aboutsummaryrefslogtreecommitdiff
path: root/mlir
diff options
context:
space:
mode:
authorKrzysztof Drewniak <Krzysztof.Drewniak@amd.com>2024-01-18 09:37:43 -0600
committerGitHub <noreply@github.com>2024-01-18 09:37:43 -0600
commit05e85e4fc5ac67612245efe56c3423cc9b47bc6d (patch)
tree6194351d60b5a4ddd3370a96371950e2134dcb5d /mlir
parent22867890e4e6e272ddb9cee78e3eb0a2bca1cc81 (diff)
downloadllvm-05e85e4fc5ac67612245efe56c3423cc9b47bc6d.zip
llvm-05e85e4fc5ac67612245efe56c3423cc9b47bc6d.tar.gz
llvm-05e85e4fc5ac67612245efe56c3423cc9b47bc6d.tar.bz2
[mlir][Math] Add pass to legalize math functions to f32-or-higher (#78361)
Since most of the operations in the `math` dialect don't have low-precision implementations, add the -math-legalize-to-f32 pass that goes through and brackets low-precision math funcitons (like `math.sin %0 : f16`) with `arith.extf` and `arith.truncf`. This preserves the original semantics of the math operation but allows lowering to proceed. Versions of this lowering are already implicitly present in some passes, like ConvertGPUToROCDL. However, because those are implicit rewrites, they hide the floating-point extension and truncation, preventing anyone from writing passes that operate on those implitic extf/truncf pairs. Exposing this legalization explicitly is needed to allow lowening 8-bit floats on AMD GPUs, as the implementation of extf and truncf on that platform requires the complex logic found in ArithToAMDGPU, which runs before the GPU to ROCDL lowering.
Diffstat (limited to 'mlir')
-rw-r--r--mlir/include/mlir/Dialect/Math/Transforms/Passes.h10
-rw-r--r--mlir/include/mlir/Dialect/Math/Transforms/Passes.td17
-rw-r--r--mlir/lib/Dialect/Math/Transforms/CMakeLists.txt1
-rw-r--r--mlir/lib/Dialect/Math/Transforms/LegalizeToF32.cpp118
-rw-r--r--mlir/test/Dialect/Math/legalize-to-f32.mlir85
5 files changed, 231 insertions, 0 deletions
diff --git a/mlir/include/mlir/Dialect/Math/Transforms/Passes.h b/mlir/include/mlir/Dialect/Math/Transforms/Passes.h
index 9e6759e..010dde5 100644
--- a/mlir/include/mlir/Dialect/Math/Transforms/Passes.h
+++ b/mlir/include/mlir/Dialect/Math/Transforms/Passes.h
@@ -16,12 +16,15 @@ namespace math {
#define GEN_PASS_DECL
#include "mlir/Dialect/Math/Transforms/Passes.h.inc"
#define GEN_PASS_DECL_MATHUPLIFTTOFMA
+#define GEN_PASS_DECL_MATHLEGALIZETOF32
#include "mlir/Dialect/Math/Transforms/Passes.h.inc"
#define GEN_PASS_REGISTRATION
#include "mlir/Dialect/Math/Transforms/Passes.h.inc"
} // namespace math
+class ConversionTarget;
class RewritePatternSet;
+class TypeConverter;
void populateExpandCtlzPattern(RewritePatternSet &patterns);
void populateExpandTanPattern(RewritePatternSet &patterns);
@@ -48,6 +51,13 @@ void populateMathPolynomialApproximationPatterns(
void populateUpliftToFMAPatterns(RewritePatternSet &patterns);
+namespace math {
+void populateLegalizeToF32TypeConverter(TypeConverter &typeConverter);
+void populateLegalizeToF32ConversionTarget(ConversionTarget &target,
+ TypeConverter &typeConverter);
+void populateLegalizeToF32Patterns(RewritePatternSet &patterns,
+ TypeConverter &typeConverter);
+} // namespace math
} // namespace mlir
#endif // MLIR_DIALECT_MATH_TRANSFORMS_PASSES_H_
diff --git a/mlir/include/mlir/Dialect/Math/Transforms/Passes.td b/mlir/include/mlir/Dialect/Math/Transforms/Passes.td
index d81a92b..e870e71 100644
--- a/mlir/include/mlir/Dialect/Math/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/Math/Transforms/Passes.td
@@ -19,4 +19,21 @@ def MathUpliftToFMA : Pass<"math-uplift-to-fma"> {
let dependentDialects = ["math::MathDialect"];
}
+def MathLegalizeToF32 : Pass<"math-legalize-to-f32"> {
+ let summary = "Legalize floating-point math ops on low-precision floats";
+ let description = [{
+ On many targets, the math functions are not implemented for floating-point
+ types less precise than IEEE single-precision (aka f32), such as half-floats,
+ bfloat16, or 8-bit floats.
