->renameSection(*TextSection, getOrgSecPrefix() + BC->getMainCodeSectionName()); ////////////////////////////////////////////////////////////////////////////// // Assign addresses to new sections. ////////////////////////////////////////////////////////////////////////////// // Get output object as ObjectFile. std::unique_ptr ObjectMemBuffer = MemoryBuffer::getMemBuffer(ObjectBuffer, "in-memory object file", false); auto EFMM = std::make_unique(*BC); EFMM->setNewSecPrefix(getNewSecPrefix()); EFMM->setOrgSecPrefix(getOrgSecPrefix()); Linker = std::make_unique(*BC, std::move(EFMM)); Linker->loadObject(ObjectMemBuffer->getMemBufferRef(), [this](auto MapSection) { mapFileSections(MapSection); }); // Update output addresses based on the new section map and // layout. Only do this for the object created by ourselves. updateOutputValues(*Linker); if (opts::UpdateDebugSections) { DebugInfoRewriter->updateLineTableOffsets( static_cast(*Streamer).getAssembler()); } if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) RtLibrary->link(*BC, ToolPath, *Linker, [this](auto MapSection) { // Map newly registered sections. this->mapAllocatableSections(MapSection); }); // Once the code is emitted, we can rename function sections to actual // output sections and de-register sections used for emission. for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { ErrorOr Section = Function->getCodeSection(); if (Section && (Function->getImageAddress() == 0 || Function->getImageSize() == 0)) continue; // Restore origin section for functions that were emitted or supposed to // be emitted to patch sections. if (Section) BC->deregisterSection(*Section); assert(Function->getOriginSectionName() && "expected origin section"); Function->CodeSectionName = Function->getOriginSectionName()->str(); for (const FunctionFragment &FF : Function->getLayout().getSplitFragments()) { if (ErrorOr ColdSection = Function->getCodeSection(FF.getFragmentNum())) BC->deregisterSection(*ColdSection); } if (Function->getLayout().isSplit()) Function->setColdCodeSectionName(getBOLTTextSectionName()); } if (opts::PrintCacheMetrics) { BC->outs() << "BOLT-INFO: cache metrics after emitting functions:\n"; CacheMetrics::printAll(BC->outs(), BC->getSortedFunctions()); } } void RewriteInstance::finalizeMetadataPreEmit() { NamedRegionTimer T("finalizemetadata-preemit", "finalize metadata pre-emit", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); MetadataManager.runFinalizersPreEmit(); } void RewriteInstance::updateMetadata() { NamedRegionTimer T("updatemetadata-postemit", "update metadata post-emit", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); MetadataManager.runFinalizersAfterEmit(); if (opts::UpdateDebugSections) { NamedRegionTimer T("updateDebugInfo", "update debug info", TimerGroupName, TimerGroupDesc, opts::TimeRewrite); DebugInfoRewriter->updateDebugInfo(); } if (opts::WriteBoltInfoSection) addBoltInfoSection(); } void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection) { BC->deregisterUnusedSections(); // If no new .eh_frame was written, remove relocated original .eh_frame. BinarySection *RelocatedEHFrameSection = getSection(".relocated" + getEHFrameSectionName()); if (RelocatedEHFrameSection && RelocatedEHFrameSection->hasValidSectionID()) { BinarySection *NewEHFrameSection = getSection(getNewSecPrefix() + getEHFrameSectionName()); if (!NewEHFrameSection || !NewEHFrameSection->isFinalized()) { // JITLink will still have to process relocations for the section, hence // we need to assign it the address that wouldn't result in relocation // processing failure. MapSection(*RelocatedEHFrameSection, NextAvailableAddress); BC->deregisterSection(*RelocatedEHFrameSection); } } mapCodeSections(MapSection); // Map the rest of the sections. mapAllocatableSections(MapSection); if (!BC->BOLTReserved.empty()) { const uint64_t AllocatedSize = NextAvailableAddress - BC->BOLTReserved.start(); if (BC->BOLTReserved.size() < AllocatedSize) { BC->errs() << "BOLT-ERROR: reserved space (" << BC->BOLTReserved.size() << " byte" << (BC->BOLTReserved.size() == 1 ? "" : "s") << ") is smaller than required for new allocations (" << AllocatedSize << " bytes)\n"; exit(1); } } } std::vector RewriteInstance::getCodeSections() { std::vector CodeSections; for (BinarySection &Section : BC->textSections()) if (Section.hasValidSectionID()) CodeSections.emplace_back(&Section); auto compareSections = [&](const BinarySection *A, const BinarySection *B) { // If both A and B have names starting with ".text.cold", then // - if opts::HotFunctionsAtEnd is true, we want order // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold" // - if opts::HotFunctionsAtEnd is false, we want order // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T" if (A->getName().starts_with(BC->getColdCodeSectionName()) && B->getName().starts_with(BC->getColdCodeSectionName())) { if (A->getName().size() != B->getName().size()) return (opts::HotFunctionsAtEnd) ? (A->getName().size() > B->getName().size()) : (A->getName().size() < B->getName().size()); return (opts::HotFunctionsAtEnd) ? (A->getName() > B->getName()) : (A->getName() < B->getName()); } // Place movers before anything else. if (A->getName() == BC->getHotTextMoverSectionName()) return true; if (B->getName() == BC->getHotTextMoverSectionName()) return false; // Depending on opts::HotFunctionsAtEnd, place main and warm sections in // order. if (opts::HotFunctionsAtEnd) { if (B->getName() == BC->getMainCodeSectionName()) return true; if (A->getName() == BC->getMainCodeSectionName()) return false; return (B->getName() == BC->getWarmCodeSectionName()); } else { if (A->getName() == BC->getMainCodeSectionName()) return true; if (B->getName() == BC->getMainCodeSectionName()) return false; return (A->getName() == BC->getWarmCodeSectionName()); } }; // Determine the order of sections. llvm::stable_sort(CodeSections, compareSections); return CodeSections; } void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection) { if (BC->HasRelocations) { // Map sections for functions with pre-assigned addresses. for (BinaryFunction *InjectedFunction : BC->getInjectedBinaryFunctions()) { const uint64_t OutputAddress = InjectedFunction->getOutputAddress(); if (!OutputAddress) continue; ErrorOr FunctionSection = InjectedFunction->getCodeSection(); assert(FunctionSection && "function should have section"); FunctionSection->setOutputAddress(OutputAddress); MapSection(*FunctionSection, OutputAddress); InjectedFunction->setImageAddress(FunctionSection->getAllocAddress()); InjectedFunction->setImageSize(FunctionSection->getOutputSize()); } // Populate the list of sections to be allocated. std::vector CodeSections = getCodeSections(); // Remove sections that were pre-allocated (patch sections). llvm::erase_if(CodeSections, [](BinarySection *Section) { return Section->getOutputAddress(); }); LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n"; for (const BinarySection *Section : CodeSections) dbgs() << Section->getName() << '\n'; ); uint64_t PaddingSize = 0; // size of padding required at the end // Allocate sections starting at a given Address. auto allocateAt = [&](uint64_t Address) { const char *LastNonColdSectionName = BC->HasWarmSection ? BC->getWarmCodeSectionName() : BC->getMainCodeSectionName(); for (BinarySection *Section : CodeSections) { Address = alignTo(Address, Section->getAlignment()); Section->setOutputAddress(Address); Address += Section->getOutputSize(); // Hugify: Additional huge page from right side due to // weird ASLR mapping addresses (4KB aligned) if (opts::Hugify && !BC->HasFixedLoadAddress && Section->getName() == LastNonColdSectionName) Address = alignTo(Address, Section->getAlignment()); } // Make sure we allocate enough space for huge pages. ErrorOr TextSection = BC->getUniqueSectionByName(LastNonColdSectionName); if (opts::HotText && TextSection && TextSection->hasValidSectionID()) { uint64_t HotTextEnd = TextSection->getOutputAddress() + TextSection->getOutputSize(); HotTextEnd = alignTo(HotTextEnd, BC->PageAlign); if (HotTextEnd > Address) { PaddingSize = HotTextEnd - Address; Address = HotTextEnd; } } return Address; }; // Check if we can fit code in the original .text bool AllocationDone = false; if (opts::UseOldText) { const uint64_t CodeSize = allocateAt(BC->OldTextSectionAddress) - BC->OldTextSectionAddress; if (CodeSize <= BC->OldTextSectionSize) { BC->outs() << "BOLT-INFO: using original .text for new code with 0x" << Twine::utohexstr(opts::AlignText) << " alignment\n"; AllocationDone = true; } else { BC->errs() << "BOLT-WARNING: original .text too small to fit the new code" << " using 0x" << Twine::utohexstr(opts::AlignText) << " alignment. " << CodeSize << " bytes needed, have " << BC->OldTextSectionSize << " bytes available.