aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGuillaume Chatelet <gchatelet@google.com>2024-01-22 15:02:21 +0100
committerGitHub <noreply@github.com>2024-01-22 15:02:21 +0100
commitcabe8be6bb2120828a741217365be975c59ac7b6 (patch)
treea0904140efb122e5745929a02a6c310a7a719024
parent5a667bee9c983f882255732ae27c96d1d94e0893 (diff)
downloadllvm-cabe8be6bb2120828a741217365be975c59ac7b6.zip
llvm-cabe8be6bb2120828a741217365be975c59ac7b6.tar.gz
llvm-cabe8be6bb2120828a741217365be975c59ac7b6.tar.bz2
[libc] `FPRep` builders return `FPRep` instead of raw `StorageType` (#78588)
-rw-r--r--libc/src/__support/FPUtil/FPBits.h593
-rw-r--r--libc/test/src/__support/FPUtil/fpbits_test.cpp171
2 files changed, 399 insertions, 365 deletions
diff --git a/libc/src/__support/FPUtil/FPBits.h b/libc/src/__support/FPUtil/FPBits.h
index be70028..bc6b19b 100644
--- a/libc/src/__support/FPUtil/FPBits.h
+++ b/libc/src/__support/FPUtil/FPBits.h
@@ -64,38 +64,46 @@ LIBC_INLINE_VAR constexpr Sign Sign::POS = Sign(false);
// └─────────▲─────────┘
// │
// ┌─────────┴─────────┐
-// │ FPRepBase<FPType> │
+// │ FPStorage<FPType> │
// └─────────▲─────────┘
// │
// ┌────────────┴─────────────┐
// │ │
-// ┌────────┴──────┐ ┌─────────────┴──────────────┐
-// │ FPRep<FPType> │ │ FPRep<FPType::X86_Binary80 │
-// └────────▲──────┘ └─────────────▲──────────────┘
+// ┌────────┴─────────┐ ┌──────────────┴──────────────────┐
+// │ FPRepSem<FPType> │ │ FPRepSem<FPType::X86_Binary80 │
+// └────────▲─────────┘ └──────────────▲──────────────────┘
// │ │
// └────────────┬─────────────┘
// │
// ┌─────┴─────┐
+// │ FPRep<T> │
+// └───────────┘
+// │
+// ┌─────┴─────┐
// │ FPBits<T> │
// └───────────┘
//
-// - 'FPLayout' defines only a few constants, namely the 'StorageType' and the
-// length of the sign, the exponent and significand parts.
-// - 'FPRepBase' builds more constants on top of those from 'FPLayout' like
-// exponent bias, shifts and masks. It also defines tools to assemble or test
+// - 'FPLayout' defines only a few constants, namely the 'StorageType' and
+// length of the sign, the exponent, fraction and significand parts.
+// - 'FPStorage' builds more constants on top of those from 'FPLayout' like
+// exponent bias and masks. It also holds the bit representation of the
+// floating point as a 'StorageType' type and defines tools to assemble or test
// these parts.
-// - 'FPRep' defines functions to interact with the floating point
-// representation. The default implementation is the one for 'IEEE754', a
-// specialization is provided for X86 Extended Precision that has a different
-// encoding.
-// - 'FPBits' is templated on the platform floating point types. Contrary to
-// 'FPRep' that is platform agnostic 'FPBits' is architecture dependent.
+// - 'FPRepSem' defines functions to interact semantically with the floating
+// point representation. The default implementation is the one for 'IEEE754', a
+// specialization is provided for X86 Extended Precision.
+// - 'FPRep' derives from 'FPRepSem' and adds functions that are common to all
+// implementations.
+// - 'FPBits' exposes all functions from 'FPRep' but operates on the native C++
+// floating point type instead of 'FPType'.
namespace internal {
// Defines the layout (sign, exponent, significand) of a floating point type in
// memory. It also defines its associated StorageType, i.e., the unsigned
// integer type used to manipulate its representation.
