aboutsummaryrefslogtreecommitdiff
path: root/mlir/test/Examples
diff options
context:
space:
mode:
authorOleksandr "Alex" Zinenko <zinenko@google.com>2023-09-25 09:47:48 +0200
committerGitHub <noreply@github.com>2023-09-25 09:47:48 +0200
commit6841eff107f9bffe5c28c599978e4a22519ab8c1 (patch)
tree40256b7c3d1d2e60d5d15408dbbdab66529bfa48 /mlir/test/Examples
parent416e891d6609d919211db7ab14149970ec49b0f6 (diff)
downloadllvm-6841eff107f9bffe5c28c599978e4a22519ab8c1.zip
llvm-6841eff107f9bffe5c28c599978e4a22519ab8c1.tar.gz
llvm-6841eff107f9bffe5c28c599978e4a22519ab8c1.tar.bz2
[mlir] add transform tutorial chapter for Halide conv mapping (#66386)
This chapter demonstrates how one can replicate Halide DSL transformations using transform dialect operations transforming payload expressed using Linalg. This was a part of the live tutorial presented at EuroLLVM 2023.
Diffstat (limited to 'mlir/test/Examples')
-rw-r--r--mlir/test/Examples/transform/ChH/full.mlir393
1 files changed, 393 insertions, 0 deletions
diff --git a/mlir/test/Examples/transform/ChH/full.mlir b/mlir/test/Examples/transform/ChH/full.mlir
new file mode 100644
index 0000000..9ed72f6
--- /dev/null
+++ b/mlir/test/Examples/transform/ChH/full.mlir
@@ -0,0 +1,393 @@
+// RUN: mlir-opt %s --test-transform-dialect-interpreter \
+// RUN: --test-transform-dialect-erase-schedule \
+// RUN: --math-uplift-to-fma \
+// RUN: --test-lower-to-llvm |\
+// RUN: FileCheck %s
+
+// Fixed-size tensor types to be used in convolution.
+// Named sizes are: N=5 OH=80 OW=100 F=C=128 KH=KW=3.
+// Input is NHWC.
+// Filter is CHWF.
+// Ouptut is NHWF.
+!tinput = tensor<5x82x102x128xf32>
+!tfilter = tensor<128x3x3x128xf32>
+!tbias = tensor<128xf32>
+!toutput = tensor<5x80x100x128xf32>
+
+// Function containing the convolution. Note that its arguments and results are
+// tensors annotated with attributes from the `bufferization` dialect. These
+// attributes hint the bufferization pass to assume buffers can be directly
+// used for these tensors without reshaping.
+func.func @conv(
+ %input: !tinput {bufferization.writable = false,
+ bufferization.access = "read",
+ bufferization.buffer_layout =
+ affine_map<(d0,d1,d2,d3)->(d0,d1,d2,d3)>},
+ %filter: !tfilter {bufferization.writable = false,
+ bufferization.access = "read",
+ bufferization.buffer_layout =
+ affine_map<(d0,d1,d2,d3)->(d0,d1,d2,d3)>},
+ %bias: !tbias {bufferization.writable = false,
+ bufferization.access = "read",
+ bufferization.buffer_layout = affine_map<(d0)->(d0)>},
+ %output: !toutput {bufferization.writable = true,
+ bufferization.buffer_layout =
+ affine_map<(d0,d1,d2,d3)->(d0,d1,d2,d3)>,
+ bufferization.access = "write"}) -> !toutput
+ // This requests a C-compatible interface to be emitted for the function
+ // when translating to LLVM IR.
+ attributes { llvm.emit_c_interface }
+{
+ // Bias. Using a named Linalg operation for brevity.
+ %bias_init = tensor.empty() : !toutput
+ %biased = linalg.broadcast ins(%bias : !tbias)
+ outs(%bias_init : !toutput) dimensions = [0, 1, 2]
+
+ // Convolution proper. While Linalg has named operations for 2D convolutions,
+ // the one in the Halide example has an uncommon order of filter dimensions
+ // and is not supported. It also takes the fitler as first argument. This
+ // code recreates it faithfully using the generic form.
+ %convolved = linalg.generic {
+ iterator_types = ["parallel", "parallel", "parallel", "parallel",
+ "reduction", "reduction", "reduction"],
+ indexing_maps = [
+ affine_map<(n, y, x, c, rz, ry, rx) -> (rx, rz, ry, c)>,
+ affine_map<(n, y, x, c, rz, ry, rx) -> (n, y+rz, x+ry, rx)>,
+ affine_map<(n, y, x, c, rz, ry, rx) -> (n, y, x, c)>
+ ]
+ } ins(%filter, %input: !tfilter, !tinput) outs(%biased : !toutput) {
+ ^bb0(%in: f32, %f: f32, %b: f32):
+ // Note the fastmath attributes that allow operations to be recombined into
+ // %0 = math.fma %in, %f, %b : f32
+ // later on and to reorder reductions.
