aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Sema/SemaChecking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Sema/SemaChecking.cpp')
-rw-r--r--clang/lib/Sema/SemaChecking.cpp802
1 files changed, 0 insertions, 802 deletions
diff --git a/clang/lib/Sema/SemaChecking.cpp b/clang/lib/Sema/SemaChecking.cpp
deleted file mode 100644
index 6d3eea5..0000000
--- a/clang/lib/Sema/SemaChecking.cpp
+++ /dev/null
@@ -1,802 +0,0 @@
-//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements extra semantic analysis beyond what is enforced
-// by the C type system.
-//
-//===----------------------------------------------------------------------===//
-
-#include "Sema.h"
-#include "clang/AST/ASTContext.h"
-#include "clang/AST/Decl.h"
-#include "clang/AST/Expr.h"
-#include "clang/AST/ExprCXX.h"
-#include "clang/Lex/Preprocessor.h"
-#include "clang/Lex/LiteralSupport.h"
-#include "clang/Basic/SourceManager.h"
-#include "clang/Basic/Diagnostic.h"
-#include "clang/Basic/LangOptions.h"
-#include "clang/Basic/TargetInfo.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/StringExtras.h"
-#include "SemaUtil.h"
-using namespace clang;
-
-/// CheckFunctionCall - Check a direct function call for various correctness
-/// and safety properties not strictly enforced by the C type system.
-bool
-Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
-
- // Get the IdentifierInfo* for the called function.
- IdentifierInfo *FnInfo = FDecl->getIdentifier();
-
- switch (FnInfo->getBuiltinID()) {
- case Builtin::BI__builtin___CFStringMakeConstantString:
- assert(TheCall->getNumArgs() == 1 &&
- "Wrong # arguments to builtin CFStringMakeConstantString");
- return CheckBuiltinCFStringArgument(TheCall->getArg(0));
- case Builtin::BI__builtin_va_start:
- return SemaBuiltinVAStart(TheCall);
-
- case Builtin::BI__builtin_isgreater:
- case Builtin::BI__builtin_isgreaterequal:
- case Builtin::BI__builtin_isless:
- case Builtin::BI__builtin_islessequal:
- case Builtin::BI__builtin_islessgreater:
- case Builtin::BI__builtin_isunordered:
- return SemaBuiltinUnorderedCompare(TheCall);
- }
-
- // Search the KnownFunctionIDs for the identifier.
- unsigned i = 0, e = id_num_known_functions;
- for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
- if (i == e) return false;
-
- // Printf checking.
- if (i <= id_vprintf) {
- // Retrieve the index of the format string parameter and determine
- // if the function is passed a va_arg argument.
- unsigned format_idx = 0;
- bool HasVAListArg = false;
-
- switch (i) {
- default: assert(false && "No format string argument index.");
- case id_printf: format_idx = 0; break;
- case id_fprintf: format_idx = 1; break;
- case id_sprintf: format_idx = 1; break;
- case id_snprintf: format_idx = 2; break;
- case id_asprintf: format_idx = 1; break;
- case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
- case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
- case id_vfprintf: format_idx = 1; HasVAListArg = true; break;
- case id_vsprintf: format_idx = 1; HasVAListArg = true; break;
- case id_vprintf: format_idx = 0; HasVAListArg = true; break;
- }
-
- CheckPrintfArguments(TheCall, HasVAListArg, format_idx);
- }
-
- return false;
-}
-
-/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
-/// CFString constructor is correct
-bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
- Arg = Arg->IgnoreParenCasts();
-
- StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
-
- if (!Literal || Literal->isWide()) {
- Diag(Arg->getLocStart(),
- diag::err_cfstring_literal_not_string_constant,
- Arg->getSourceRange());
- return true;
- }
-
- const char *Data = Literal->getStrData();
- unsigned Length = Literal->getByteLength();
-
- for (unsigned i = 0; i < Length; ++i) {
- if (!isascii(Data[i])) {
- Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
- diag::warn_cfstring_literal_contains_non_ascii_character,
- Arg->getSourceRange());
- break;
- }
-
- if (!Data[i]) {
- Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
- diag::warn_cfstring_literal_contains_nul_character,
- Arg->getSourceRange());
- break;
- }
- }
-
- return false;
-}
-
-/// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
-/// Emit an error and return true on failure, return false on success.
-bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
- Expr *Fn = TheCall->getCallee();
- if (TheCall->getNumArgs() > 2) {
- Diag(TheCall->getArg(2)->getLocStart(),
- diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
- SourceRange(TheCall->getArg(2)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd()));
- return true;
- }
-
- // Determine whether the current function is variadic or not.
- bool isVariadic;
- if (CurFunctionDecl)
- isVariadic =
- cast<FunctionTypeProto>(CurFunctionDecl->getType())->isVariadic();
- else
- isVariadic = CurMethodDecl->isVariadic();
-
- if (!isVariadic) {
- Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
- return true;
- }
-
- // Verify that the second argument to the builtin is the last argument of the
- // current function or method.
- bool SecondArgIsLastNamedArgument = false;
- const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
-
- if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
- if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
- // FIXME: This isn't correct for methods (results in bogus warning).
- // Get the last formal in the current function.
- const ParmVarDecl *LastArg;
- if (CurFunctionDecl)
- LastArg = *(CurFunctionDecl->param_end()-1);
- else
- LastArg = *(CurMethodDecl->param_end()-1);
- SecondArgIsLastNamedArgument = PV == LastArg;
- }
- }
-
- if (!SecondArgIsLastNamedArgument)
- Diag(TheCall->getArg(1)->getLocStart(),
- diag::warn_second_parameter_of_va_start_not_last_named_argument);
- return false;
-}
-
-/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
-/// friends. This is declared to take (...), so we have to check everything.
-bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
- if (TheCall->getNumArgs() < 2)
- return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args);
- if (TheCall->getNumArgs() > 2)
- return Diag(TheCall->getArg(2)->getLocStart(),
- diag::err_typecheck_call_too_many_args,
- SourceRange(TheCall->getArg(2)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd()));
-
- Expr *OrigArg0 = TheCall->getArg(0);
- Expr *OrigArg1 = TheCall->getArg(1);
-
- // Do standard promotions between the two arguments, returning their common
- // type.
- QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
-
- // If the common type isn't a real floating type, then the arguments were
- // invalid for this operation.
- if (!Res->isRealFloatingType())
- return Diag(OrigArg0->getLocStart(),
- diag::err_typecheck_call_invalid_ordered_compare,
- OrigArg0->getType().getAsString(),
- OrigArg1->getType().getAsString(),
- SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd()));
-
- return false;
-}
-
-
-/// CheckPrintfArguments - Check calls to printf (and similar functions) for
-/// correct use of format strings.
-///
-/// HasVAListArg - A predicate indicating whether the printf-like
-/// function is passed an explicit va_arg argument (e.g., vprintf)
-///
-/// format_idx - The index into Args for the format string.
-///
-/// Improper format strings to functions in the printf family can be
-/// the source of bizarre bugs and very serious security holes. A
-/// good source of information is available in the following paper
-/// (which includes additional references):
-///
-/// FormatGuard: Automatic Protection From printf Format String
-/// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
-///
-/// Functionality implemented:
-///
-/// We can statically check the following properties for string
-/// literal format strings for non v.*printf functions (where the
-/// arguments are passed directly):
-//
-/// (1) Are the number of format conversions equal to the number of
-/// data arguments?
-///
-/// (2) Does each format conversion correctly match the type of the
-/// corresponding data argument? (TODO)
-///
-/// Moreover, for all printf functions we can:
-///
-/// (3) Check for a missing format string (when not caught by type checking).
-///
-/// (4) Check for no-operation flags; e.g. using "#" with format
-/// conversion 'c' (TODO)
-///
-/// (5) Check the use of '%n', a major source of security holes.
-///
-/// (6) Check for malformed format conversions that don't specify anything.
-///
-/// (7) Check for empty format strings. e.g: printf("");
-///
-/// (8) Check that the format string is a wide literal.
-///
-/// (9) Also check the arguments of functions with the __format__ attribute.
-/// (TODO).
-///
-/// All of these checks can be done by parsing the format string.
-///
-/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
-void
-Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg,
- unsigned format_idx) {
- Expr *Fn = TheCall->getCallee();
-
- // CHECK: printf-like function is called with no format string.