\n"; opts::UseOldText = false; } } if (!AllocationDone) NextAvailableAddress = allocateAt(NextAvailableAddress); // Do the mapping for ORC layer based on the allocation. for (BinarySection *Section : CodeSections) { LLVM_DEBUG( dbgs() << "BOLT: mapping " << Section->getName() << " at 0x" << Twine::utohexstr(Section->getAllocAddress()) << " to 0x" << Twine::utohexstr(Section->getOutputAddress()) << '\n'); MapSection(*Section, Section->getOutputAddress()); Section->setOutputFileOffset( getFileOffsetForAddress(Section->getOutputAddress())); } // Check if we need to insert a padding section for hot text. if (PaddingSize && !opts::UseOldText) BC->outs() << "BOLT-INFO: padding code to 0x" << Twine::utohexstr(NextAvailableAddress) << " to accommodate hot text\n"; return; } // Processing in non-relocation mode. uint64_t NewTextSectionStartAddress = NextAvailableAddress; for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &Function = BFI.second; if (!Function.isEmitted()) continue; bool TooLarge = false; ErrorOr FuncSection = Function.getCodeSection(); assert(FuncSection && "cannot find section for function"); FuncSection->setOutputAddress(Function.getAddress()); LLVM_DEBUG(dbgs() << "BOLT: mapping 0x" << Twine::utohexstr(FuncSection->getAllocAddress()) << " to 0x" << Twine::utohexstr(Function.getAddress()) << '\n'); MapSection(*FuncSection, Function.getAddress()); Function.setImageAddress(FuncSection->getAllocAddress()); Function.setImageSize(FuncSection->getOutputSize()); if (Function.getImageSize() > Function.getMaxSize()) { assert(!BC->isX86() && "Unexpected large function."); TooLarge = true; FailedAddresses.emplace_back(Function.getAddress()); } // Map jump tables if updating in-place. if (opts::JumpTables == JTS_BASIC) { for (auto &JTI : Function.JumpTables) { JumpTable *JT = JTI.second; BinarySection &Section = JT->getOutputSection(); Section.setOutputAddress(JT->getAddress()); Section.setOutputFileOffset(getFileOffsetForAddress(JT->getAddress())); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section.getName() << " to 0x" << Twine::utohexstr(JT->getAddress()) << '\n'); MapSection(Section, JT->getAddress()); } } if (!Function.isSplit()) continue; assert(Function.getLayout().isHotColdSplit() && "Cannot allocate more than two fragments per function in " "non-relocation mode."); FunctionFragment &FF = Function.getLayout().getFragment(FragmentNum::cold()); ErrorOr ColdSection = Function.getCodeSection(FF.getFragmentNum()); assert(ColdSection && "cannot find section for cold part"); // Cold fragments are aligned at 16 bytes. NextAvailableAddress = alignTo(NextAvailableAddress, 16); if (TooLarge) { // The corresponding FDE will refer to address 0. FF.setAddress(0); FF.setImageAddress(0); FF.setImageSize(0); FF.setFileOffset(0); } else { FF.setAddress(NextAvailableAddress); FF.setImageAddress(ColdSection->getAllocAddress()); FF.setImageSize(ColdSection->getOutputSize()); FF.setFileOffset(getFileOffsetForAddress(NextAvailableAddress)); ColdSection->setOutputAddress(FF.getAddress()); } LLVM_DEBUG( dbgs() << formatv( "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n", FF.getImageAddress(), FF.getAddress(), FF.getImageSize())); MapSection(*ColdSection, FF.getAddress()); if (TooLarge) BC->deregisterSection(*ColdSection); NextAvailableAddress += FF.getImageSize(); } // Add the new text section aggregating all existing code sections. // This is pseudo-section that serves a purpose of creating a corresponding // entry in section header table. const uint64_t NewTextSectionSize = NextAvailableAddress - NewTextSectionStartAddress; if (NewTextSectionSize) { const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, /*IsText=*/true, /*IsAllocatable=*/true); BinarySection &Section = BC->registerOrUpdateSection(getBOLTTextSectionName(), ELF::SHT_PROGBITS, Flags, /*Data=*/nullptr, NewTextSectionSize, 16); Section.setOutputAddress(NewTextSectionStartAddress); Section.setOutputFileOffset( getFileOffsetForAddress(NewTextSectionStartAddress)); } } void RewriteInstance::mapAllocatableSections( BOLTLinker::SectionMapper MapSection) { // Allocate read-only sections first, then writable sections. enum : uint8_t { ST_READONLY, ST_READWRITE }; for (uint8_t SType = ST_READONLY; SType <= ST_READWRITE; ++SType) { const uint64_t LastNextAvailableAddress = NextAvailableAddress; if (SType == ST_READWRITE) { // Align R+W segment to regular page size NextAvailableAddress = alignTo(NextAvailableAddress, BC->RegularPageSize); NewWritableSegmentAddress = NextAvailableAddress; } for (BinarySection &Section : BC->allocatableSections()) { if (Section.isLinkOnly()) continue; if (!Section.hasValidSectionID()) continue; if (Section.isWritable() == (SType == ST_READONLY)) continue; if (Section.getOutputAddress()) { LLVM_DEBUG({ dbgs() << "BOLT-DEBUG: section " << Section.getName() << " is already mapped at 0x" << Twine::utohexstr(Section.getOutputAddress()) << '\n'; }); continue; } if (Section.hasSectionRef()) { LLVM_DEBUG({ dbgs() << "BOLT-DEBUG: mapping original section " << Section.getName() << " to 0x" << Twine::utohexstr(Section.getAddress()) << '\n'; }); Section.setOutputAddress(Section.getAddress()); Section.setOutputFileOffset(Section.getInputFileOffset()); MapSection(Section, Section.getAddress()); } else { NextAvailableAddress = alignTo(NextAvailableAddress, Section.getAlignment()); LLVM_DEBUG({ dbgs() << "BOLT: mapping section " << Section.getName() << " (0x" << Twine::utohexstr(Section.getAllocAddress()) << ") to 0x" << Twine::utohexstr(NextAvailableAddress) << ":0x" << Twine::utohexstr(NextAvailableAddress + Section.getOutputSize()) << '\n'; }); MapSection(Section, NextAvailableAddress); Section.setOutputAddress(NextAvailableAddress); Section.setOutputFileOffset( getFileOffsetForAddress(NextAvailableAddress)); NextAvailableAddress += Section.getOutputSize(); } } if (SType == ST_READONLY) { if (PHDRTableAddress) { // Segment size includes the size of the PHDR area. NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; } else if (NewTextSegmentAddress) { // Existing PHDR table would be updated. NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; } } else if (SType == ST_READWRITE) { NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; // Restore NextAvailableAddress if no new writable sections if (!NewWritableSegmentSize) NextAvailableAddress = LastNextAvailableAddress; } } } void RewriteInstance::updateOutputValues(const BOLTLinker &Linker) { if (std::optional Map = AddressMap::parse(*BC)) BC->setIOAddressMap(std::move(*Map)); for (BinaryFunction *Function : BC->getAllBinaryFunctions()) Function->updateOutputValues(Linker); } void RewriteInstance::patchELFPHDRTable() { auto ELF64LEFile = cast(InputFile); const ELFFile &Obj = ELF64LEFile->getELFFile(); raw_fd_ostream &OS = Out->os(); // Write/re-write program headers. Phnum = Obj.getHeader().e_phnum; if (PHDRTableOffset) { // Writing new pheader table and adding one new entry for R+X segment. Phnum += 1; if (NewWritableSegmentSize) { // Adding one more entry for R+W segment. Phnum += 1; } } else { assert(!PHDRTableAddress && "unexpected address for program header table"); PHDRTableOffset = Obj.getHeader().e_phoff; if (NewWritableSegmentSize) { BC->errs() << "BOLT-ERROR: unable to add writable segment\n"; exit(1); } } // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate // last segments size based on the NextAvailableAddress variable. if (!NewWritableSegmentSize) { if (PHDRTableAddress) NewTextSegmentSize = NextAvailableAddress - PHDRTableAddress; else if (NewTextSegmentAddress) NewTextSegmentSize = NextAvailableAddress - NewTextSegmentAddress; } else { NewWritableSegmentSize = NextAvailableAddress - NewWritableSegmentAddress; } const uint64_t SavedPos = OS.tell(); OS.seek(PHDRTableOffset); auto createNewTextPhdr = [&]() { ELF64LEPhdrTy NewPhdr; NewPhdr.p_type = ELF::PT_LOAD; if (PHDRTableAddress) { NewPhdr.p_offset = PHDRTableOffset; NewPhdr.p_vaddr = PHDRTableAddress; NewPhdr.p_paddr = PHDRTableAddress; } else { NewPhdr.p_offset = NewTextSegmentOffset; NewPhdr.p_vaddr = NewTextSegmentAddress; NewPhdr.p_paddr = NewTextSegmentAddress; } NewPhdr.p_filesz = NewTextSegmentSize; NewPhdr.p_memsz = NewTextSegmentSize; NewPhdr.p_flags = ELF::PF_X | ELF::PF_R; if (opts::Instrument) { // FIXME: Currently instrumentation is experimental and the runtime data // is emitted with code, thus everything needs to be writable. NewPhdr.p_flags |= ELF::PF_W; } NewPhdr.p_align = BC->PageAlign; return NewPhdr; }; auto writeNewSegmentPhdrs = [&]() { if (PHDRTableAddress || NewTextSegmentSize) { ELF64LE::Phdr NewPhdr = createNewTextPhdr(); OS.write(reinterpret_cast(&NewPhdr), sizeof(NewPhdr)); } if (NewWritableSegmentSize) { ELF64LEPhdrTy NewPhdr; NewPhdr.p_type = ELF::PT_LOAD; NewPhdr.p_offset = getFileOffsetForAddress(NewWritableSegmentAddress); NewPhdr.p_vaddr = NewWritableSegmentAddress; NewPhdr.p_paddr = NewWritableSegmentAddress; NewPhdr.p_filesz = NewWritableSegmentSize; NewPhdr.p_memsz = NewWritableSegmentSize; NewPhdr.p_align = BC->RegularPageSize; NewPhdr.p_flags = ELF::PF_R | ELF::PF_W; OS.write(reinterpret_cast(&NewPhdr), sizeof(NewPhdr)); } }; bool ModdedGnuStack = false; bool AddedSegment = false; // Copy existing program headers with modifications. for (const ELF64LE::Phdr &Phdr : cantFail(Obj.program_headers())) { ELF64LE::Phdr NewPhdr = Phdr; switch (Phdr.p_type) { case ELF::PT_PHDR: if (PHDRTableAddress) { NewPhdr.p_offset = PHDRTableOffset; NewPhdr.p_vaddr = PHDRTableAddress; NewPhdr.p_paddr = PHDRTableAddress; NewPhdr.p_filesz = sizeof(NewPhdr) * Phnum; NewPhdr.p_memsz = sizeof(NewPhdr) * Phnum; } break; case