+ %m1 = arith.mulf %in, %f {fastmath = #arith.fastmath<fast>} : f32
+ %0 = arith.addf %b, %m1 {fastmath = #arith.fastmath<fast>} : f32
+ linalg.yield %0 : f32
+ } -> !toutput
+
+ // ReLU is just a max(0, x).
+ %c0 = arith.constant 0.0 : f32
+ %relued = linalg.generic {
+ iterator_types = ["parallel", "parallel", "parallel", "parallel"],
+ indexing_maps = [
+ affine_map<(d0, d1, d2, d3) -> ()>,
+ affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>,
+ affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+ ]
+ } ins(%c0, %convolved : f32, !toutput)
+ outs(%output : !toutput) {
+ ^bb0(%cst: f32, %in: f32, %out: f32):
+ %0 = llvm.intr.maxnum(%cst, %in) : (f32, f32) -> f32
+ linalg.yield %0 : f32
+ } -> !toutput
+
+ return %relued : !toutput
+}
+
+// Module containing the transformation script to be applied. The attribute
+// is required to correctly verify the use of named (macro-like) sequences.
+module attributes { transform.with_named_sequence } {
+ // Apply transformations in a sequence to recreate the following Halide
+ // schedule:
+ //
+ // Var co, ci, xo, xi;
+ // relu.split(c, co, ci, vec * tile_w)
+ // .split(x, xo, xi, tile_h)
+ // .reorder(ci, xi, xo, y, n, co)
+ // .vectorize(ci, vec)
+ // .unroll(ci)
+ // .unroll(xi);
+ // conv.compute_at(relu, xo)
+ // .vectorize(c, vec)
+ // .unroll(c)
+ // .unroll(x)
+ // .unroll(y)
+ // .update()
+ // .reorder(c, x, y, r.x, r.y, r.z, n)
+ // .vectorize(c, vec)
+ // .unroll(c)
+ // .unroll(x)
+ // .unroll(y)
+ // .unroll(r.x, 2);
+ //
+ // where tile_w = 4, tile_h = 5, vec = 16. Note that unroll(y) and unroll(r.x)
+ // have no effect on the Halide IR as of 294f80c49bf3bb8582446613c25fcce03b82.
+ // Also note that the order of dimensions in Halide is inverted, e.g., co and
+ // n are the outermost loops in the respective reorder directives.
+ transform.sequence failures(propagate) {
+ // This argument will point to the top-level module.
+ ^bb0(%arg0: !transform.any_op):
+
+ // 1. Find the operations we are going to transform usnig their names. This
+ // is a simplistic approach that works when there are few operations in the
+ // IR to be transformed. More complex scenarios should rely on operations
+ // with `transform.match` prefix that are out of scope for this chapter.
+ %bias = transform.structured.match ops{["linalg.broadcast"]} in %arg0
+ : (!transform.any_op) -> !transform.any_op
+ %generics = transform.structured.match ops{["linalg.generic"]} in %arg0
+ : (!transform.any_op) -> !transform.any_op
+ %conv, %relu = transform.split_handle %generics
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+
+ // 2. Initial tiling to start producing the loop structure. Note that the
+ // linalg.generic operation has the implicit loop order (n, y, x, c). Since
+ // the desired order of dimensions is (co, n, y, xo, xi, ci), we first tile
+ // only the c dimension to materialize the outermost co loop, and then tile
+ // the other dimensions since they are already in the expected order. Tiling
+ // by 1 produces the loop that iterates along the entire dimension. Tiling
+ // by 0 does not produce a loop. The size 64 is chosen as tiling by 4*16
+ // where 16 is the AVX512 vector length. Note that structured tiling doesn't
+ // remove the dimensions that became trivial (unit size) so the resulting
+ // sturucture is technically (co, no=n, yo=y, xo, [ni=1, yi=1, xi, ci])
+ // where brackets indicate implicit loops of the `linalg.generic` operation
+ // inside the loops produced by tiling.
+ //
+ // [n y x c]
+ %co, %relu2 = transform.structured.tile_to_forall_op %relu
+ tile_sizes [0, 0, 0, 64]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+ %n_y_xo, %relu3 = transform.structured.tile_to_forall_op %relu2
+ tile_sizes [1, 1, 5, 0]
+ : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+
+ // Compute_at is actually fusion into the given loop (given that we start
+ // with totally fissioned form, Halide starts with a fused form by reusing
+ // the loop iterators).