+// Additionally we provide the fractional part length, i.e., the number of bits
+// after the decimal dot when the number is in normal form.
template <FPType> struct FPLayout {};
template <> struct FPLayout<FPType::IEEE754_Binary16> {
@@ -103,6 +111,7 @@ template <> struct FPLayout<FPType::IEEE754_Binary16> {
LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1;
LIBC_INLINE_VAR static constexpr int EXP_LEN = 5;
LIBC_INLINE_VAR static constexpr int SIG_LEN = 10;
+ LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN;
};
template <> struct FPLayout<FPType::IEEE754_Binary32> {
@@ -110,6 +119,7 @@ template <> struct FPLayout<FPType::IEEE754_Binary32> {
LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1;
LIBC_INLINE_VAR static constexpr int EXP_LEN = 8;
LIBC_INLINE_VAR static constexpr int SIG_LEN = 23;
+ LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN;
};
template <> struct FPLayout<FPType::IEEE754_Binary64> {
@@ -117,6 +127,7 @@ template <> struct FPLayout<FPType::IEEE754_Binary64> {
LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1;
LIBC_INLINE_VAR static constexpr int EXP_LEN = 11;
LIBC_INLINE_VAR static constexpr int SIG_LEN = 52;
+ LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN;
};
template <> struct FPLayout<FPType::IEEE754_Binary128> {
@@ -124,6 +135,7 @@ template <> struct FPLayout<FPType::IEEE754_Binary128> {
LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1;
LIBC_INLINE_VAR static constexpr int EXP_LEN = 15;
LIBC_INLINE_VAR static constexpr int SIG_LEN = 112;
+ LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN;
};
template <> struct FPLayout<FPType::X86_Binary80> {
@@ -131,23 +143,22 @@ template <> struct FPLayout<FPType::X86_Binary80> {
LIBC_INLINE_VAR static constexpr int SIGN_LEN = 1;
LIBC_INLINE_VAR static constexpr int EXP_LEN = 15;
LIBC_INLINE_VAR static constexpr int SIG_LEN = 64;
+ LIBC_INLINE_VAR static constexpr int FRACTION_LEN = SIG_LEN - 1;
};
-} // namespace internal
-
-// FPRepBase derives useful constants from the FPLayout.
-template <FPType fp_type>
-struct FPRepBase : public internal::FPLayout<fp_type> {
-private:
- using UP = internal::FPLayout<fp_type>;
+// FPStorage derives useful constants from the FPLayout above.
+template <FPType fp_type> struct FPStorage : public FPLayout<fp_type> {
+ using UP = FPLayout<fp_type>;
-public:
using UP::EXP_LEN; // The number of bits for the *exponent* part
using UP::SIG_LEN; // The number of bits for the *significand* part
using UP::SIGN_LEN; // The number of bits for the *sign* part
// For convenience, the sum of `SIG_LEN`, `EXP_LEN`, and `SIGN_LEN`.
LIBC_INLINE_VAR static constexpr int TOTAL_LEN = SIGN_LEN + EXP_LEN + SIG_LEN;
+ // The number of bits after the decimal dot when the number is in normal form.
+ using UP::FRACTION_LEN;
+
// An unsigned integer that is wide enough to contain all of the floating
// point bits.
using StorageType = typename UP::StorageType;
@@ -162,41 +173,30 @@ public:
(1U << (EXP_LEN - 1U)) - 1U;
static_assert(EXP_BIAS > 0);
-protected:
- // The shift amount to get the *significand* part to the least significant
- // bit. Always `0` but kept for consistency.
- LIBC_INLINE_VAR static constexpr int SIG_MASK_SHIFT = 0;
- // The shift amount to get the *exponent* part to the least significant bit.
- LIBC_INLINE_VAR static constexpr int EXP_MASK_SHIFT = SIG_LEN;
- // The shift amount to get the *sign* part to the least significant bit.
- LIBC_INLINE_VAR static constexpr int SIGN_MASK_SHIFT = SIG_LEN + EXP_LEN;
-
// The bit pattern that keeps only the *significand* part.
LIBC_INLINE_VAR static constexpr StorageType SIG_MASK =
- mask_trailing_ones<StorageType, SIG_LEN>() << SIG_MASK_SHIFT;
-
-public:
+ mask_trailing_ones<StorageType, SIG_LEN>();
// The bit pattern that keeps only the *exponent* part.
LIBC_INLINE_VAR static constexpr StorageType EXP_MASK =
- mask_trailing_ones<StorageType, EXP_LEN>() << EXP_MASK_SHIFT;
+ mask_trailing_ones<StorageType, EXP_LEN>() << SIG_LEN;
// The bit pattern that keeps only the *sign* part.
LIBC_INLINE_VAR static constexpr StorageType SIGN_MASK =
- mask_trailing_ones<StorageType, SIGN_LEN>() << SIGN_MASK_SHIFT;
+ mask_trailing_ones<StorageType, SIGN_LEN>() << (EXP_LEN + SIG_LEN);
// The bit pattern that keeps only the *exponent + significand* part.
LIBC_INLINE_VAR static constexpr StorageType EXP_SIG_MASK =
mask_trailing_ones<StorageType, EXP_LEN + SIG_LEN>();
// The bit pattern that keeps only the *sign + exponent + significand* part.