ELF::PT_GNU_EH_FRAME: { ErrorOr EHFrameHdrSec = BC->getUniqueSectionByName( getNewSecPrefix() + getEHFrameHdrSectionName()); if (EHFrameHdrSec && EHFrameHdrSec->isAllocatable() && EHFrameHdrSec->isFinalized()) { NewPhdr.p_offset = EHFrameHdrSec->getOutputFileOffset(); NewPhdr.p_vaddr = EHFrameHdrSec->getOutputAddress(); NewPhdr.p_paddr = EHFrameHdrSec->getOutputAddress(); NewPhdr.p_filesz = EHFrameHdrSec->getOutputSize(); NewPhdr.p_memsz = EHFrameHdrSec->getOutputSize(); } break; } case ELF::PT_GNU_STACK: if (opts::UseGnuStack) { // Overwrite the header with the new text segment header. NewPhdr = createNewTextPhdr(); ModdedGnuStack = true; } break; case ELF::PT_DYNAMIC: if (!opts::UseGnuStack) { // Insert new headers before DYNAMIC. writeNewSegmentPhdrs(); AddedSegment = true; } break; } OS.write(reinterpret_cast(&NewPhdr), sizeof(NewPhdr)); } if (!opts::UseGnuStack && !AddedSegment) { // Append new headers to the end of the table. writeNewSegmentPhdrs(); } if (opts::UseGnuStack && !ModdedGnuStack) { BC->errs() << "BOLT-ERROR: could not find PT_GNU_STACK program header to modify\n"; exit(1); } OS.seek(SavedPos); } namespace { /// Write padding to \p OS such that its current \p Offset becomes aligned /// at \p Alignment. Return new (aligned) offset. uint64_t appendPadding(raw_pwrite_stream &OS, uint64_t Offset, uint64_t Alignment) { if (!Alignment) return Offset; const uint64_t PaddingSize = offsetToAlignment(Offset, llvm::Align(Alignment)); for (unsigned I = 0; I < PaddingSize; ++I) OS.write((unsigned char)0); return Offset + PaddingSize; } } void RewriteInstance::rewriteNoteSections() { auto ELF64LEFile = cast(InputFile); const ELFFile &Obj = ELF64LEFile->getELFFile(); raw_fd_ostream &OS = Out->os(); uint64_t NextAvailableOffset = std::max( getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset); OS.seek(NextAvailableOffset); // Copy over non-allocatable section contents and update file offsets. for (const ELF64LE::Shdr &Section : cantFail(Obj.sections())) { if (Section.sh_type == ELF::SHT_NULL) continue; if (Section.sh_flags & ELF::SHF_ALLOC) continue; SectionRef SecRef = ELF64LEFile->toSectionRef(&Section); BinarySection *BSec = BC->getSectionForSectionRef(SecRef); assert(BSec && !BSec->isAllocatable() && "Matching non-allocatable BinarySection should exist."); StringRef SectionName = cantFail(Obj.getSectionName(Section), "cannot get section name"); if (shouldStrip(Section, SectionName)) continue; // Insert padding as needed. NextAvailableOffset = appendPadding(OS, NextAvailableOffset, Section.sh_addralign); // New section size. uint64_t Size = 0; bool DataWritten = false; uint8_t *SectionData = nullptr; // Copy over section contents unless it's one of the sections we overwrite. if (!willOverwriteSection(SectionName)) { Size = Section.sh_size; StringRef Dataref = InputFile->getData().substr(Section.sh_offset, Size); std::string Data; if (BSec->getPatcher()) { Data = BSec->getPatcher()->patchBinary(Dataref); Dataref = StringRef(Data); } // Section was expanded, so need to treat it as overwrite. if (Size != Dataref.size()) { BSec = &BC->registerOrUpdateNoteSection( SectionName, copyByteArray(Dataref), Dataref.size()); Size = 0; } else { OS << Dataref; DataWritten = true; // Add padding as the section extension might rely on the alignment. Size = appendPadding(OS, Size, Section.sh_addralign); } } // Perform section post-processing. assert(BSec->getAlignment() <= Section.sh_addralign && "alignment exceeds value in file"); if (BSec->getAllocAddress()) { assert(!DataWritten && "Writing section twice."); (void)DataWritten; SectionData = BSec->getOutputData(); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size ? "appending" : "writing") << " contents to section " << SectionName << '\n'); OS.write(reinterpret_cast(SectionData), BSec->getOutputSize()); Size += BSec->getOutputSize(); } BSec->setOutputFileOffset(NextAvailableOffset); BSec->flushPendingRelocations(OS, [this](const MCSymbol *S) { return getNewValueForSymbol(S->getName()); }); // Section contents are no longer needed, but we need to update the size so // that it will be reflected in the section header table. BSec->updateContents(nullptr, Size); NextAvailableOffset += Size; } // Write new note sections. for (BinarySection &Section : BC->nonAllocatableSections()) { if (Section.getOutputFileOffset() || !Section.getAllocAddress()) continue; assert(!Section.hasPendingRelocations() && "cannot have pending relocs"); NextAvailableOffset = appendPadding(OS, NextAvailableOffset, Section.getAlignment()); Section.setOutputFileOffset(NextAvailableOffset); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: writing out new section " << Section.getName() << " of size " << Section.getOutputSize() << " at offset 0x" << Twine::utohexstr(Section.getOutputFileOffset()) << '\n'); OS.write(Section.getOutputContents().data(), Section.getOutputSize()); NextAvailableOffset += Section.getOutputSize(); } } template void RewriteInstance::finalizeSectionStringTable(ELFObjectFile *File) { // Pre-populate section header string table. for (const BinarySection &Section : BC->sections()) if (!Section.isAnonymous()) SHStrTab.add(Section.getOutputName()); SHStrTab.finalize(); const size_t SHStrTabSize = SHStrTab.getSize(); uint8_t *DataCopy = new uint8_t[SHStrTabSize]; memset(DataCopy, 0, SHStrTabSize); SHStrTab.write(DataCopy); BC->registerOrUpdateNoteSection(".shstrtab", DataCopy, SHStrTabSize, /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_STRTAB); } void RewriteInstance::addBoltInfoSection() { std::string DescStr; raw_string_ostream DescOS(DescStr); DescOS << "BOLT revision: " << BoltRevision << ", " << "command line:"; for (int I = 0; I < Argc; ++I) DescOS << " " << Argv[I]; // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n' const std::string BoltInfo = BinarySection::encodeELFNote("GNU", DescStr, 4 /*NT_GNU_GOLD_VERSION*/); BC->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo), BoltInfo.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_NOTE); } void RewriteInstance::addBATSection() { BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, nullptr, 0, /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_NOTE); } void RewriteInstance::encodeBATSection() { std::string DescStr; raw_string_ostream DescOS(DescStr); BAT->write(*BC, DescOS); const std::string BoltInfo = BinarySection::encodeELFNote("BOLT", DescStr, BinarySection::NT_BOLT_BAT); BC->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME, copyByteArray(BoltInfo), BoltInfo.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_NOTE); BC->outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo.size() << '\n'; } template bool RewriteInstance::shouldStrip(const ELFShdrTy &Section, StringRef SectionName) { // Strip non-allocatable relocation sections. if (!(Section.sh_flags & ELF::SHF_ALLOC) && Section.sh_type == ELF::SHT_RELA) return true; // Strip debug sections if not updating them. if (isDebugSection(SectionName) && !opts::UpdateDebugSections) return true; // Strip symtab section if needed if (opts::RemoveSymtab && Section.sh_type == ELF::SHT_SYMTAB) return true; return false; } template std::vector::Elf_Shdr> RewriteInstance::getOutputSections(ELFObjectFile *File, std::vector &NewSectionIndex) { using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; const ELFFile &Obj = File->getELFFile(); typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); // Keep track of section header entries attached to the corresponding section. std::vector> OutputSections; auto addSection = [&](const ELFShdrTy &Section, BinarySection &BinSec) { ELFShdrTy NewSection = Section; NewSection.sh_name = SHStrTab.getOffset(BinSec.getOutputName()); OutputSections.emplace_back(&BinSec, std::move(NewSection)); }; // Copy over entries for original allocatable sections using modified name. for (const ELFShdrTy &Section : Sections) { // Always ignore this section. if (Section.sh_type == ELF::SHT_NULL) { OutputSections.emplace_back(nullptr, Section); continue; } if (!