- if (format_idx >= TheCall->getNumArgs()) {
- Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string,
- Fn->getSourceRange());
- return;
- }
-
- Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
-
- // CHECK: format string is not a string literal.
- //
- // Dynamically generated format strings are difficult to
- // automatically vet at compile time. Requiring that format strings
- // are string literals: (1) permits the checking of format strings by
- // the compiler and thereby (2) can practically remove the source of
- // many format string exploits.
- StringLiteral *FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
- if (FExpr == NULL) {
- // For vprintf* functions (i.e., HasVAListArg==true), we add a
- // special check to see if the format string is a function parameter
- // of the function calling the printf function. If the function
- // has an attribute indicating it is a printf-like function, then we
- // should suppress warnings concerning non-literals being used in a call
- // to a vprintf function. For example:
- //
- // void
- // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) {
- // va_list ap;
- // va_start(ap, fmt);
- // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
- // ...
- //
- //
- // FIXME: We don't have full attribute support yet, so just check to see
- // if the argument is a DeclRefExpr that references a parameter. We'll
- // add proper support for checking the attribute later.
- if (HasVAListArg)
- if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr))
- if (isa<ParmVarDecl>(DR->getDecl()))
- return;
-
- Diag(TheCall->getArg(format_idx)->getLocStart(),
- diag::warn_printf_not_string_constant, Fn->getSourceRange());
- return;
- }
-
- // CHECK: is the format string a wide literal?
- if (FExpr->isWide()) {
- Diag(FExpr->getLocStart(),
- diag::warn_printf_format_string_is_wide_literal, Fn->getSourceRange());
- return;
- }
-
- // Str - The format string. NOTE: this is NOT null-terminated!
- const char * const Str = FExpr->getStrData();
-
- // CHECK: empty format string?
- const unsigned StrLen = FExpr->getByteLength();
-
- if (StrLen == 0) {
- Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string,
- Fn->getSourceRange());
- return;
- }
-
- // We process the format string using a binary state machine. The
- // current state is stored in CurrentState.
- enum {
- state_OrdChr,
- state_Conversion
- } CurrentState = state_OrdChr;
-
- // numConversions - The number of conversions seen so far. This is
- // incremented as we traverse the format string.
- unsigned numConversions = 0;
-
- // numDataArgs - The number of data arguments after the format
- // string. This can only be determined for non vprintf-like
- // functions. For those functions, this value is 1 (the sole
- // va_arg argument).
- unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1);
-
- // Inspect the format string.
- unsigned StrIdx = 0;
-
- // LastConversionIdx - Index within the format string where we last saw
- // a '%' character that starts a new format conversion.
- unsigned LastConversionIdx = 0;
-
- for (; StrIdx < StrLen; ++StrIdx) {
-
- // Is the number of detected conversion conversions greater than
- // the number of matching data arguments? If so, stop.
- if (!HasVAListArg && numConversions > numDataArgs) break;
-
- // Handle "\0"
- if (Str[StrIdx] == '\0') {
- // The string returned by getStrData() is not null-terminated,
- // so the presence of a null character is likely an error.
- Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1),
- diag::warn_printf_format_string_contains_null_char,
- Fn->getSourceRange());
- return;
- }
-
- // Ordinary characters (not processing a format conversion).
- if (CurrentState == state_OrdChr) {
- if (Str[StrIdx] == '%') {
- CurrentState = state_Conversion;
- LastConversionIdx = StrIdx;
- }
- continue;
- }
-
- // Seen '%'. Now processing a format conversion.
- switch (Str[StrIdx]) {
- // Handle dynamic precision or width specifier.
- case '*': {
- ++numConversions;
-
- if (!HasVAListArg && numConversions > numDataArgs) {
- SourceLocation Loc = FExpr->getLocStart();
- Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1);
-
- if (Str[StrIdx-1] == '.')
- Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg,
- Fn->getSourceRange());
- else
- Diag(Loc, diag::warn_printf_asterisk_width_missing_arg,
- Fn->getSourceRange());
-
- // Don't do any more checking. We'll just emit spurious errors.
- return;
- }
-
- // Perform type checking on width/precision specifier.
- Expr *E = TheCall->getArg(format_idx+numConversions);
- if (const BuiltinType *BT = E->getType()->getAsBuiltinType())
- if (BT->getKind() == BuiltinType::Int)
- break;
-
- SourceLocation Loc =
- PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1);
-
- if (Str[StrIdx-1] == '.')
- Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type,
- E->getType().getAsString(), E->getSourceRange());
- else
- Diag(Loc, diag::warn_printf_asterisk_width_wrong_type,
- E->getType().getAsString(), E->getSourceRange());
-
- break;
- }
-
- // Characters which can terminate a format conversion
- // (e.g. "%d"). Characters that specify length modifiers or
- // other flags are handled by the default case below.
- //
- // FIXME: additional checks will go into the following cases.
- case 'i':
- case 'd':
- case 'o':
- case 'u':
- case 'x':
- case 'X':
- case 'D':
- case 'O':
- case 'U':
- case 'e':
- case 'E':
- case 'f':
- case 'F':
- case 'g':
- case 'G':
- case 'a':
- case 'A':
- case 'c':
- case 'C':
- case 'S':
- case 's':
- case 'p':
- ++numConversions;
- CurrentState = state_OrdChr;
- break;
-
- // CHECK: Are we using "%n"? Issue a warning.
- case 'n': {
- ++numConversions;
- CurrentState = state_OrdChr;
- SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
- LastConversionIdx+1);
-
- Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
- break;
- }
-
- // Handle "%%"
- case '%':
- // Sanity check: Was the first "%" character the previous one?
- // If not, we will assume that we have a malformed format
- // conversion, and that the current "%" character is the start
- // of a new conversion.
- if (StrIdx - LastConversionIdx == 1)
- CurrentState = state_OrdChr;
- else {
- // Issue a warning: invalid format conversion.
- SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
- LastConversionIdx+1);
-
- Diag(Loc, diag::warn_printf_invalid_conversion,
- std::string(Str+LastConversionIdx, Str+StrIdx),
- Fn->getSourceRange());
-
- // This conversion is broken. Advance to the next format
- // conversion.
- LastConversionIdx = StrIdx;
- ++numConversions;
- }
- break;
-
- default:
- // This case catches all other characters: flags, widths, etc.
- // We should eventually process those as well.
- break;
- }
- }
-
- if (CurrentState == state_Conversion) {
- // Issue a warning: invalid format conversion.
- SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
- LastConversionIdx+1);
-
- Diag(Loc, diag::warn_printf_invalid_conversion,
- std::string(Str+LastConversionIdx,
- Str+std::min(LastConversionIdx+2, StrLen)),
- Fn->getSourceRange());
- return;
- }
-
- if (!HasVAListArg) {
- // CHECK: Does the number of format conversions exceed the number
- // of data arguments?
- if (numConversions > numDataArgs) {
- SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(),
- LastConversionIdx);
-
- Diag(Loc, diag::warn_printf_insufficient_data_args,
- Fn->getSourceRange());
- }
- // CHECK: Does the number of data arguments exceed the number of
- // format conversions in the format string?
- else if (numConversions < numDataArgs)
- Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(),
- diag::warn_printf_too_many_data_args, Fn->getSourceRange());
- }
-}
-
-//===--- CHECK: Return Address of Stack Variable --------------------------===//
-
-static DeclRefExpr* EvalVal(Expr *E);
-static DeclRefExpr* EvalAddr(Expr* E);
-
-/// CheckReturnStackAddr - Check if a return statement returns the address
-/// of a stack variable.
-void
-Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
- SourceLocation ReturnLoc) {
-
- // Perform checking for returned stack addresses.
- if (lhsType->isPointerType()) {
- if (DeclRefExpr *DR = EvalAddr(RetValExp))
- Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
- DR->getDecl()->getIdentifier()->getName(),
- RetValExp->getSourceRange());
- }
- // Perform checking for stack values returned by reference.
- else if (lhsType->isReferenceType()) {
- // Check for an implicit cast to a reference.
- if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
- if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
- Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
- DR->getDecl()->getIdentifier()->getName(),
- RetValExp->getSourceRange());
- }
-}
-
-/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
-/// check if the expression in a return statement evaluates to an address
-/// to a location on the stack. The recursion is used to traverse the
-/// AST of the return expression, with recursion backtracking when we
-/// encounter a subexpression that (1) clearly does not lead to the address
-/// of a stack variable or (2) is something we cannot determine leads to
-/// the address of a stack variable based on such local checking.