+ %conv2, %co2 = transform.structured.fuse_into_containing_op %conv into %co
+ : (!transform.any_op, !transform.any_op)
+ -> (!transform.any_op, !transform.any_op)
+ %conv3, %n_y_xo2 = transform.structured.fuse_into_containing_op %conv2
+ into %n_y_xo
+ : (!transform.any_op, !transform.any_op)
+ -> (!transform.any_op, !transform.any_op)
+
+ // Also fuse the bias that we represent as a separate operation and Halide
+ // represents as the "pure" (as opposed to "update") part of the conv
+ // expression. Note that fusion consumes both handles and produces new
+ // handles for chaining purposes.
+ %bias2, %co3 = transform.structured.fuse_into_containing_op %bias into %co2
+ : (!transform.any_op, !transform.any_op)
+ -> (!transform.any_op, !transform.any_op)
+ %bias3, %n_y_xo3 = transform.structured.fuse_into_containing_op %bias2
+ into %n_y_xo2
+ : (!transform.any_op, !transform.any_op)
+ -> (!transform.any_op, !transform.any_op)
+
+ // Clean up the result of fusion, which mechanically duplicates the producer
+ // operation in the consumer loop without removing the original operation.
+ // The original operation is now "dead": it has no uses and no side effects
+ // so it can be removed by dead-code elimination (DCE) that runs as part of
+ // pattern rewriting. The transform dialect allows to apply a combination
+ // of named pattern sets, exposed as operations, in one sweep to an
+ // isolated-from-above container payload operation. Note that we don't
+ // actually need any patterns for DCE to run, just trigger the rewriting.
+ //
+ // This step is optional. The transformation can continue without it and
+ // produce the same final IR, but makes it easier to manually examine the
+ // intermediate stages.
+ %f00 = transform.structured.match ops{["func.func"]} in %arg0
+ : (!transform.any_op) -> !transform.any_op
+ transform.apply_patterns to %f00 {
+ } : !transform.any_op
+
+ // The loop reordering requested for the convolution operation requires
+ // putting reduction loops (r.z, r.y. r.x) before the "inner" loops xi, ci.
+ // The "inner" loops are still implicit as part of the linalg.generic
+ // operation, and we need to materialize reduction loops around it by tiling
+ // with size 1. Since we are producing reduction loops, we indicate that we
+ // are tiling a reduction and request a sequential `scf.for` loops (parallel
+ // reductions are supported by `scf.forall`, but we don't need those here).
+ //
+ // This transform operation is more capable than merely producing
+ // (reduction) loops: the transformed code performs `tile_size` partial
+ // reductions of `N / tile_size` elements, potentially in parallel by
+ // changing the dimension kind of the structured operation inside the loop,
+ // and then performs a final reduction of these partial results by producing
+ // a new “combiner” structured operation after the loops. In our case,
+ // tile_size = 1 along all dimensions, so the reduction is entirely
+ // performed by the generated loops. The combiner structured operation is
+ // still produced and adds up the reduction result with the initial value.
+ %rz_ry_rx, %red_fill, %conv4, %combining
+ = transform.structured.tile_reduction_using_scf %conv3 by
+ // n y x c rz ry rx
+ tile_sizes=[0, 0, 0, 0, 1, 1, 1]
+ : (!transform.any_op)
+ -> (!transform.any_op, !transform.any_op, !transform.any_op,
+ !transform.any_op)
+
+ // At this point, the inner Linalg operations have implicit iteration spaces
+ // of 5x64 size, with some additional unit-size dimensions. Completely
+ // replicating Halide schedule would require materializing the loops with
+ // 5 and 4 iterations, respectively, unrolling those loops and marking the
+ // remaining 16-point iteration space for vectorization.
+ //
+ // This is unnecessary in MLIR that supports multi-dimensional vectors,
+ // which will be decomposed into target-specific sizes during the lowering.
+ // Therefore, this schedule stops here.
+
+ // Transform the named broadcast operation used for bias into the generic
+ // form before vectorization to prevent special cases from kicking in.
+ transform.structured.generalize %bias3
+ : (!transform.any_op) -> !transform.any_op
+
+ // Use the named macro to perform most of the lowering.
+ transform.include @lower failures(propagate) (%arg0)
+ : (!transform.any_op) -> ()
+ transform.yield
+ }
+
+ // Named sequence of transformations is a macro-like object that can be
+ // included from another place in the transform dialect, but doesn't allow for
+ // recursion. This can be reused in other scenarios.