+
+ This pass explicitly legalizes these math functions by inserting
+ `arith.extf` and `arith.truncf` pairs around said op, which preserves
+ the original semantics while enabling lowering.
+
+ As an exception, this pass does not legalize `math.fma`, because
+ that is an operation frequently implemented at low precisions.
+ }];
+ let dependentDialects = ["math::MathDialect", "arith::ArithDialect"];
+}
+
#endif // MLIR_DIALECT_MATH_TRANSFORMS_PASSES
diff --git a/mlir/lib/Dialect/Math/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Math/Transforms/CMakeLists.txt
index 2d446b4..2a5b4fb 100644
--- a/mlir/lib/Dialect/Math/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/Math/Transforms/CMakeLists.txt
@@ -1,6 +1,7 @@
add_mlir_dialect_library(MLIRMathTransforms
AlgebraicSimplification.cpp
ExpandPatterns.cpp
+ LegalizeToF32.cpp
PolynomialApproximation.cpp
UpliftToFMA.cpp
diff --git a/mlir/lib/Dialect/Math/Transforms/LegalizeToF32.cpp b/mlir/lib/Dialect/Math/Transforms/LegalizeToF32.cpp
new file mode 100644
index 0000000..d281790
--- /dev/null
+++ b/mlir/lib/Dialect/Math/Transforms/LegalizeToF32.cpp
@@ -0,0 +1,118 @@
+//===- LegalizeToF32.cpp - Legalize functions on small floats ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements legalizing math operations on small floating-point
+// types through arith.extf and arith.truncf.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/Math/IR/Math.h"
+#include "mlir/Dialect/Math/Transforms/Passes.h"
+#include "mlir/IR/Diagnostics.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/TypeUtilities.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "llvm/ADT/STLExtras.h"
+
+namespace mlir::math {
+#define GEN_PASS_DEF_MATHLEGALIZETOF32
+#include "mlir/Dialect/Math/Transforms/Passes.h.inc"
+} // namespace mlir::math
+
+using namespace mlir;
+namespace {
+struct LegalizeToF32RewritePattern final : ConversionPattern {
+ LegalizeToF32RewritePattern(TypeConverter &converter, MLIRContext *context)
+ : ConversionPattern(converter, MatchAnyOpTypeTag{}, 1, context) {}
+ LogicalResult
+ matchAndRewrite(Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const override;
+};
+
+struct LegalizeToF32Pass final
+ : mlir::math::impl::MathLegalizeToF32Base<LegalizeToF32Pass> {
+ void runOnOperation() override;
+};
+} // namespace
+
+void mlir::math::populateLegalizeToF32TypeConverter(
+ TypeConverter &typeConverter) {
+ typeConverter.addConversion(
+ [](Type type) -> std::optional<Type> { return type; });
+ typeConverter.addConversion([](FloatType type) -> std::optional<Type> {
+ if (type.getWidth() < 32)
+ return Float32Type::get(type.getContext());
+ return std::nullopt;
+ });
+ typeConverter.addConversion([](ShapedType type) -> std::optional<Type> {
+ if (auto elemTy = dyn_cast<FloatType>(type.getElementType()))
+ return type.clone(Float32Type::get(type.getContext()));
+ return std::nullopt;
+ });
+ typeConverter.addTargetMaterialization(
+ [](OpBuilder &b, Type target, ValueRange input, Location loc) {
+ return b.create<arith::ExtFOp>(loc, target, input);
+ });
+}
+
+void mlir::math::populateLegalizeToF32ConversionTarget(