(Section.sh_flags & ELF::SHF_ALLOC)) continue; SectionRef SecRef = File->toSectionRef(&Section); BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); assert(BinSec && "Matching BinarySection should exist."); addSection(Section, *BinSec); } for (BinarySection &Section : BC->allocatableSections()) { if (!Section.isFinalized()) continue; if (Section.hasSectionRef() || Section.isAnonymous()) { if (opts::Verbosity) BC->outs() << "BOLT-INFO: not writing section header for section " << Section.getOutputName() << '\n'; continue; } if (opts::Verbosity >= 1) BC->outs() << "BOLT-INFO: writing section header for " << Section.getOutputName() << '\n'; ELFShdrTy NewSection; NewSection.sh_type = ELF::SHT_PROGBITS; NewSection.sh_addr = Section.getOutputAddress(); NewSection.sh_offset = Section.getOutputFileOffset(); NewSection.sh_size = Section.getOutputSize(); NewSection.sh_entsize = 0; NewSection.sh_flags = Section.getELFFlags(); NewSection.sh_link = 0; NewSection.sh_info = 0; NewSection.sh_addralign = Section.getAlignment(); addSection(NewSection, Section); } // Sort all allocatable sections by their offset. llvm::stable_sort(OutputSections, [](const auto &A, const auto &B) { return A.second.sh_offset < B.second.sh_offset; }); // Fix section sizes to prevent overlapping. ELFShdrTy *PrevSection = nullptr; BinarySection *PrevBinSec = nullptr; for (auto &SectionKV : OutputSections) { ELFShdrTy &Section = SectionKV.second; // Ignore NOBITS sections as they don't take any space in the file. if (Section.sh_type == ELF::SHT_NOBITS) continue; // Note that address continuity is not guaranteed as sections could be // placed in different loadable segments. if (PrevSection && PrevSection->sh_offset + PrevSection->sh_size > Section.sh_offset) { if (opts::Verbosity > 1) BC->outs() << "BOLT-INFO: adjusting size for section " << PrevBinSec->getOutputName() << '\n'; PrevSection->sh_size = Section.sh_offset - PrevSection->sh_offset; } PrevSection = &Section; PrevBinSec = SectionKV.first; } uint64_t LastFileOffset = 0; // Copy over entries for non-allocatable sections performing necessary // adjustments. for (const ELFShdrTy &Section : Sections) { if (Section.sh_type == ELF::SHT_NULL) continue; if (Section.sh_flags & ELF::SHF_ALLOC) continue; StringRef SectionName = cantFail(Obj.getSectionName(Section), "cannot get section name"); if (shouldStrip(Section, SectionName)) continue; SectionRef SecRef = File->toSectionRef(&Section); BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); assert(BinSec && "Matching BinarySection should exist."); ELFShdrTy NewSection = Section; NewSection.sh_offset = BinSec->getOutputFileOffset(); NewSection.sh_size = BinSec->getOutputSize(); if (NewSection.sh_type == ELF::SHT_SYMTAB) NewSection.sh_info = NumLocalSymbols; addSection(NewSection, *BinSec); LastFileOffset = BinSec->getOutputFileOffset(); } // Create entries for new non-allocatable sections. for (BinarySection &Section : BC->nonAllocatableSections()) { if (Section.getOutputFileOffset() <= LastFileOffset) continue; if (opts::Verbosity >= 1) BC->outs() << "BOLT-INFO: writing section header for " << Section.getOutputName() << '\n'; ELFShdrTy NewSection; NewSection.sh_type = Section.getELFType(); NewSection.sh_addr = 0; NewSection.sh_offset = Section.getOutputFileOffset(); NewSection.sh_size = Section.getOutputSize(); NewSection.sh_entsize = 0; NewSection.sh_flags = Section.getELFFlags(); NewSection.sh_link = 0; NewSection.sh_info = 0; NewSection.sh_addralign = Section.getAlignment(); addSection(NewSection, Section); } // Assign indices to sections. std::unordered_map NameToIndex; for (uint32_t Index = 1; Index < OutputSections.size(); ++Index) OutputSections[Index].first->setIndex(Index); // Update section index mapping NewSectionIndex.clear(); NewSectionIndex.resize(Sections.size(), 0); for (const ELFShdrTy &Section : Sections) { if (Section.sh_type == ELF::SHT_NULL) continue; size_t OrgIndex = std::distance(Sections.begin(), &Section); SectionRef SecRef = File->toSectionRef(&Section); BinarySection *BinSec = BC->getSectionForSectionRef(SecRef); assert(BinSec && "BinarySection should exist for an input section."); // Some sections are stripped if (!BinSec->hasValidIndex()) continue; NewSectionIndex[OrgIndex] = BinSec->getIndex(); } std::vector SectionsOnly(OutputSections.size()); llvm::copy(llvm::make_second_range(OutputSections), SectionsOnly.begin()); return SectionsOnly; } // Rewrite section header table inserting new entries as needed. The sections // header table size itself may affect the offsets of other sections, // so we are placing it at the end of the binary. // // As we rewrite entries we need to track how many sections were inserted // as it changes the sh_link value. We map old indices to new ones for // existing sections. template void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile *File) { using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; using ELFEhdrTy = typename ELFObjectFile::Elf_Ehdr; raw_fd_ostream &OS = Out->os(); const ELFFile &Obj = File->getELFFile(); // Mapping from old section indices to new ones std::vector NewSectionIndex; std::vector OutputSections = getOutputSections(File, NewSectionIndex); LLVM_DEBUG( dbgs() << "BOLT-DEBUG: old to new section index mapping:\n"; for (uint64_t I = 0; I < NewSectionIndex.size(); ++I) dbgs() << " " << I << " -> " << NewSectionIndex[I] << '\n'; ); // Align starting address for section header table. There's no architecutal // need to align this, it is just for pleasant human readability. uint64_t SHTOffset = OS.tell(); SHTOffset = appendPadding(OS, SHTOffset, 16); // Write all section header entries while patching section references. for (ELFShdrTy &Section : OutputSections) { Section.sh_link = NewSectionIndex[Section.sh_link]; if (Section.sh_type == ELF::SHT_REL || Section.sh_type == ELF::SHT_RELA) Section.sh_info = NewSectionIndex[Section.sh_info]; OS.write(reinterpret_cast(&Section), sizeof(Section)); } // Fix ELF header. ELFEhdrTy NewEhdr = Obj.getHeader(); if (BC->HasRelocations) { if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) NewEhdr.e_entry = RtLibrary->getRuntimeStartAddress(); else NewEhdr.e_entry = getNewFunctionAddress(NewEhdr.e_entry); assert((NewEhdr.e_entry || !Obj.getHeader().e_entry) && "cannot find new address for entry point"); } if (PHDRTableOffset) { NewEhdr.e_phoff = PHDRTableOffset; NewEhdr.e_phnum = Phnum; } NewEhdr.e_shoff = SHTOffset; NewEhdr.e_shnum = OutputSections.size(); NewEhdr.e_shstrndx = NewSectionIndex[NewEhdr.e_shstrndx]; OS.pwrite(reinterpret_cast(&NewEhdr), sizeof(NewEhdr), 0); } template void RewriteInstance::updateELFSymbolTable( ELFObjectFile *File, bool IsDynSym, const typename object::ELFObjectFile::Elf_Shdr &SymTabSection, const std::vector &NewSectionIndex, WriteFuncTy Write, StrTabFuncTy AddToStrTab) { const ELFFile &Obj = File->getELFFile(); using ELFSymTy = typename ELFObjectFile::Elf_Sym; StringRef StringSection = cantFail(Obj.getStringTableForSymtab(SymTabSection)); unsigned NumHotTextSymsUpdated = 0; unsigned NumHotDataSymsUpdated = 0; std::map IslandSizes; auto getConstantIslandSize = [&IslandSizes](const BinaryFunction &BF) { auto Itr = IslandSizes.find(&BF); if (Itr != IslandSizes.end()) return Itr->second; return IslandSizes[&BF] = BF.estimateConstantIslandSize(); }; // Symbols for the new symbol table. std::vector Symbols; bool EmittedColdFileSymbol = false; auto getNewSectionIndex = [&](uint32_t OldIndex) { // For dynamic symbol table, the section index could be wrong on the input, // and its value is ignored by the runtime if it's different from // SHN_UNDEF and SHN_ABS. // However, we still need to update dynamic symbol table, so return a // section index, even though the index is broken. if (IsDynSym && OldIndex >= NewSectionIndex.size()) return OldIndex; assert(OldIndex < NewSectionIndex.size() && "section index out of bounds"); const uint32_t NewIndex = NewSectionIndex[OldIndex]; // We may have stripped the section that dynsym was referencing due to // the linker bug. In that case return the old index avoiding marking // the symbol as undefined. if (IsDynSym && NewIndex != OldIndex && NewIndex == ELF::SHN_UNDEF) return OldIndex; return NewIndex; }; // Get the extra symbol name of a split fragment; used in addExtraSymbols. auto getSplitSymbolName = [&](const FunctionFragment &FF, const ELFSymTy &FunctionSymbol) { SmallString<256> SymbolName; if (BC->HasWarmSection) SymbolName = formatv("{0}.{1}", cantFail(FunctionSymbol.getName(StringSection)), FF.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold"); else SymbolName = formatv("{0}.cold.{1}", cantFail(FunctionSymbol.getName(StringSection)), FF.getFragmentNum().get() - 1); return SymbolName; }; // Add extra symbols for the function. // // Note that addExtraSymbols() could be called multiple times for the same // function with different FunctionSymbol matching the main function entry // point. auto addExtraSymbols = [&](const BinaryFunction &Function, const ELFSymTy &FunctionSymbol) { if (Function.isFolded()) { BinaryFunction *ICFParent = Function.getFoldedIntoFunction(); while (ICFParent->isFolded()) ICFParent = ICFParent->getFoldedIntoFunction(); ELFSymTy ICFSymbol = FunctionSymbol; SmallVector Buf; ICFSymbol.st_name = AddToStrTab(Twine(cantFail(FunctionSymbol.getName(StringSection))) .concat(".icf.0") .toStringRef(Buf)); ICFSymbol.st_value = ICFParent->getOutputAddress(); ICFSymbol.st_size = ICFParent->getOutputSize(); ICFSymbol.st_shndx = ICFParent->getCodeSection()->getIndex(); Symbols.emplace_back(ICFSymbol); } if (Function.isSplit()) { // Prepend synthetic FILE symbol to prevent local cold fragments from // colliding with existing symbols with the same name. if (!EmittedColdFileSymbol && FunctionSymbol.getBinding() == ELF::STB_GLOBAL) { ELFSymTy FileSymbol; FileSymbol.st_shndx = ELF::SHN_ABS; FileSymbol.st_name = AddToStrTab(getBOLTFileSymbolName()); FileSymbol.st_value = 0; FileSymbol.st_size = 0; FileSymbol.st_other = 0; FileSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FILE); Symbols.emplace_back(FileSymbol); EmittedColdFileSymbol = true; } for (const FunctionFragment &FF : Function.getLayout().getSplitFragments()) { if (FF.getAddress()) { ELFSymTy NewColdSym = FunctionSymbol; const SmallString<256> SymbolName = getSplitSymbolName(FF, FunctionSymbol); NewColdSym.st_name = AddToStrTab(SymbolName); NewColdSym.st_shndx = Function.getCodeSection(FF.getFragmentNum())->getIndex(); NewColdSym.st_value = FF.getAddress(); NewColdSym.st_size = FF.getImageSize(); NewColdSym.