+ transform.named_sequence @lower(
+ %arg0: !transform.any_op {transform.consumed}) {
+ %f00 = transform.structured.match ops{["func.func"]} in %arg0
+ : (!transform.any_op) -> !transform.any_op
+
+ // Simplify the code as tiling and fusion may have produced a lot of
+ // operations computing tensor subsets and loop ranges, some of which may be
+ // duplicated or excessively complex. Simplification involving
+ // canonicalization, common subexpression elimination, loop invariant code
+ // motion and various rewrite patterns can be applied directly from the
+ // transform dialect. Furthermore, an arbitrary combination of rewrite
+ // patterns can be applied in one sweep to a given scope, a functionality
+ // that cannot be achieved with conventional compiler passes that apply each
+ // group of patterns separately (at least without creating a new pass for
+ // each combination of pattern groups).
+ transform.apply_patterns to %f00 {
+ transform.apply_patterns.canonicalization
+ transform.apply_patterns.linalg.tiling_canonicalization
+ } : !transform.any_op
+ transform.apply_cse to %f00 : !transform.any_op
+ %all_loops = transform.structured.match interface{LoopLikeInterface}
+ in %arg0
+ : (!transform.any_op) -> !transform.any_op
+ transform.apply_licm to %all_loops : !transform.any_op
+
+ // Tiling-by-one as a way of materializing loops produced operations
+ // processing 4+D types where only a handful of dimension isn’t unit-sized,
+ // e.g., tensor<1x1x1x5x64xf32> where 5 and 64 are tile sizes. Remove such
+ // unit dimensions before vectorization, for clarity.
+ transform.apply_patterns to %f00 {
+ transform.apply_patterns.linalg.fold_unit_extent_dims_via_reshapes
+ } : !transform.any_op
+
+ // Vectorize the remaining non-unit dimensions in structured operations.
+ // This essentially rewrites operations on `tensor<5x64xf32>` into
+ // opreations on `vector<5x64xf32>`. Further lowering in MLIR and LLVM will
+ // decompose this into a sequence of operations on single-dimensional
+ // vectors of the platform-relevant size, e.g., `vector<16xf32>` for AVX512.
+ // High-level vector primitives, such as `vector.transpose` and
+ // `vector.broadcast` can be introduced at this stage. They will be later
+ // lowered to sequences of lower-level primitives such as `vector.shuffle`
+ // depending on the selected lowering strategy.
+ %fv = transform.structured.vectorize_children_and_apply_patterns %f00
+ : (!transform.any_op) -> !transform.any_op
+
+ // Vectorization may have created new opportunities for cleanups. In
+ // particular, tensor subsetting operations can be composed with vector
+ // operations, and vector transfer (multi-dimensional load/store) operations
+ // can be recombined and hoisted out of loops.
+ transform.apply_patterns to %fv {
+ transform.apply_patterns.canonicalization
+ transform.apply_patterns.tensor.fold_tensor_subset_ops_into_vector_transfers
+ } : !transform.any_op
+ transform.apply_cse to %fv : !transform.any_op
+ transform.structured.hoist_redundant_vector_transfers %fv
+ : (!transform.any_op) -> !transform.any_op
+
+ // Apply bufferization that rewrites the remaining operations on tensors
+ // as operations on structured buffer (memref) types, including the function
+ // API. MLIR bufferization uses destination-passing style meaning that a
+ // buffer is shared between one of the operation's operands and its result.
+ //
+ // Since bufferization rewrites function signatures, it is applied as a
+ // module-wise transformation. Therefore, it invalidates all previously
+ // defined handles. Bufferization is usually a late step in the
+ // transformation process, so invalidation is not an issue. However, if
+ // other transformations, such as loop unrolling, are required after
+ // bufferization, new handles should be produced using the match operations.
+ %arg1 = transform.bufferization.one_shot_bufferize %arg0 {
+ bufferize_function_boundaries = true,
+ function_boundary_type_conversion = 1 : i32 }
+ : (!transform.any_op) -> !transform.any_op
+
+ // Apply general canonicalization and CSE to each function after
+ // bufferization as new simplification opportunities may have appeared.
+ %fb = transform.structured.match ops{["func.func"]} in %arg1
+ : (!transform.any_op) -> !transform.any_op
+ transform.apply_patterns to %fb {
+ transform.apply_patterns.canonicalization
+ } : !transform.any_op
+ transform.apply_cse to %fb : !transform.any_op
+
+ // Lower complex, multidimensional vector operations into simpler
+ // primitives. This particular selection of the pattern groups corresponds
+ // to vector dialect operations present in the payload IR at this stage.