LIBC_INLINE_VAR static constexpr StorageType FP_MASK =
mask_trailing_ones<StorageType, TOTAL_LEN>();
+ // The bit pattern that keeps only the *fraction* part.
+ // i.e., the *significand* without the leading one.
+ LIBC_INLINE_VAR static constexpr StorageType FRACTION_MASK =
+ mask_trailing_ones<StorageType, FRACTION_LEN>();
static_assert((SIG_MASK & EXP_MASK & SIGN_MASK) == 0, "masks disjoint");
static_assert((SIG_MASK | EXP_MASK | SIGN_MASK) == FP_MASK, "masks cover");
protected:
- LIBC_INLINE static constexpr StorageType bit_at(int position) {
- return StorageType(1) << position;
- }
-
// A stongly typed integer that prevents mixing and matching integers with
// different semantics.
template <typename T> struct TypedInt {
@@ -248,7 +248,7 @@ protected:
// An opaque type to store a floating point significand.
// We define special values but it is valid to create arbitrary values as long
- // as they are in the range [BITS_ALL_ZEROES, BITS_ALL_ONES].
+ // as they are in the range [ZERO, BITS_ALL_ONES].
// Note that the semantics of the Significand are implementation dependent.
// Values greater than BITS_ALL_ONES are truncated.
struct Significand : public TypedInt<StorageType> {
@@ -277,10 +277,8 @@ protected:
return Significand(StorageType(1));
}
LIBC_INLINE static constexpr auto MSB() {
- return Significand(StorageType(bit_at(SIG_LEN - 1)));
+ return Significand(StorageType(1) << (SIG_LEN - 1));
}
- // Aliases
- LIBC_INLINE static constexpr auto BITS_ALL_ZEROES() { return ZERO(); }
LIBC_INLINE static constexpr auto BITS_ALL_ONES() {
return Significand(SIG_MASK);
}
@@ -306,181 +304,95 @@ protected:
return encode(exp, sig);
}
+ // The floating point number representation as an unsigned integer.
+ StorageType bits{};
+
+ LIBC_INLINE constexpr FPStorage() : bits(0) {}
+ LIBC_INLINE constexpr FPStorage(StorageType value) : bits(value) {}
+
+ // Observers
LIBC_INLINE constexpr StorageType exp_bits() const { return bits & EXP_MASK; }
LIBC_INLINE constexpr StorageType sig_bits() const { return bits & SIG_MASK; }
LIBC_INLINE constexpr StorageType exp_sig_bits() const {
return bits & EXP_SIG_MASK;
}
-
-private:
- // Merge bits from 'a' and 'b' values according to 'mask'.
- // Use 'a' bits when corresponding 'mask' bits are zeroes and 'b' bits when
- // corresponding bits are ones.
- LIBC_INLINE static constexpr StorageType merge(StorageType a, StorageType b,
- StorageType mask) {
- // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
- return a ^ ((a ^ b) & mask);
- }
-
-protected:
- // The number of bits after the decimal dot when the number is in normal form.
- LIBC_INLINE_VAR static constexpr int FRACTION_LEN =
- fp_type == FPType::X86_Binary80 ? SIG_LEN - 1 : SIG_LEN;
- LIBC_INLINE_VAR static constexpr uint32_t MANTISSA_PRECISION =
- FRACTION_LEN + 1;
- LIBC_INLINE_VAR static constexpr StorageType FRACTION_MASK =
- mask_trailing_ones<StorageType, FRACTION_LEN>();
-
- // The floating point number representation as an unsigned integer.
- StorageType bits = 0;
-
-public:
- LIBC_INLINE constexpr Sign sign() const {
- return (bits & SIGN_MASK) ? Sign::NEG : Sign::POS;
- }
-
- LIBC_INLINE constexpr void set_sign(Sign signVal) {
- if (sign() != signVal)
- bits ^= SIGN_MASK;
- }
-
- LIBC_INLINE constexpr StorageType get_mantissa() const {
- return bits & FRACTION_MASK;
- }
-
- LIBC_INLINE constexpr void set_mantissa(StorageType mantVal) {
- bits = merge(bits, mantVal, FRACTION_MASK);
- }
-
- LIBC_INLINE constexpr uint16_t get_biased_exponent() const {
- return uint16_t((bits & EXP_MASK) >> EXP_MASK_SHIFT);
- }
-
- LIBC_INLINE constexpr void set_biased_exponent(StorageType biased) {
- bits = merge(bits, biased << EXP_MASK_SHIFT, EXP_MASK);
- }
-
- LIBC_INLINE constexpr int get_exponent() const {
- return int(get_biased_exponent()) - EXP_BIAS;
- }
-
- // If the number is subnormal, the exponent is treated as if it were the
- // minimum exponent for a normal number. This is to keep continuity between
- // the normal and subnormal ranges, but it causes problems for functions where
- // values are calculated from the exponent, since just subtracting the bias
- // will give a slightly incorrect result. Additionally, zero has an exponent
- // of zero, and that should actually be treated as zero.