+ ConversionTarget &target, TypeConverter &typeConverter) {
+ target.addDynamicallyLegalDialect<MathDialect>(
+ [&typeConverter](Operation *op) -> bool {
+ return typeConverter.isLegal(op);
+ });
+ target.addLegalOp<FmaOp>();
+ target.addLegalOp<arith::ExtFOp, arith::TruncFOp>();
+}
+
+LogicalResult LegalizeToF32RewritePattern::matchAndRewrite(
+ Operation *op, ArrayRef<Value> operands,
+ ConversionPatternRewriter &rewriter) const {
+ Location loc = op->getLoc();
+ const TypeConverter *converter = getTypeConverter();
+ if (converter->isLegal(op))
+ return rewriter.notifyMatchFailure(loc, "op already legal");
+ OperationState newOp(loc, op->getName());
+ newOp.addOperands(operands);
+
+ SmallVector<Type> newResultTypes;
+ if (failed(converter->convertTypes(op->getResultTypes(), newResultTypes)))
+ return rewriter.notifyMatchFailure(loc, "couldn't convert return types");
+ newOp.addTypes(newResultTypes);
+ newOp.addAttributes(op->getAttrs());
+ Operation *legalized = rewriter.create(newOp);
+ SmallVector<Value> results = legalized->getResults();
+ for (auto [result, newType, origType] :
+ llvm::zip_equal(results, newResultTypes, op->getResultTypes())) {
+ if (newType != origType)
+ result = rewriter.create<arith::TruncFOp>(loc, origType, result);
+ }
+ rewriter.replaceOp(op, results);
+ return success();
+}
+
+void mlir::math::populateLegalizeToF32Patterns(RewritePatternSet &patterns,
+ TypeConverter &typeConverter) {
+ patterns.add<LegalizeToF32RewritePattern>(typeConverter,
+ patterns.getContext());
+}
+
+void LegalizeToF32Pass::runOnOperation() {
+ Operation *op = getOperation();
+ MLIRContext &ctx = getContext();
+
+ TypeConverter typeConverter;
+ math::populateLegalizeToF32TypeConverter(typeConverter);
+ ConversionTarget target(ctx);
+ math::populateLegalizeToF32ConversionTarget(target, typeConverter);
+ RewritePatternSet patterns(&ctx);
+ math::populateLegalizeToF32Patterns(patterns, typeConverter);
+ if (failed(applyPartialConversion(op, target, std::move(patterns))))
+ return signalPassFailure();
+}
diff --git a/mlir/test/Dialect/Math/legalize-to-f32.mlir b/mlir/test/Dialect/Math/legalize-to-f32.mlir
new file mode 100644
index 0000000..ae6ae7c
--- /dev/null
+++ b/mlir/test/Dialect/Math/legalize-to-f32.mlir
@@ -0,0 +1,85 @@
+// RUN: mlir-opt %s --split-input-file -math-legalize-to-f32 | FileCheck %s
+
+// CHECK-LABEL: @sin
+// CHECK-SAME: ([[ARG0:%.+]]: f16)
+func.func @sin(%arg0: f16) -> f16 {
+ // CHECK: [[EXTF:%.+]] = arith.extf [[ARG0]]
+ // CHECK: [[SIN:%.+]] = math.sin [[EXTF]]
+ // CHECK: [[TRUNCF:%.+]] = arith.truncf [[SIN]]
+ // CHECK: return [[TRUNCF]] : f16
+ %0 = math.sin %arg0 : f16
+ return %0 : f16
+}
+
+// CHECK-LABEL: @fpowi
+// CHECK-SAME: ([[ARG0:%.+]]: f16, [[ARG1:%.+]]: i32)
+func.func @fpowi(%arg0: f16, %arg1: i32) -> f16 {
+ // CHECK: [[EXTF:%.+]] = arith.extf [[ARG0]]
+ // CHECK: [[FPOWI:%.+]] = math.fpowi [[EXTF]], [[ARG1]]
+ // CHECK: [[TRUNCF:%.+]] = arith.truncf [[FPOWI]]
+ // CHECK: return [[TRUNCF]] : f16
+ %0 = math.fpowi %arg0, %arg1 : f16, i32
+ return %0 : f16
+}
+
+// COM: Verify that the pass leaves `math.fma` untouched, since it is often
+// COM: implemented on small data types.