-///
-/// EvalAddr processes expressions that are pointers that are used as
-/// references (and not L-values). EvalVal handles all other values.
-/// At the base case of the recursion is a check for a DeclRefExpr* in
-/// the refers to a stack variable.
-///
-/// This implementation handles:
-///
-/// * pointer-to-pointer casts
-/// * implicit conversions from array references to pointers
-/// * taking the address of fields
-/// * arbitrary interplay between "&" and "*" operators
-/// * pointer arithmetic from an address of a stack variable
-/// * taking the address of an array element where the array is on the stack
-static DeclRefExpr* EvalAddr(Expr *E) {
- // We should only be called for evaluating pointer expressions.
- assert((E->getType()->isPointerType() ||
- E->getType()->isObjCQualifiedIdType()) &&
- "EvalAddr only works on pointers");
-
- // Our "symbolic interpreter" is just a dispatch off the currently
- // viewed AST node. We then recursively traverse the AST by calling
- // EvalAddr and EvalVal appropriately.
- switch (E->getStmtClass()) {
- case Stmt::ParenExprClass:
- // Ignore parentheses.
- return EvalAddr(cast<ParenExpr>(E)->getSubExpr());
-
- case Stmt::UnaryOperatorClass: {
- // The only unary operator that make sense to handle here
- // is AddrOf. All others don't make sense as pointers.
- UnaryOperator *U = cast<UnaryOperator>(E);
-
- if (U->getOpcode() == UnaryOperator::AddrOf)
- return EvalVal(U->getSubExpr());
- else
- return NULL;
- }
-
- case Stmt::BinaryOperatorClass: {
- // Handle pointer arithmetic. All other binary operators are not valid
- // in this context.
- BinaryOperator *B = cast<BinaryOperator>(E);
- BinaryOperator::Opcode op = B->getOpcode();
-
- if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
- return NULL;
-
- Expr *Base = B->getLHS();
-
- // Determine which argument is the real pointer base. It could be
- // the RHS argument instead of the LHS.
- if (!Base->getType()->isPointerType()) Base = B->getRHS();
-
- assert (Base->getType()->isPointerType());
- return EvalAddr(Base);
- }
-
- // For conditional operators we need to see if either the LHS or RHS are
- // valid DeclRefExpr*s. If one of them is valid, we return it.
- case Stmt::ConditionalOperatorClass: {
- ConditionalOperator *C = cast<ConditionalOperator>(E);
-
- // Handle the GNU extension for missing LHS.
- if (Expr *lhsExpr = C->getLHS())
- if (DeclRefExpr* LHS = EvalAddr(lhsExpr))
- return LHS;
-
- return EvalAddr(C->getRHS());
- }
-
- // For implicit casts, we need to handle conversions from arrays to
- // pointer values, and implicit pointer-to-pointer conversions.
- case Stmt::ImplicitCastExprClass: {
- ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
- Expr* SubExpr = IE->getSubExpr();
-
- if (SubExpr->getType()->isPointerType() ||
- SubExpr->getType()->isObjCQualifiedIdType())
- return EvalAddr(SubExpr);
- else
- return EvalVal(SubExpr);
- }
-
- // For casts, we handle pointer-to-pointer conversions (which
- // is essentially a no-op from our mini-interpreter's standpoint).
- // For other casts we abort.
- case Stmt::CastExprClass: {
- CastExpr *C = cast<CastExpr>(E);
- Expr *SubExpr = C->getSubExpr();
-
- if (SubExpr->getType()->isPointerType())
- return EvalAddr(SubExpr);
- else
- return NULL;
- }
-
- // C++ casts. For dynamic casts, static casts, and const casts, we
- // are always converting from a pointer-to-pointer, so we just blow
- // through the cast. In the case the dynamic cast doesn't fail
- // (and return NULL), we take the conservative route and report cases
- // where we return the address of a stack variable. For Reinterpre
- case Stmt::CXXCastExprClass: {
- CXXCastExpr *C = cast<CXXCastExpr>(E);
-
- if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
- Expr *S = C->getSubExpr();
- if (S->getType()->isPointerType())
- return EvalAddr(S);
- else
- return NULL;
- }
- else
- return EvalAddr(C->getSubExpr());
- }
-
- // Everything else: we simply don't reason about them.