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); Symbols.emplace_back(NewColdSym); } } } if (Function.hasConstantIsland()) { uint64_t DataMark = Function.getOutputDataAddress(); uint64_t CISize = getConstantIslandSize(Function); uint64_t CodeMark = DataMark + CISize; ELFSymTy DataMarkSym = FunctionSymbol; DataMarkSym.st_name = AddToStrTab("$d"); DataMarkSym.st_value = DataMark; DataMarkSym.st_size = 0; DataMarkSym.setType(ELF::STT_NOTYPE); DataMarkSym.setBinding(ELF::STB_LOCAL); ELFSymTy CodeMarkSym = DataMarkSym; CodeMarkSym.st_name = AddToStrTab("$x"); CodeMarkSym.st_value = CodeMark; Symbols.emplace_back(DataMarkSym); Symbols.emplace_back(CodeMarkSym); } if (Function.hasConstantIsland() && Function.isSplit()) { uint64_t DataMark = Function.getOutputColdDataAddress(); uint64_t CISize = getConstantIslandSize(Function); uint64_t CodeMark = DataMark + CISize; ELFSymTy DataMarkSym = FunctionSymbol; DataMarkSym.st_name = AddToStrTab("$d"); DataMarkSym.st_value = DataMark; DataMarkSym.st_size = 0; DataMarkSym.setType(ELF::STT_NOTYPE); DataMarkSym.setBinding(ELF::STB_LOCAL); ELFSymTy CodeMarkSym = DataMarkSym; CodeMarkSym.st_name = AddToStrTab("$x"); CodeMarkSym.st_value = CodeMark; Symbols.emplace_back(DataMarkSym); Symbols.emplace_back(CodeMarkSym); } }; // For regular (non-dynamic) symbol table, exclude symbols referring // to non-allocatable sections. auto shouldStrip = [&](const ELFSymTy &Symbol) { if (Symbol.isAbsolute() || !Symbol.isDefined()) return false; // If we cannot link the symbol to a section, leave it as is. Expected Section = Obj.getSection(Symbol.st_shndx); if (!Section) return false; // Remove the section symbol iif the corresponding section was stripped. if (Symbol.getType() == ELF::STT_SECTION) { if (!getNewSectionIndex(Symbol.st_shndx)) return true; return false; } // Symbols in non-allocatable sections are typically remnants of relocations // emitted under "-emit-relocs" linker option. Delete those as we delete // relocations against non-allocatable sections. if (!((*Section)->sh_flags & ELF::SHF_ALLOC)) return true; return false; }; for (const ELFSymTy &Symbol : cantFail(Obj.symbols(&SymTabSection))) { // For regular (non-dynamic) symbol table strip unneeded symbols. if (!IsDynSym && shouldStrip(Symbol)) continue; const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(Symbol.st_value); // Ignore false function references, e.g. when the section address matches // the address of the function. if (Function && Symbol.getType() == ELF::STT_SECTION) Function = nullptr; // For non-dynamic symtab, make sure the symbol section matches that of // the function. It can mismatch e.g. if the symbol is a section marker // in which case we treat the symbol separately from the function. // For dynamic symbol table, the section index could be wrong on the input, // and its value is ignored by the runtime if it's different from // SHN_UNDEF and SHN_ABS. if (!IsDynSym && Function && Symbol.st_shndx != Function->getOriginSection()->getSectionRef().getIndex()) Function = nullptr; // Create a new symbol based on the existing symbol. ELFSymTy NewSymbol = Symbol; // Handle special symbols based on their name. Expected SymbolName = Symbol.getName(StringSection); assert(SymbolName && "cannot get symbol name"); auto updateSymbolValue = [&](const StringRef Name, std::optional Value = std::nullopt) { NewSymbol.st_value = Value ? *Value : getNewValueForSymbol(Name); NewSymbol.st_shndx = ELF::SHN_ABS; BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" << Twine::utohexstr(NewSymbol.st_value) << '\n'; }; if (*SymbolName == "__hot_start" || *SymbolName == "__hot_end") { if (opts::HotText) { updateSymbolValue(*SymbolName); ++NumHotTextSymsUpdated; } goto registerSymbol; } if (*SymbolName == "__hot_data_start" || *SymbolName == "__hot_data_end") { if (opts::HotData) { updateSymbolValue(*SymbolName); ++NumHotDataSymsUpdated; } goto registerSymbol; } if (*SymbolName == "_end") { if (NextAvailableAddress > Symbol.st_value) updateSymbolValue(*SymbolName, NextAvailableAddress); goto registerSymbol; } if (Function) { // If the symbol matched a function that was not emitted, update the // corresponding section index but otherwise leave it unchanged. if (Function->isEmitted()) { NewSymbol.st_value = Function->getOutputAddress(); NewSymbol.st_size = Function->getOutputSize(); NewSymbol.st_shndx = Function->getCodeSection()->getIndex(); } else if (Symbol.st_shndx < ELF::SHN_LORESERVE) { NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); } // Add new symbols to the symbol table if necessary. if (!IsDynSym) addExtraSymbols(*Function, NewSymbol); } else { // Check if the function symbol matches address inside a function, i.e. // it marks a secondary entry point. Function = (Symbol.getType() == ELF::STT_FUNC) ? BC->getBinaryFunctionContainingAddress(Symbol.st_value, /*CheckPastEnd=*/false, /*UseMaxSize=*/true) : nullptr; if (Function && Function->isEmitted()) { assert(Function->getLayout().isHotColdSplit() && "Adding symbols based on cold fragment when there are more than " "2 fragments"); const uint64_t OutputAddress = Function->translateInputToOutputAddress(Symbol.st_value); NewSymbol.st_value = OutputAddress; // Force secondary entry points to have zero size. NewSymbol.st_size = 0; // Find fragment containing entrypoint FunctionLayout::fragment_const_iterator FF = llvm::find_if( Function->getLayout().fragments(), [&](const FunctionFragment &FF) { uint64_t Lo = FF.getAddress(); uint64_t Hi = Lo + FF.getImageSize(); return Lo <= OutputAddress && OutputAddress < Hi; }); if (FF == Function->getLayout().fragment_end()) { assert( OutputAddress >= Function->getCodeSection()->getOutputAddress() && OutputAddress < (Function->getCodeSection()->getOutputAddress() + Function->getCodeSection()->getOutputSize()) && "Cannot locate fragment containing secondary entrypoint"); FF = Function->getLayout().fragment_begin(); } NewSymbol.st_shndx = Function->getCodeSection(FF->getFragmentNum())->getIndex(); } else { // Check if the symbol belongs to moved data object and update it. BinaryData *BD = opts::ReorderData.empty() ? nullptr : BC->getBinaryDataAtAddress(Symbol.st_value); if (BD && BD->isMoved() && !BD->isJumpTable()) { assert((!BD->getSize() || !Symbol.st_size || Symbol.st_size == BD->getSize()) && "sizes must match"); BinarySection &OutputSection = BD->getOutputSection(); assert(OutputSection.getIndex()); LLVM_DEBUG(dbgs() << "BOLT-DEBUG: moving " << BD->getName() << " from " << *BC->getSectionNameForAddress(Symbol.st_value) << " (" << Symbol.st_shndx << ") to " << OutputSection.getName() << " (" << OutputSection.getIndex() << ")\n"); NewSymbol.st_shndx = OutputSection.getIndex(); NewSymbol.st_value = BD->getOutputAddress(); } else { // Otherwise just update the section for the symbol. if (Symbol.st_shndx < ELF::SHN_LORESERVE) NewSymbol.st_shndx = getNewSectionIndex(Symbol.st_shndx); } // Detect local syms in the text section that we didn't update // and that were preserved by the linker to support relocations against // .text. Remove them from the symtab. if (Symbol.getType() == ELF::STT_NOTYPE && Symbol.getBinding() == ELF::STB_LOCAL && Symbol.st_size == 0) { if (BC->getBinaryFunctionContainingAddress(Symbol.st_value, /*CheckPastEnd=*/false, /*UseMaxSize=*/true)) { // Can only delete the symbol if not patching. Such symbols should // not exist in the dynamic symbol table. assert(!IsDynSym && "cannot delete symbol"); continue; } } } } registerSymbol: if (IsDynSym) Write((&Symbol - cantFail(Obj.symbols(&SymTabSection)).begin()) * sizeof(ELFSymTy), NewSymbol); else Symbols.emplace_back(NewSymbol); } if (IsDynSym) { assert(Symbols.empty()); return; } // Add symbols of injected functions for (BinaryFunction *Function : BC->getInjectedBinaryFunctions()) { ELFSymTy NewSymbol; BinarySection *OriginSection = Function->getOriginSection(); NewSymbol.st_shndx = OriginSection ? getNewSectionIndex(OriginSection->getSectionRef().getIndex()) : Function->getCodeSection()->getIndex(); NewSymbol.st_value = Function->getOutputAddress(); NewSymbol.st_name = AddToStrTab(Function->getOneName()); NewSymbol.st_size = Function->getOutputSize(); NewSymbol.st_other = 0; NewSymbol.setBindingAndType(ELF::STB_LOCAL, ELF::STT_FUNC); Symbols.emplace_back(NewSymbol); if (Function->isSplit()) { assert(Function->getLayout().isHotColdSplit() && "Adding symbols based on cold fragment when there are more than " "2 fragments"); ELFSymTy NewColdSym = NewSymbol; NewColdSym.setType(ELF::STT_NOTYPE); SmallVector Buf; NewColdSym.st_name = AddToStrTab( Twine(Function->getPrintName()).concat(".cold.0").toStringRef(Buf)); const FunctionFragment &ColdFF = Function->getLayout().getFragment(FragmentNum::cold()); NewColdSym.st_value = ColdFF.getAddress(); NewColdSym.st_size = ColdFF.getImageSize(); Symbols.emplace_back(NewColdSym); } } auto AddSymbol = [&](const StringRef &Name, uint64_t Address) { if (!Address) return; ELFSymTy Symbol; Symbol.st_value = Address; Symbol.st_shndx = ELF::SHN_ABS; Symbol.st_name = AddToStrTab(Name); Symbol.st_size = 0; Symbol.st_other = 0; Symbol.setBindingAndType(ELF::STB_WEAK, ELF::STT_NOTYPE); BC->outs() << "BOLT-INFO: setting " << Name << " to 0x" << Twine::utohexstr(Symbol.st_value) << '\n'; Symbols.emplace_back(Symbol); }; // Add runtime library start and fini address symbols if (RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary()) { AddSymbol("__bolt_runtime_start", RtLibrary->getRuntimeStartAddress()); AddSymbol("__bolt_runtime_fini", RtLibrary->getRuntimeFiniAddress()); } assert((!NumHotTextSymsUpdated || NumHotTextSymsUpdated == 2) && "either none or both __hot_start/__hot_end symbols were expected"); assert((!NumHotDataSymsUpdated || NumHotDataSymsUpdated == 2) && "either none or both __hot_data_start/__hot_data_end symbols were " "expected"); auto AddEmittedSymbol = [&](const StringRef &Name) { AddSymbol(Name, getNewValueForSymbol(Name)); }; if (opts::HotText && !NumHotTextSymsUpdated) { AddEmittedSymbol("__hot_start"); AddEmittedSymbol("__hot_end"); } if (opts::HotData && !NumHotDataSymsUpdated) { AddEmittedSymbol("__hot_data_start"); AddEmittedSymbol("__hot_data_end"); } // Put local symbols at the beginning. llvm::stable_sort(Symbols, [](const ELFSymTy &A, const ELFSymTy &B) { if (A.getBinding() == ELF::STB_LOCAL && B.getBinding() != ELF::STB_LOCAL) return true; return false; }); for (const ELFSymTy &Symbol : Symbols) Write(0, Symbol); } template void RewriteInstance::patchELFSymTabs(ELFObjectFile *File) { const ELFFile &Obj = File->getELFFile(); using ELFShdrTy = typename ELFObjectFile::Elf_Shdr; using ELFSymTy = typename ELFObjectFile::Elf_Sym; // Compute a preview of how section indices will change after rewriting, so // we can properly update the symbol table based on new section indices. std::vector NewSectionIndex; getOutputSections(File, NewSectionIndex); // Update dynamic symbol table. const ELFShdrTy *DynSymSection = nullptr; for (const ELFShdrTy &Section : cantFail(Obj.sections())) { if (Section.sh_type == ELF::SHT_DYNSYM) { DynSymSection = &Section; break; } } assert((DynSymSection || BC->IsStaticExecutable) && "dynamic symbol table expected"); if (DynSymSection) { updateELFSymbolTable( File, /*IsDynSym=*/true, *DynSymSection, NewSectionIndex, [&](size_t Offset, const ELFSymTy &Sym) { Out->os().pwrite(reinterpret_cast(&Sym), sizeof(ELFSymTy), DynSymSection->sh_offset + Offset); }, [](StringRef) -> size_t { return 0; }); } if (opts::RemoveSymtab) return; // (re)create regular symbol table. const ELFShdrTy *SymTabSection = nullptr; for (const ELFShdrTy &Section : cantFail(Obj.sections())) { if (Section.sh_type == ELF::SHT_SYMTAB) { SymTabSection = &Section; break; } } if (!SymTabSection) { BC->errs() << "BOLT-WARNING: no symbol table found\n"; return; } const ELFShdrTy *StrTabSection = cantFail(Obj.getSection(SymTabSection->sh_link)); std::string NewContents; std::string NewStrTab = std::string( File->getData().substr(StrTabSection->sh_offset, StrTabSection->sh_size)); StringRef SecName = cantFail(Obj.getSectionName(*SymTabSection)); StringRef StrSecName = cantFail(Obj.getSectionName(*StrTabSection)); NumLocalSymbols = 0; updateELFSymbolTable( File, /*IsDynSym=*/false, *SymTabSection, NewSectionIndex, [&](size_t Offset, const ELFSymTy &Sym) { if (Sym.getBinding() == ELF::STB_LOCAL) ++NumLocalSymbols; NewContents.append(reinterpret_cast(&Sym), sizeof(ELFSymTy)); }, [&](StringRef Str) { size_t Idx = NewStrTab.size(); NewStrTab.append(NameResolver::restore(Str).str()); NewStrTab.append(1, '\0'); return Idx; }); BC->registerOrUpdateNoteSection(SecName, copyByteArray(NewContents), NewContents.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_SYMTAB); BC->registerOrUpdateNoteSection(StrSecName, copyByteArray(NewStrTab), NewStrTab.size(), /*Alignment=*/1, /*IsReadOnly=*/true, ELF::SHT_STRTAB); } template void RewriteInstance::patchELFAllocatableRelrSection( ELFObjectFile *File) { if (!DynamicRelrAddress) return; raw_fd_ostream &OS = Out->os(); const uint8_t PSize = BC->AsmInfo->getCodePointerSize(); const uint64_t MaxDelta = ((CHAR_BIT * DynamicRelrEntrySize) - 1) * PSize; auto FixAddend = [&](const BinarySection &Section, const Relocation &Rel, uint64_t FileOffset) { // Fix relocation symbol value in place if no static relocation found // on the same address. We won't check the BF relocations here since it // is rare case and no optimization is required. if (Section.getRelocationAt(Rel.Offset)) return; // No fixup needed if symbol address was not changed const uint64_t Addend = getNewFunctionOrDataAddress(Rel.Addend); if (!Addend) return; OS.pwrite(reinterpret_cast(&Addend), PSize, FileOffset); }; // Fill new relative relocation offsets set std::set RelOffsets; for (const BinarySection &Section : BC->allocatableSections()) { const uint64_t SectionInputAddress = Section.getAddress(); uint64_t SectionAddress = Section.getOutputAddress(); if (!SectionAddress) SectionAddress = SectionInputAddress; for (const Relocation &Rel : Section.dynamicRelocations()) { if (!Rel.isRelative()) continue; uint64_t RelOffset = getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; assert((RelOffset & 1) == 0 && "Wrong relocation offset"); RelOffsets.emplace(RelOffset); FixAddend(Section, Rel, RelOffset); } } ErrorOr Section = BC->getSectionForAddress(*DynamicRelrAddress); assert(Section && "cannot get .relr.dyn section"); assert(Section->isRelr() && "Expected section to be SHT_RELR type"); uint64_t RelrDynOffset = Section->getInputFileOffset(); const uint64_t RelrDynEndOffset = RelrDynOffset + Section->getSize(); auto WriteRelr = [&](uint64_t Value) { if (RelrDynOffset + DynamicRelrEntrySize > RelrDynEndOffset) { BC->errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n"; exit(1); } OS.pwrite(reinterpret_cast(&Value), DynamicRelrEntrySize, RelrDynOffset); RelrDynOffset += DynamicRelrEntrySize; }; for (auto RelIt = RelOffsets.begin(); RelIt != RelOffsets.end();) { WriteRelr(*RelIt); uint64_t Base = *RelIt++ + PSize; while (1) { uint64_t Bitmap = 0; for (; RelIt != RelOffsets.end(); ++RelIt) { const uint64_t Delta = *RelIt - Base; if (Delta >= MaxDelta || Delta % PSize) break; Bitmap |= (1ULL << (Delta / PSize)); } if (!Bitmap) break; WriteRelr((Bitmap << 1) | 1); Base += MaxDelta; } } // Fill the rest of the section with empty bitmap value while (RelrDynOffset != RelrDynEndOffset) WriteRelr(1); } template void RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile *File) { using Elf_Rela = typename ELFT::Rela; raw_fd_ostream &OS = Out->os(); const ELFFile &EF = File->getELFFile(); uint64_t RelDynOffset = 0, RelDynEndOffset = 0; uint64_t RelPltOffset = 0, RelPltEndOffset = 0; auto setSectionFileOffsets = [&](uint64_t Address, uint64_t &Start, uint64_t &End) { ErrorOr Section = BC->getSectionForAddress(Address); assert(Section && "cannot get relocation section"); Start = Section->getInputFileOffset(); End = Start + Section->getSize(); }; if (!DynamicRelocationsAddress && !PLTRelocationsAddress) return; if (DynamicRelocationsAddress) setSectionFileOffsets(*DynamicRelocationsAddress, RelDynOffset, RelDynEndOffset); if (PLTRelocationsAddress) setSectionFileOffsets(*PLTRelocationsAddress, RelPltOffset, RelPltEndOffset); DynamicRelativeRelocationsCount = 0; auto writeRela = [&OS](const Elf_Rela *RelA, uint64_t &Offset) { OS.pwrite(reinterpret_cast(RelA), sizeof(*RelA), Offset); Offset += sizeof(*RelA); }; auto writeRelocations = [&](bool PatchRelative) { for (BinarySection &Section : BC->allocatableSections()) { const uint64_t SectionInputAddress = Section.getAddress(); uint64_t SectionAddress = Section.getOutputAddress(); if (!SectionAddress) SectionAddress = SectionInputAddress; for (const Relocation &Rel : Section.dynamicRelocations()) { const bool IsRelative = Rel.isRelative(); if (PatchRelative != IsRelative) continue; if (IsRelative) ++DynamicRelativeRelocationsCount; Elf_Rela NewRelA; MCSymbol *Symbol = Rel.Symbol; uint32_t SymbolIdx = 0; uint64_t Addend = Rel.Addend; uint64_t RelOffset = getNewFunctionOrDataAddress(SectionInputAddress + Rel.Offset); RelOffset = RelOffset == 0 ? SectionAddress + Rel.Offset : RelOffset; if (Rel.Symbol) { SymbolIdx = getOutputDynamicSymbolIndex(Symbol); } else { // Usually this case is used for R_*_(I)RELATIVE relocations const uint64_t Address = getNewFunctionOrDataAddress(Addend); if (Address) Addend = Address; } NewRelA.setSymbolAndType(SymbolIdx, Rel.Type, EF.isMips64EL()); NewRelA.r_offset = RelOffset; NewRelA.r_addend = Addend; const bool IsJmpRel = IsJmpRelocation.contains(Rel.Type); uint64_t &Offset = IsJmpRel ? RelPltOffset : RelDynOffset; const uint64_t &EndOffset = IsJmpRel ? RelPltEndOffset : RelDynEndOffset; if (!Offset || !EndOffset) { BC->errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n"; exit(1); } if (Offset + sizeof(NewRelA) > EndOffset) { BC->errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n"; exit(1); } writeRela(&NewRelA, Offset); } } }; // Place R_*_RELATIVE relocations in RELA section if RELR is not presented. // The dynamic linker expects all R_*_RELATIVE relocations in RELA // to be emitted first. if (!DynamicRelrAddress) writeRelocations(/* PatchRelative */ true); writeRelocations(/* PatchRelative */ false); auto fillNone = [&](uint64_t &Offset, uint64_t EndOffset) { if (!Offset) return; typename ELFObjectFile::Elf_Rela RelA; RelA.setSymbolAndType(0, Relocation::getNone(), EF.isMips64EL()); RelA.r_offset = 0; RelA.r_addend = 0; while (Offset < EndOffset) writeRela(&RelA, Offset); assert(Offset == EndOffset && "Unexpected section overflow"); }; // Fill the rest of the sections with R_*_NONE relocations fillNone(RelDynOffset, RelDynEndOffset); fillNone(RelPltOffset, RelPltEndOffset); } template void RewriteInstance::patchELFGOT(ELFObjectFile *File) { raw_fd_ostream &OS = Out->os(); SectionRef GOTSection; for (const SectionRef &Section : File->sections()) { StringRef SectionName = cantFail(Section.getName()); if (SectionName == ".got") { GOTSection = Section; break; } } if (!GOTSection.getObject()) { if (!BC->IsStaticExecutable) BC->errs() << "BOLT-INFO: no .got section found\n"; return; } StringRef GOTContents = cantFail(GOTSection.getContents()); for (const uint64_t *GOTEntry = reinterpret_cast(GOTContents.data()); GOTEntry < reinterpret_cast(GOTContents.data() + GOTContents.size()); ++GOTEntry) { if (uint64_t NewAddress = getNewFunctionAddress(*GOTEntry)) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x" << Twine::utohexstr(*GOTEntry) << " with 0x" << Twine::utohexstr(NewAddress) << '\n'); OS.pwrite(reinterpret_cast(&NewAddress), sizeof(NewAddress), reinterpret_cast(GOTEntry) - File->getData().data()); } } } template void RewriteInstance::patchELFDynamic(ELFObjectFile *File) { if (BC->IsStaticExecutable) return; const ELFFile &Obj = File->getELFFile(); raw_fd_ostream &OS = Out->os(); using Elf_Phdr = typename ELFFile::Elf_Phdr; using Elf_Dyn = typename ELFFile::Elf_Dyn; // Locate DYNAMIC by looking through program headers. uint64_t DynamicOffset = 0; const Elf_Phdr *DynamicPhdr = nullptr; for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { if (Phdr.p_type == ELF::PT_DYNAMIC) { DynamicOffset = Phdr.p_offset; DynamicPhdr = &Phdr; assert(Phdr.p_memsz == Phdr.p_filesz && "dynamic sizes should match"); break; } } assert(DynamicPhdr && "missing dynamic in ELF binary"); bool ZNowSet = false; // Go through all dynamic entries and patch functions addresses with // new ones. typename ELFT::DynRange DynamicEntries = cantFail(Obj.dynamicEntries(), "error accessing dynamic table"); auto DTB = DynamicEntries.begin(); for (const Elf_Dyn &Dyn : DynamicEntries) { Elf_Dyn NewDE = Dyn; bool ShouldPatch = true; switch (Dyn.d_tag) { default: ShouldPatch = false; break; case ELF::DT_RELACOUNT: NewDE.d_un.d_val = DynamicRelativeRelocationsCount; break; case ELF::DT_INIT: case ELF::DT_FINI: { if (BC->HasRelocations) { if (uint64_t NewAddress = getNewFunctionAddress(Dyn.getPtr())) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type " << Dyn.getTag() << '\n'); NewDE.d_un.d_ptr = NewAddress; } } RuntimeLibrary *RtLibrary = BC->getRuntimeLibrary(); if (RtLibrary && Dyn.getTag() == ELF::DT_FINI) { if (uint64_t Addr = RtLibrary->getRuntimeFiniAddress()) NewDE.d_un.d_ptr = Addr; } if (RtLibrary && Dyn.getTag() == ELF::DT_INIT && !BC->HasInterpHeader) { if (auto Addr = RtLibrary->getRuntimeStartAddress()) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x" << Twine::utohexstr(Addr) << '\n'); NewDE.d_un.d_ptr = Addr; } } break; } case ELF::DT_FLAGS: if (BC->RequiresZNow) { NewDE.d_un.d_val |= ELF::DF_BIND_NOW; ZNowSet = true; } break; case ELF::DT_FLAGS_1: if (BC->RequiresZNow) { NewDE.d_un.d_val |= ELF::DF_1_NOW; ZNowSet = true; } break; } if (ShouldPatch) OS.pwrite(reinterpret_cast(&NewDE), sizeof(NewDE), DynamicOffset + (&Dyn - DTB) * sizeof(Dyn)); } if (BC->RequiresZNow && !ZNowSet) { BC->errs() << "BOLT-ERROR: output binary requires immediate relocation " "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in " ".dynamic. Please re-link the binary with -znow.\n"; exit(1); } } template Error RewriteInstance::readELFDynamic(ELFObjectFile *File) { const ELFFile &Obj = File->getELFFile(); using Elf_Phdr = typename ELFFile::Elf_Phdr; using Elf_Dyn = typename ELFFile::Elf_Dyn; // Locate DYNAMIC by looking through program headers. const Elf_Phdr *DynamicPhdr = nullptr; for (const Elf_Phdr &Phdr : cantFail(Obj.program_headers())) { if (Phdr.p_type == ELF::PT_DYNAMIC) { DynamicPhdr = &Phdr; break; } } if (!DynamicPhdr) { BC->outs() << "BOLT-INFO: static input executable detected\n"; // TODO: static PIE executable might have dynamic header BC->IsStaticExecutable = true; return Error::success(); } if (DynamicPhdr->p_memsz != DynamicPhdr->p_filesz) return createStringError(errc::executable_format_error, "dynamic section sizes should match"); // Go through all dynamic entries to locate entries of interest. auto DynamicEntriesOrErr = Obj.dynamicEntries(); if (!DynamicEntriesOrErr) return DynamicEntriesOrErr.takeError(); typename ELFT::DynRange DynamicEntries = DynamicEntriesOrErr.get(); for (const Elf_Dyn &Dyn : DynamicEntries) { switch (Dyn.d_tag) { case ELF::DT_INIT: if (!BC->HasInterpHeader) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n"); BC->StartFunctionAddress = Dyn.getPtr(); } break; case ELF::DT_FINI: BC->FiniAddress = Dyn.getPtr(); break; case ELF::DT_FINI_ARRAY: BC->FiniArrayAddress = Dyn.getPtr(); break; case ELF::DT_FINI_ARRAYSZ: BC->FiniArraySize = Dyn.getPtr(); break; case ELF::DT_RELA: DynamicRelocationsAddress = Dyn.getPtr(); break; case ELF::DT_RELASZ: DynamicRelocationsSize = Dyn.getVal(); break; case ELF::DT_JMPREL: PLTRelocationsAddress = Dyn.getPtr(); break; case ELF::DT_PLTRELSZ: PLTRelocationsSize = Dyn.getVal(); break; case ELF::DT_RELACOUNT: DynamicRelativeRelocationsCount = Dyn.getVal(); break; case ELF::DT_RELR: DynamicRelrAddress = Dyn.getPtr(); break; case ELF::DT_RELRSZ: DynamicRelrSize = Dyn.getVal(); break; case ELF::DT_RELRENT: DynamicRelrEntrySize = Dyn.getVal(); break; } } if (!DynamicRelocationsAddress || !DynamicRelocationsSize) { DynamicRelocationsAddress.reset(); DynamicRelocationsSize = 0; } if (!PLTRelocationsAddress || !PLTRelocationsSize) { PLTRelocationsAddress.reset(); PLTRelocationsSize = 0; } if (!DynamicRelrAddress || !DynamicRelrSize) { DynamicRelrAddress.reset(); DynamicRelrSize = 0; } else if (!DynamicRelrEntrySize) { BC->errs() << "BOLT-ERROR: expected DT_RELRENT to be presented " << "in DYNAMIC section\n"; exit(1); } else if (DynamicRelrSize % DynamicRelrEntrySize) { BC->errs() << "BOLT-ERROR: expected RELR table size to be divisible " << "by RELR entry size\n"; exit(1); } return Error::success(); } uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress) { const BinaryFunction *Function = BC->getBinaryFunctionAtAddress(OldAddress); if (!Function) return 0; return Function->getOutputAddress(); } uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress) { if (uint64_t Function = getNewFunctionAddress(OldAddress)) return Function; const BinaryData *BD = BC->getBinaryDataAtAddress(OldAddress); if (BD && BD->isMoved()) return BD->getOutputAddress(); if (const BinaryFunction *BF = BC->getBinaryFunctionContainingAddress(OldAddress)) { if (BF->isEmitted()) { // If OldAddress is the another entry point of // the function, then BOLT could get the new address. if (BF->isMultiEntry()) { for (const BinaryBasicBlock &BB : *BF) if (BB.isEntryPoint() && (BF->getAddress() + BB.getOffset()) == OldAddress) return BF->getOutputAddress() + BB.getOffset(); } BC->errs() << "BOLT-ERROR: unable to get new address corresponding to " "input address 0x" << Twine::utohexstr(OldAddress) << " in function " << *BF << ". Consider adding this function to --skip-funcs=...\n"; exit(1); } } return 0; } void RewriteInstance::rewriteFile() { std::error_code EC; Out = std::make_unique(opts::OutputFilename, EC, sys::fs::OF_None); check_error(EC, "cannot create output executable file"); raw_fd_ostream &OS = Out->os(); // Copy allocatable part of the input. OS << InputFile->getData().substr(0, FirstNonAllocatableOffset); auto Streamer = BC->createStreamer(OS); // Make sure output stream has enough reserved space, otherwise // pwrite() will fail. uint64_t Offset = std::max(getFileOffsetForAddress(NextAvailableAddress), FirstNonAllocatableOffset); Offset = OS.seek(Offset); assert((Offset != (uint64_t)-1) && "Error resizing output file"); // Overwrite functions with fixed output address. This is mostly used by // non-relocation mode, with one exception: injected functions are covered // here in both modes. uint64_t CountOverwrittenFunctions = 0; uint64_t OverwrittenScore = 0; for (BinaryFunction *Function : BC->getAllBinaryFunctions()) { if (Function->getImageAddress() == 0 || Function->getImageSize() == 0) continue; if (Function->getImageSize() > Function->getMaxSize()) { assert(!BC->isX86() && "Unexpected large function."); if (opts::Verbosity >= 1) BC->errs() << "BOLT-WARNING: new function size (0x" << Twine::utohexstr(Function->getImageSize()) << ") is larger than maximum allowed size (0x" << Twine::utohexstr(Function->getMaxSize()) << ") for function " << *Function << '\n'; // Remove jump table sections that this function owns in non-reloc mode // because we don't want to write them anymore. if (!BC->HasRelocations && opts::JumpTables == JTS_BASIC) { for (auto &JTI : Function->JumpTables) { JumpTable *JT = JTI.second; BinarySection &Section = JT->getOutputSection(); BC->deregisterSection(Section); } } continue; } const auto HasAddress = [](const FunctionFragment &FF) { return FF.empty() || (FF.getImageAddress() != 0 && FF.getImageSize() != 0); }; const bool SplitFragmentsHaveAddress = llvm::all_of(Function->getLayout().getSplitFragments(), HasAddress); if (Function->isSplit() && !SplitFragmentsHaveAddress) { const auto HasNoAddress = [](const FunctionFragment &FF) { return FF.getImageAddress() == 0 && FF.getImageSize() == 0; }; assert(llvm::all_of(Function->getLayout().getSplitFragments(), HasNoAddress) && "Some split fragments have an address while others do not"); (void)HasNoAddress; continue; } OverwrittenScore += Function->getFunctionScore(); ++CountOverwrittenFunctions; // Overwrite function in the output file. if (opts::Verbosity >= 2) BC->outs() << "BOLT: rewriting function \"" << *Function << "\"\n"; OS.pwrite(reinterpret_cast(Function->getImageAddress()), Function->getImageSize(), Function->getFileOffset()); // Write nops at the end of the function. if (Function->getMaxSize() != std::numeric_limits::max()) { uint64_t Pos = OS.tell(); OS.seek(Function->getFileOffset() + Function->getImageSize()); BC->MAB->writeNopData( OS, Function->getMaxSize() - Function->getImageSize(), &*BC->STI); OS.seek(Pos); } if (!Function->isSplit()) continue; // Write cold part if (opts::Verbosity >= 2) { BC->outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n", *Function); } for (const FunctionFragment &FF : Function->getLayout().getSplitFragments()) { OS.pwrite(reinterpret_cast(FF.getImageAddress()), FF.getImageSize(), FF.getFileOffset()); } } // Print function statistics for non-relocation mode. if (!BC->HasRelocations) { BC->outs() << "BOLT: " << CountOverwrittenFunctions << " out of " << BC->getBinaryFunctions().size() << " functions were overwritten.\n"; if (BC->TotalScore != 0) { double Coverage = OverwrittenScore / (double)BC->TotalScore * 100.0; BC->outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage) << "% of the execution count of simple functions of " "this binary\n"; } } if (BC->HasRelocations && opts::TrapOldCode) { uint64_t SavedPos = OS.tell(); // Overwrite function body to make sure we never execute these instructions. for (auto &BFI : BC->getBinaryFunctions()) { BinaryFunction &BF = BFI.second; if (!BF.getFileOffset() || !BF.isEmitted()) continue; OS.seek(BF.getFileOffset()); StringRef TrapInstr = BC->MIB->getTrapFillValue(); unsigned NInstr = BF.getMaxSize() / TrapInstr.size(); for (unsigned I = 0; I < NInstr; ++I) OS.write(TrapInstr.data(), TrapInstr.size()); } OS.seek(SavedPos); } // Write all allocatable sections - reloc-mode text is written here as well for (BinarySection &Section : BC->allocatableSections()) { if (!Section.isFinalized() || !Section.getOutputData()) continue; if (Section.isLinkOnly()) continue; if (opts::Verbosity >= 1) BC->outs() << "BOLT: writing new section " << Section.getName() << "\n data at 0x" << Twine::utohexstr(Section.getAllocAddress()) << "\n of size " << Section.getOutputSize() << "\n at offset " << Section.getOutputFileOffset() << '\n'; OS.pwrite(reinterpret_cast(Section.getOutputData()), Section.getOutputSize(), Section.getOutputFileOffset()); } for (BinarySection &Section : BC->allocatableSections()) Section.flushPendingRelocations(OS, [this](const MCSymbol *S) { return getNewValueForSymbol(S->getName()); }); // If .eh_frame is present create .eh_frame_hdr. if (EHFrameSection) writeEHFrameHeader(); // Add BOLT Addresses Translation maps to allow profile collection to // happen in the output binary if (opts::EnableBAT) addBATSection(); // Patch program header table. if (!BC->IsLinuxKernel) patchELFPHDRTable(); // Finalize memory image of section string table. finalizeSectionStringTable(); // Update symbol tables. patchELFSymTabs(); if (opts::EnableBAT) encodeBATSection(); // Copy non-allocatable sections once allocatable part is finished. rewriteNoteSections(); if (BC->HasRelocations) { patchELFAllocatableRelaSections(); patchELFAllocatableRelrSection(); patchELFGOT(); } // Patch dynamic section/segment. patchELFDynamic(); // Update ELF book-keeping info. patchELFSectionHeaderTable(); if (opts::PrintSections) { BC->outs() << "BOLT-INFO: Sections after processing:\n"; BC->printSections(BC->outs()); } Out->keep(); EC = sys::fs::setPermissions( opts::OutputFilename, static_cast(sys::fs::perms::all_all & ~sys::fs::getUmask())); check_error(EC, "cannot set permissions of output file"); } void RewriteInstance::writeEHFrameHeader() { BinarySection *NewEHFrameSection = getSection(getNewSecPrefix() + getEHFrameSectionName()); // No need to update the header if no new .eh_frame was created. if (!NewEHFrameSection) return; DWARFDebugFrame NewEHFrame(BC->TheTriple->getArch(), true, NewEHFrameSection->getOutputAddress()); Error E = NewEHFrame.parse(DWARFDataExtractor( NewEHFrameSection->getOutputContents(), BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize())); check_error(std::move(E), "failed to parse EH frame"); uint64_t RelocatedEHFrameAddress = 0; StringRef RelocatedEHFrameContents; BinarySection *RelocatedEHFrameSection = getSection(".relocated" + getEHFrameSectionName()); if (RelocatedEHFrameSection) { RelocatedEHFrameAddress = RelocatedEHFrameSection->getOutputAddress(); RelocatedEHFrameContents = RelocatedEHFrameSection->getOutputContents(); } DWARFDebugFrame RelocatedEHFrame(BC->TheTriple->getArch(), true, RelocatedEHFrameAddress); Error Er = RelocatedEHFrame.parse(DWARFDataExtractor( RelocatedEHFrameContents, BC->AsmInfo->isLittleEndian(), BC->AsmInfo->getCodePointerSize())); check_error(std::move(Er), "failed to parse EH frame"); LLVM_DEBUG(dbgs() << "BOLT: writing a new " << getEHFrameHdrSectionName() << '\n'); NextAvailableAddress = appendPadding(Out->os(), NextAvailableAddress, EHFrameHdrAlign); const uint64_t EHFrameHdrOutputAddress = NextAvailableAddress; const uint64_t EHFrameHdrFileOffset = getFileOffsetForAddress(NextAvailableAddress); std::vector NewEHFrameHdr = CFIRdWrt->generateEHFrameHeader( RelocatedEHFrame, NewEHFrame, EHFrameHdrOutputAddress, FailedAddresses); Out->os().seek(EHFrameHdrFileOffset); Out->os().write(NewEHFrameHdr.data(), NewEHFrameHdr.size()); const unsigned Flags = BinarySection::getFlags(/*IsReadOnly=*/true, /*IsText=*/false, /*IsAllocatable=*/true); BinarySection *OldEHFrameHdrSection = getSection(getEHFrameHdrSectionName()); if (OldEHFrameHdrSection) OldEHFrameHdrSection->setOutputName(getOrgSecPrefix() + getEHFrameHdrSectionName()); BinarySection &EHFrameHdrSec = BC->registerOrUpdateSection( getNewSecPrefix() + getEHFrameHdrSectionName(), ELF::SHT_PROGBITS, Flags, nullptr, NewEHFrameHdr.size(), /*Alignment=*/1); EHFrameHdrSec.setOutputFileOffset(EHFrameHdrFileOffset); EHFrameHdrSec.setOutputAddress(EHFrameHdrOutputAddress); EHFrameHdrSec.setOutputName(getEHFrameHdrSectionName()); NextAvailableAddress += EHFrameHdrSec.getOutputSize(); if (!BC->BOLTReserved.empty() && (NextAvailableAddress > BC->BOLTReserved.end())) { BC->errs() << "BOLT-ERROR: unable to fit " << getEHFrameHdrSectionName() << " into reserved space\n"; exit(1); } // Merge new .eh_frame with the relocated original so that gdb can locate all // FDEs. if (RelocatedEHFrameSection) { const uint64_t NewEHFrameSectionSize = RelocatedEHFrameSection->getOutputAddress() + RelocatedEHFrameSection->getOutputSize() - NewEHFrameSection->getOutputAddress(); NewEHFrameSection->updateContents(NewEHFrameSection->getOutputData(), NewEHFrameSectionSize); BC->deregisterSection(*RelocatedEHFrameSection); } LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is " << NewEHFrameSection->getOutputSize() << '\n'); } uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name) { auto Value = Linker->lookupSymbol(Name); if (Value) return *Value; // Return the original value if we haven't emitted the symbol. BinaryData *BD = BC->getBinaryDataByName(Name); if (!BD) return 0; return BD->getAddress(); } uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address) const { // Check if it's possibly part of the new segment. if (NewTextSegmentAddress && Address >= NewTextSegmentAddress) return Address - NewTextSegmentAddress + NewTextSegmentOffset; // Find an existing segment that matches the address. const auto SegmentInfoI = BC->SegmentMapInfo.upper_bound(Address); if (SegmentInfoI == BC->SegmentMapInfo.begin()) return 0; const SegmentInfo &SegmentInfo = std::prev(SegmentInfoI)->second; if (Address < SegmentInfo.Address || Address >= SegmentInfo.Address + SegmentInfo.FileSize) return 0; return SegmentInfo.FileOffset + Address - SegmentInfo.Address; } bool RewriteInstance::willOverwriteSection(StringRef SectionName) { if (llvm::is_contained(SectionsToOverwrite, SectionName)) return true; if (llvm::is_contained(DebugSectionsToOverwrite, SectionName)) return true; ErrorOr Section = BC->getUniqueSectionByName(SectionName); return Section && Section->isAllocatable() && Section->isFinalized(); } bool RewriteInstance::isDebugSection(StringRef SectionName) { if (SectionName.starts_with(".debug_") || SectionName.starts_with(".zdebug_") || SectionName == ".gdb_index" || SectionName == ".stab" || SectionName == ".stabstr") return true; return false; }