+ // Many of these groups can be parameterized to use different strategies or
+ // lower-level primitives offering performance trade-offs. In this case, we
+ // are selecting the simplest strategies.
+ transform.apply_patterns to %fb {
+ transform.apply_patterns.vector.lower_contraction
+ lowering_strategy = parallelarith
+ transform.apply_patterns.vector.lower_transfer
+ max_transfer_rank = 1
+ transform.apply_patterns.vector.lower_transpose
+ lowering_strategy = eltwise
+ transform.apply_patterns.vector.lower_shape_cast
+ } : !transform.any_op
+
+ // These patterns apply in a separate sweep to avoid transfer-to-scf
+ // patterns overlap with lower-transfer patterns as they apply to the same
+ // kind of operations. These patterns may produce local allocations to act
+ // as temporary caches deep inside loops, which could lead to catastrophic
+ // performance. Such allocations are moved onto the stack and hoisted from
+ // all the surrounding loops.
+ transform.apply_patterns to %fb {
+ transform.apply_patterns.vector.transfer_to_scf
+ transform.apply_patterns.memref.alloc_to_alloca
+ } : !transform.any_op
+ transform.bufferization.buffer_loop_hoisting %fb : !transform.any_op
+
+ // A final round of cleanups additionally includes patterns to simplify
+ // buffer aliasing operations that may have been introduced during
+ // bufferization and could result in excessively complex address
+ // computation.
+ transform.apply_patterns to %fb {
+ transform.apply_patterns.memref.fold_memref_alias_ops
+ transform.apply_patterns.canonicalization
+ } : !transform.any_op
+ transform.apply_cse to %fb : !transform.any_op
+
+ transform.yield
+ }
+}
+
+// The core computation, at the LLVM dialect level, must correspond to five
+// immediately adjacent fma on vector<64xf32>.
+
+// CHECK: %[[R0:.+]] = llvm.mlir.undef : !llvm.array<5 x vector<64xf32>>
+// CHECK-NEXT: %[[LINE0:.+]] = llvm.extractvalue %[[V:.+]][0] : !llvm.array<5 x vector<64xf32>>
+// CHECK-NEXT: %[[FMA0:.+]] = llvm.intr.fma(%{{.*}}, %{{.*}}, %[[LINE0]])
+// CHECK-SAME: -> vector<64xf32>
+// CHECK-NEXT: %[[R1:.+]] = llvm.insertvalue %[[FMA0]], %[[R0]][0]
+
+// CHECK-NEXT: %[[LINE1:.+]] = llvm.extractvalue %[[V:.+]][1] : !llvm.array<5 x vector<64xf32>>
+// CHECK-NEXT: %[[FMA1:.+]] = llvm.intr.fma(%{{.*}}, %{{.*}}, %[[LINE1]])
+// CHECK-SAME: -> vector<64xf32>
+// CHECK-NEXT: %[[R2:.+]] = llvm.insertvalue %[[FMA1]], %[[R1]][1]
+
+// CHECK-NEXT: %[[LINE2:.+]] = llvm.extractvalue %[[V:.+]][2] : !llvm.array<5 x vector<64xf32>>
+// CHECK-NEXT: %[[FMA2:.+]] = llvm.intr.fma(%{{.*}}, %{{.*}}, %[[LINE2]])
+// CHECK-SAME: -> vector<64xf32>
+// CHECK-NEXT: %[[R3:.+]] = llvm.insertvalue %[[FMA2]], %[[R2]][2]
+
+// CHECK-NEXT: %[[LINE3:.+]] = llvm.extractvalue %[[V:.+]][3] : !llvm.array<5 x vector<64xf32>>
+// CHECK-NEXT: %[[FMA3:.+]] = llvm.intr.fma(%{{.*}}, %{{.*}}, %[[LINE3]])
+// CHECK-SAME: -> vector<64xf32>
+// CHECK-NEXT: %[[R4:.+]] = llvm.insertvalue %[[FMA3]], %[[R3]][3]
+
+// CHECK-NEXT: %[[LINE4:.+]] = llvm.extractvalue %[[V:.+]][4] : !llvm.array<5 x vector<64xf32>>
+// CHECK-NEXT: %[[FMA4:.+]] = llvm.intr.fma(%{{.*}}, %{{.*}}, %[[LINE4]])
+// CHECK-SAME: -> vector<64xf32>
+// CHECK-NEXT: %[[R5:.+]] = llvm.insertvalue %[[FMA4]], %[[R4]][4]