- LIBC_INLINE constexpr int get_explicit_exponent() const {
- const int biased_exp = int(get_biased_exponent());
- if (is_zero()) {
- return 0;
- } else if (biased_exp == 0) {
- return 1 - EXP_BIAS;
- } else {
- return biased_exp - EXP_BIAS;
- }
- }
-
- LIBC_INLINE constexpr StorageType uintval() const { return bits & FP_MASK; }
- LIBC_INLINE constexpr void set_uintval(StorageType value) {
- bits = (value & FP_MASK);
- }
-
- LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; }
-
- LIBC_INLINE
- constexpr bool is_subnormal() const {
- return exp_bits() == encode(BiasedExponent::BITS_ALL_ZEROES());
- }
-
- LIBC_INLINE constexpr bool is_neg() const { return sign().is_neg(); }
- LIBC_INLINE constexpr bool is_pos() const { return sign().is_pos(); }
};
-namespace internal {
-
-// Manipulates the representation of a floating point number defined by its
-// FPType. This layer is architecture agnostic and does not handle C++ floating
-// point types directly ('float', 'double' and 'long double'). Use the FPBits
-// below if needed.
-//
-// TODO: Specialize this class for FPType::X86_Binary80 and remove ad-hoc logic
-// from FPRepBase.
-template <FPType fp_type> struct FPRep : public FPRepBase<fp_type> {
- using UP = FPRepBase<fp_type>;
+// This layer defines all functions that are specific to how the the floating
+// point type is encoded. It enables constructions, modification and observation
+// of values manipulated as 'StorageType'.
+template <FPType fp_type, typename RetT>
+struct FPRepSem : public FPStorage<fp_type> {
+ using UP = FPStorage<fp_type>;
using typename UP::StorageType;
using UP::FRACTION_LEN;
using UP::FRACTION_MASK;
- using UP::MANTISSA_PRECISION;
protected:
- using typename UP::BiasedExponent;
- using typename UP::Exponent;
- using typename UP::Significand;
+ using BiasedExp = typename UP::BiasedExponent;
+ using Exp = typename UP::Exponent;
+ using Sig = typename UP::Significand;
using UP::encode;
using UP::exp_bits;
using UP::exp_sig_bits;
using UP::sig_bits;
+ using UP::UP;
public:
- LIBC_INLINE constexpr bool is_nan() const {
- return exp_sig_bits() >
- encode(BiasedExponent::BITS_ALL_ONES(), Significand::ZERO());
+ // Builders
+ LIBC_INLINE static constexpr RetT one(Sign sign = Sign::POS) {
+ return RetT(encode(sign, Exp::ZERO(), Sig::ZERO()));
}
- LIBC_INLINE constexpr bool is_quiet_nan() const {
- return exp_sig_bits() >=
- encode(BiasedExponent::BITS_ALL_ONES(), Significand::MSB());
+ LIBC_INLINE static constexpr RetT min_subnormal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::LSB()));
}
- LIBC_INLINE constexpr bool is_signaling_nan() const {
- return is_nan() && !is_quiet_nan();
+ LIBC_INLINE static constexpr RetT max_subnormal(Sign sign = Sign::POS) {
+ return RetT(
+ encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::BITS_ALL_ONES()));
}
- LIBC_INLINE constexpr bool is_inf() const {
- return exp_sig_bits() ==
- encode(BiasedExponent::BITS_ALL_ONES(), Significand::ZERO());
+ LIBC_INLINE static constexpr RetT min_normal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, Exp::MIN(), Sig::ZERO()));
}
- LIBC_INLINE constexpr bool is_finite() const {
- return exp_bits() != encode(BiasedExponent::BITS_ALL_ONES());
+ LIBC_INLINE static constexpr RetT max_normal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, Exp::MAX(), Sig::BITS_ALL_ONES()));
}
- LIBC_INLINE constexpr bool is_normal() const {
- return is_finite() && !UP::is_subnormal();
+ LIBC_INLINE static constexpr RetT inf(Sign sign = Sign::POS) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(), Sig::ZERO()));