+// CHECK-LABEL: @fma
+// CHECK-SAME: ([[ARG0:%.+]]: f16, [[ARG1:%.+]]: f16, [[ARG2:%.+]]: f16)
+// CHECK: [[FMA:%.+]] = math.fma [[ARG0]], [[ARG1]], [[ARG2]]
+// CHECK: return [[FMA]] : f16
+func.func @fma(%arg0: f16, %arg1: f16, %arg2: f16) -> f16 {
+ %0 = math.fma %arg0, %arg1, %arg2 : f16
+ return %0 : f16
+}
+
+// CHECK-LABEL: @absf_f32
+// CHECK-SAME: ([[ARG0:%.+]]: f32)
+// CHECK: [[ABSF:%.+]] = math.absf [[ARG0]]
+// CHECK: return [[ABSF]] : f32
+func.func @absf_f32(%arg0: f32) -> f32 {
+ %0 = math.absf %arg0 : f32
+ return %0 : f32
+}
+
+// CHECK-LABEL: @absf_f64
+// CHECK-SAME: ([[ARG0:%.+]]: f64)
+// CHECK: [[ABSF:%.+]] = math.absf [[ARG0]]
+// CHECK: return [[ABSF]] : f64
+func.func @absf_f64(%arg0: f64) -> f64 {
+ %0 = math.absf %arg0 : f64
+ return %0 : f64
+}
+
+// CHECK-LABEL: @sin_vector
+// CHECK-SAME: ([[ARG0:%.+]]: vector<2xbf16>)
+// CHECK: [[EXTF:%.+]] = arith.extf [[ARG0]]
+// CHECK: [[SIN:%.+]] = math.sin [[EXTF]]
+// CHECK: [[TRUNCF:%.+]] = arith.truncf [[SIN]]
+// CHECK: return [[TRUNCF]] : vector<2xbf16>
+func.func @sin_vector(%arg0: vector<2xbf16>) -> vector<2xbf16> {
+ %0 = math.sin %arg0 : vector<2xbf16>
+ return %0 : vector<2xbf16>
+}
+
+// CHECK-LABEL: @fastmath
+// CHECK: math.sin %{{.+}} fastmath<nsz>
+func.func @fastmath(%arg0: f16) -> f16 {
+ %0 = math.sin %arg0 fastmath<nsz> : f16
+ return %0 : f16
+}
+
+// CHECK-LABEL: @sequences
+// CHECK-SAME: ([[ARG0:%.+]]: f16)
+// CHECK: [[EXTF0:%.+]] = arith.extf [[ARG0]]
+// CHECK: [[ABSF:%.+]] = math.absf [[EXTF0]]
+// CHECK: [[TRUNCF0:%.+]] = arith.truncf [[ABSF]]
+// CHECK: [[EXTF1:%.+]] = arith.extf [[TRUNCF0]]
+// CHECK: [[SIN:%.+]] = math.sin [[EXTF1]]
+// CHECK: [[TRUNCF1:%.+]] = arith.truncf [[SIN]]
+// CHECK: return [[TRUNCF1]] : f16
+func.func @sequences(%arg0: f16) -> f16 {
+ %0 = math.absf %arg0 : f16
+ %1 = math.sin %0 : f16
+ return %1 : f16
+}