- default:
- return NULL;
- }
-}
-
-
-/// EvalVal - This function is complements EvalAddr in the mutual recursion.
-/// See the comments for EvalAddr for more details.
-static DeclRefExpr* EvalVal(Expr *E) {
-
- // We should only be called for evaluating non-pointer expressions, or
- // expressions with a pointer type that are not used as references but instead
- // are l-values (e.g., DeclRefExpr with a pointer type).
-
- // Our "symbolic interpreter" is just a dispatch off the currently
- // viewed AST node. We then recursively traverse the AST by calling
- // EvalAddr and EvalVal appropriately.
- switch (E->getStmtClass()) {
- case Stmt::DeclRefExprClass: {
- // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking
- // at code that refers to a variable's name. We check if it has local
- // storage within the function, and if so, return the expression.
- DeclRefExpr *DR = cast<DeclRefExpr>(E);
-
- if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
- if(V->hasLocalStorage()) return DR;
-
- return NULL;
- }
-
- case Stmt::ParenExprClass:
- // Ignore parentheses.
- return EvalVal(cast<ParenExpr>(E)->getSubExpr());
-
- case Stmt::UnaryOperatorClass: {
- // The only unary operator that make sense to handle here
- // is Deref. All others don't resolve to a "name." This includes
- // handling all sorts of rvalues passed to a unary operator.
- UnaryOperator *U = cast<UnaryOperator>(E);
-
- if (U->getOpcode() == UnaryOperator::Deref)
- return EvalAddr(U->getSubExpr());
-
- return NULL;
- }
-
- case Stmt::ArraySubscriptExprClass: {
- // Array subscripts are potential references to data on the stack. We
- // retrieve the DeclRefExpr* for the array variable if it indeed
- // has local storage.
- return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
- }
-
- case Stmt::ConditionalOperatorClass: {
- // For conditional operators we need to see if either the LHS or RHS are
- // non-NULL DeclRefExpr's. If one is non-NULL, we return it.
- ConditionalOperator *C = cast<ConditionalOperator>(E);
-
- // Handle the GNU extension for missing LHS.
- if (Expr *lhsExpr = C->getLHS())
- if (DeclRefExpr *LHS = EvalVal(lhsExpr))
- return LHS;
-
- return EvalVal(C->getRHS());
- }
-
- // Accesses to members are potential references to data on the stack.
- case Stmt::MemberExprClass: {
- MemberExpr *M = cast<MemberExpr>(E);
-
- // Check for indirect access. We only want direct field accesses.
- if (!M->isArrow())
- return EvalVal(M->getBase());
- else
- return NULL;
- }
-
- // Everything else: we simply don't reason about them.
- default:
- return NULL;
- }
-}
-
-//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
-
-/// Check for comparisons of floating point operands using != and ==.
-/// Issue a warning if these are no self-comparisons, as they are not likely
-/// to do what the programmer intended.
-void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
- bool EmitWarning = true;
-
- Expr* LeftExprSansParen = lex->IgnoreParens();
- Expr* RightExprSansParen = rex->IgnoreParens();
-
- // Special case: check for x == x (which is OK).
- // Do not emit warnings for such cases.
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
- if (DRL->getDecl() == DRR->getDecl())
- EmitWarning = false;
-
-
- // Special case: check for comparisons against literals that can be exactly
- // represented by APFloat. In such cases, do not emit a warning. This
- // is a heuristic: often comparison against such literals are used to
- // detect if a value in a variable has not changed. This clearly can
- // lead to false negatives.
- if (EmitWarning) {
- if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
- if (FLL->isExact())
- EmitWarning = false;
- }
- else
- if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
- if (FLR->isExact())
- EmitWarning = false;
- }
- }
-
- // Check for comparisons with builtin types.
- if (EmitWarning)
- if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
- if (isCallBuiltin(CL))
- EmitWarning = false;
-
- if (EmitWarning)
- if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
- if (isCallBuiltin(CR))
- EmitWarning = false;
-
- // Emit the diagnostic.
- if (EmitWarning)
- Diag(loc, diag::warn_floatingpoint_eq,
- lex->getSourceRange(),rex->getSourceRange());
-}