}
-
- LIBC_INLINE static constexpr StorageType zero(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+ LIBC_INLINE static constexpr RetT build_nan(Sign sign = Sign::POS,
+ StorageType v = 0) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(),
+ (v ? Sig(v) : (Sig::MSB() >> 1))));
}
- LIBC_INLINE static constexpr StorageType one(Sign sign = Sign::POS) {
- return encode(sign, Exponent::ZERO(), Significand::ZERO());
+ LIBC_INLINE static constexpr RetT build_quiet_nan(Sign sign = Sign::POS,
+ StorageType v = 0) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(), Sig::MSB() | Sig(v)));
}
- LIBC_INLINE static constexpr StorageType
- min_subnormal(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::LSB());
+
+ // Observers
+ LIBC_INLINE constexpr bool is_nan() const {
+ return exp_sig_bits() > encode(BiasedExp::BITS_ALL_ONES(), Sig::ZERO());
}
- LIBC_INLINE static constexpr StorageType
- max_subnormal(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ZEROES(),
- Significand::BITS_ALL_ONES());
+ LIBC_INLINE constexpr bool is_quiet_nan() const {
+ return exp_sig_bits() >= encode(BiasedExp::BITS_ALL_ONES(), Sig::MSB());
}
- LIBC_INLINE static constexpr StorageType min_normal(Sign sign = Sign::POS) {
- return encode(sign, Exponent::MIN(), Significand::ZERO());
+ LIBC_INLINE constexpr bool is_signaling_nan() const {
+ return is_nan() && !is_quiet_nan();
}
- LIBC_INLINE static constexpr StorageType max_normal(Sign sign = Sign::POS) {
- return encode(sign, Exponent::MAX(), Significand::BITS_ALL_ONES());
+ LIBC_INLINE constexpr bool is_inf() const {
+ return exp_sig_bits() == encode(BiasedExp::BITS_ALL_ONES(), Sig::ZERO());
}
- LIBC_INLINE static constexpr StorageType inf(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ONES(), Significand::ZERO());
+ LIBC_INLINE constexpr bool is_finite() const {
+ return exp_bits() != encode(BiasedExp::BITS_ALL_ONES());
}
- LIBC_INLINE static constexpr StorageType build_nan(Sign sign = Sign::POS,
- StorageType v = 0) {
- return encode(sign, BiasedExponent::BITS_ALL_ONES(),
- (v ? Significand(v) : (Significand::MSB() >> 1)));
+ LIBC_INLINE
+ constexpr bool is_subnormal() const {
+ return exp_bits() == encode(BiasedExp::BITS_ALL_ZEROES());
}
- LIBC_INLINE static constexpr StorageType
- build_quiet_nan(Sign sign = Sign::POS, StorageType v = 0) {
- return encode(sign, BiasedExponent::BITS_ALL_ONES(),
- Significand::MSB() | Significand(v));
+ LIBC_INLINE constexpr bool is_normal() const {
+ return is_finite() && !UP::is_subnormal();
}
-
- // The function return mantissa with the implicit bit set iff the current
+ // Returns the mantissa with the implicit bit set iff the current
// value is a valid normal number.
LIBC_INLINE constexpr StorageType get_explicit_mantissa() {
if (UP::is_subnormal())
@@ -490,20 +402,14 @@ public:
};
// Specialization for the X86 Extended Precision type.
-template <>
-struct FPRep<FPType::X86_Binary80> : public FPRepBase<FPType::X86_Binary80> {
- using UP = FPRepBase<FPType::X86_Binary80>;
+template <typename RetT>
+struct FPRepSem<FPType::X86_Binary80, RetT>
+ : public FPStorage<FPType::X86_Binary80> {
+ using UP = FPStorage<FPType::X86_Binary80>;
using typename UP::StorageType;
using UP::FRACTION_LEN;
using UP::FRACTION_MASK;
- using UP::MANTISSA_PRECISION;
-
-protected:
- using typename UP::BiasedExponent;
- using typename UP::Significand;
- using UP::encode;
-public:
// The x86 80 bit float represents the leading digit of the mantissa
// explicitly. This is the mask for that bit.
static constexpr StorageType EXPLICIT_BIT_MASK = StorageType(1)
@@ -515,6 +421,45 @@ public:
"the explicit bit and the fractional part should cover the "
"whole significand");
+protected:
+ using BiasedExp = typename UP::BiasedExponent;
+ using Sig = typename UP::Significand;
+ using UP::encode;
+ using UP::UP;
+
+public:
+ // Builders
+ LIBC_INLINE static constexpr RetT one(Sign sign = Sign::POS) {
+ return RetT(encode(sign, Exponent::ZERO(), Sig::MSB()));
+ }
+ LIBC_INLINE static constexpr RetT min_subnormal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::LSB()));
+ }
+ LIBC_INLINE static constexpr RetT max_subnormal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(),
+ Sig::BITS_ALL_ONES() ^ Sig::MSB()));
+ }
+ LIBC_INLINE static constexpr RetT min_normal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, Exponent::MIN(), Sig::MSB()));
+ }
+ LIBC_INLINE static constexpr RetT max_normal(Sign sign = Sign::POS) {
+ return RetT(encode(sign, Exponent::MAX(), Sig::BITS_ALL_ONES()));
+ }
+ LIBC_INLINE static constexpr RetT inf(Sign sign = Sign::POS) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(), Sig::MSB()));
+ }
+ LIBC_INLINE static constexpr RetT build_nan(Sign sign = Sign::POS,
+ StorageType v = 0) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(),
+ Sig::MSB() | (v ? Sig(v) : (Sig::MSB() >> 2))));
+ }
+ LIBC_INLINE static constexpr RetT build_quiet_nan(Sign sign = Sign::POS,
+ StorageType v = 0) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ONES(),
+ Sig::MSB() | (Sig::MSB() >> 1) | Sig(v)));
+ }
+
+ // Observers
LIBC_INLINE constexpr bool is_nan() const {
// Most encoding forms from the table found in
// https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format
@@ -527,85 +472,183 @@ public:
// - Quiet Not a Number
// - Unnormal
// This can be reduced to the following logic:
- if (exp_bits() == encode(BiasedExponent::BITS_ALL_ONES()))
+ if (exp_bits() == encode(BiasedExp::BITS_ALL_ONES()))
return !is_inf();
- if (exp_bits() != encode(BiasedExponent::BITS_ALL_ZEROES()))
- return (sig_bits() & encode(Significand::MSB())) == 0;
+ if (exp_bits() != encode(BiasedExp::BITS_ALL_ZEROES()))
+ return (sig_bits() & encode(Sig::MSB())) == 0;
return false;
}
LIBC_INLINE constexpr bool is_quiet_nan() const {
return exp_sig_bits() >=
- encode(BiasedExponent::BITS_ALL_ONES(),
- Significand::MSB() | (Significand::MSB() >> 1));
+ encode(BiasedExp::BITS_ALL_ONES(), Sig::MSB() | (Sig::MSB() >> 1));
}
LIBC_INLINE constexpr bool is_signaling_nan() const {
return is_nan() && !is_quiet_nan();
}
LIBC_INLINE constexpr bool is_inf() const {
- return exp_sig_bits() ==
- encode(BiasedExponent::BITS_ALL_ONES(), Significand::MSB());
+ return exp_sig_bits() == encode(BiasedExp::BITS_ALL_ONES(), Sig::MSB());
}
LIBC_INLINE constexpr bool is_finite() const {
return !is_inf() && !is_nan();
}
+ LIBC_INLINE
+ constexpr bool is_subnormal() const {
+ return exp_bits() == encode(BiasedExp::BITS_ALL_ZEROES());
+ }
LIBC_INLINE constexpr bool is_normal() const {
const auto exp = exp_bits();
- if (exp == encode(BiasedExponent::BITS_ALL_ZEROES()) ||
- exp == encode(BiasedExponent::BITS_ALL_ONES()))
+ if (exp == encode(BiasedExp::BITS_ALL_ZEROES()) ||
+ exp == encode(BiasedExp::BITS_ALL_ONES()))
return false;
return get_implicit_bit();
}
+ LIBC_INLINE constexpr StorageType get_explicit_mantissa() const {
+ return sig_bits();
+ }
+
+ // This functions is specific to FPRepSem<FPType::X86_Binary80>.
+ // TODO: Remove if possible.
+ LIBC_INLINE constexpr bool get_implicit_bit() const {
+ return static_cast<bool>(bits & EXPLICIT_BIT_MASK);
+ }
+
+ // This functions is specific to FPRepSem<FPType::X86_Binary80>.
+ // TODO: Remove if possible.
+ LIBC_INLINE constexpr void set_implicit_bit(bool implicitVal) {
+ if (get_implicit_bit() != implicitVal)
+ bits ^= EXPLICIT_BIT_MASK;
+ }
+};
+
+// 'FPRep' is the bottom of the class hierarchy that only deals with 'FPType'.
+// The operations dealing with specific float semantics are implemented by
+// 'FPRepSem' above and specialized when needed.
+//
+// The 'RetT' type is being propagated up to 'FPRepSem' so that the functions
+// creating new values (Builders) can return the appropriate type. That is, when
+// creating a value through 'FPBits' below the builder will return an 'FPBits'
+// value:
+// i.e., FPBits<float>::zero() // returns an FPBits<float>
+// When we don't care about specific C++ floating point type we can use 'FPRep'
+// directly and 'RetT' defaults to 'StorageType':
+// i.e., FPRep<FPType:IEEE754_Binary32:>::zero() // returns an 'uint32_t'
+template <FPType fp_type,
+ typename RetT = typename FPLayout<fp_type>::StorageType>
+struct FPRep : public FPRepSem<fp_type, RetT> {
+ using UP = FPRepSem<fp_type, RetT>;
+ using StorageType = typename UP::StorageType;
+
+protected:
+ using UP::bits;
+ using UP::encode;
+ using UP::exp_bits;
+ using UP::exp_sig_bits;
+
+ using BiasedExp = typename UP::BiasedExponent;
+ using Sig = typename UP::Significand;
- LIBC_INLINE static constexpr StorageType zero(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::ZERO());
+ using UP::FP_MASK;
+ using UP::SIG_LEN;
+
+public:
+ using UP::EXP_BIAS;
+ using UP::EXP_MASK;
+ using UP::FRACTION_MASK;
+ using UP::SIGN_MASK;
+
+ // Representation
+ LIBC_INLINE constexpr StorageType uintval() const { return bits & FP_MASK; }
+ LIBC_INLINE constexpr void set_uintval(StorageType value) {
+ bits = (value & FP_MASK);
}
- LIBC_INLINE static constexpr StorageType one(Sign sign = Sign::POS) {
- return encode(sign, Exponent::ZERO(), Significand::MSB());
+
+ // Builders
+ LIBC_INLINE static constexpr RetT zero(Sign sign = Sign::POS) {
+ return RetT(encode(sign, BiasedExp::BITS_ALL_ZEROES(), Sig::ZERO()));
}
- LIBC_INLINE static constexpr StorageType
- min_subnormal(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ZEROES(), Significand::LSB());
+ using UP::build_nan;
+ using UP::build_quiet_nan;
+ using UP::inf;
+ using UP::max_normal;
+ using UP::max_subnormal;
+ using UP::min_normal;
+ using UP::min_subnormal;
+ using UP::one;
+
+ // Modifiers
+ LIBC_INLINE constexpr RetT abs() const {
+ return RetT(bits & UP::EXP_SIG_MASK);
}
- LIBC_INLINE static constexpr StorageType
- max_subnormal(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ZEROES(),
- Significand::BITS_ALL_ONES() ^ Significand::MSB());
+
+ // Observers
+ using UP::get_explicit_mantissa;
+ LIBC_INLINE constexpr bool is_zero() const { return exp_sig_bits() == 0; }
+ LIBC_INLINE constexpr bool is_inf_or_nan() const { return !is_finite(); }
+ using UP::is_finite;
+ using UP::is_inf;
+ using UP::is_nan;
+ using UP::is_normal;
+ using UP::is_quiet_nan;
+ using UP::is_signaling_nan;
+ using UP::is_subnormal;
+ LIBC_INLINE constexpr bool is_neg() const { return sign().is_neg(); }
+ LIBC_INLINE constexpr bool is_pos() const { return sign().is_pos(); }
+
+ // Parts
+ LIBC_INLINE constexpr Sign sign() const {
+ return (bits & SIGN_MASK) ? Sign::NEG : Sign::POS;
}
- LIBC_INLINE static constexpr StorageType min_normal(Sign sign = Sign::POS) {
- return encode(sign, Exponent::MIN(), Significand::MSB());
+
+ LIBC_INLINE constexpr void set_sign(Sign signVal) {
+ if (sign() != signVal)
+ bits ^= SIGN_MASK;
}
- LIBC_INLINE static constexpr StorageType max_normal(Sign sign = Sign::POS) {
- return encode(sign, Exponent::MAX(), Significand::BITS_ALL_ONES());
+
+ LIBC_INLINE constexpr uint16_t get_biased_exponent() const {
+ return uint16_t((bits & UP::EXP_MASK) >> UP::SIG_LEN);
}
- LIBC_INLINE static constexpr StorageType inf(Sign sign = Sign::POS) {
- return encode(sign, BiasedExponent::BITS_ALL_ONES(), Significand::MSB());
+
+ LIBC_INLINE constexpr void set_biased_exponent(StorageType biased) {
+ bits = merge(bits, biased << SIG_LEN, EXP_MASK);
}
- LIBC_INLINE static constexpr StorageType build_nan(Sign sign = Sign::POS,
- StorageType v = 0) {
- return encode(sign, BiasedExponent::BITS_ALL_ONES(),
- Significand::MSB() |
- (v ? Significand(v) : (Significand::MSB() >> 2)));
+
+ LIBC_INLINE constexpr int get_exponent() const {
+ return int(get_biased_exponent()) - EXP_BIAS;
}
- LIBC_INLINE static constexpr StorageType
- build_quiet_nan(Sign sign = Sign::POS, StorageType v = 0) {
- return encode(sign, BiasedExponent::BITS_ALL_ONES(),
- Significand::MSB() | (Significand::MSB() >> 1) |
- Significand(v));
+
+ // If the number is subnormal, the exponent is treated as if it were the
+ // minimum exponent for a normal number. This is to keep continuity between
+ // the normal and subnormal ranges, but it causes problems for functions where
+ // values are calculated from the exponent, since just subtracting the bias
+ // will give a slightly incorrect result. Additionally, zero has an exponent
+ // of zero, and that should actually be treated as zero.
+ LIBC_INLINE constexpr int get_explicit_exponent() const {
+ const int biased_exp = int(get_biased_exponent());
+ if (is_zero()) {
+ return 0;
+ } else if (biased_exp == 0) {
+ return 1 - EXP_BIAS;
+ } else {
+ return biased_exp - EXP_BIAS;
+ }
}
- LIBC_INLINE constexpr StorageType get_explicit_mantissa() const {
- return sig_bits();
+ LIBC_INLINE constexpr StorageType get_mantissa() const {
+ return bits & FRACTION_MASK;
}
- // The following functions are specific to FPRep<FPType::X86_Binary80>.
- // TODO: Remove if possible.
- LIBC_INLINE constexpr bool get_implicit_bit() const {
- return static_cast<bool>(bits & EXPLICIT_BIT_MASK);
+ LIBC_INLINE constexpr void set_mantissa(StorageType mantVal) {
+ bits = merge(bits, mantVal, FRACTION_MASK);
}
- LIBC_INLINE constexpr void set_implicit_bit(bool implicitVal) {
- if (get_implicit_bit() != implicitVal)
- bits ^= EXPLICIT_BIT_MASK;
+private:
+ // Merge bits from 'a' and 'b' values according to 'mask'.
+ // Use 'a' bits when corresponding 'mask' bits are zeroes and 'b' bits when
+ // corresponding bits are ones.
+ LIBC_INLINE static constexpr StorageType merge(StorageType a, StorageType b,
+ StorageType mask) {
+ // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
+ return a ^ ((a ^ b) & mask);
}
};
@@ -642,29 +685,31 @@ template <typename T> LIBC_INLINE static constexpr FPType get_fp_type() {
static_assert(cpp::always_false<UnqualT>, "Unsupported type");
}
-// A generic class to represent floating point formats.
-// On most platforms, the 'float' type corresponds to single precision
-// floating point numbers, the 'double' type corresponds to double precision
-// floating point numers, and the 'long double' type corresponds to the quad
-// precision floating numbers. On x86 platforms however, the 'long double'
-// type maps to an x87 floating point format.
-template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
+// A generic class to manipulate floating point formats.
+// It derives most of its functionality to FPRep above.
+template <typename T>
+struct FPBits final : public internal::FPRep<get_fp_type<T>(), FPBits<T>> {
static_assert(cpp::is_floating_point_v<T>,
"FPBits instantiated with invalid type.");
- using UP = internal::FPRep<get_fp_type<T>()>;
+ using UP = internal::FPRep<get_fp_type<T>(), FPBits<T>>;
using Rep = UP;
using StorageType = typename UP::StorageType;
using UP::bits;
- using UP::EXP_LEN;
- using UP::UP;
// Constants.
- static constexpr int MAX_BIASED_EXPONENT = (1 << EXP_LEN) - 1;
- static constexpr StorageType MIN_NORMAL = UP::min_normal(Sign::POS);
- static constexpr StorageType MAX_NORMAL = UP::max_normal(Sign::POS);
- static constexpr StorageType MIN_SUBNORMAL = UP::min_subnormal(Sign::POS);
- static constexpr StorageType MAX_SUBNORMAL = UP::max_subnormal(Sign::POS);
+ LIBC_INLINE_VAR static constexpr uint32_t MANTISSA_PRECISION =
+ UP::FRACTION_LEN + 1;
+ LIBC_INLINE_VAR static constexpr StorageType MIN_NORMAL =
+ UP::min_normal(Sign::POS).uintval();
+ LIBC_INLINE_VAR static constexpr StorageType MAX_NORMAL =
+ UP::max_normal(Sign::POS).uintval();
+ LIBC_INLINE_VAR static constexpr StorageType MIN_SUBNORMAL =
+ UP::min_subnormal(Sign::POS).uintval();
+ LIBC_INLINE_VAR static constexpr StorageType MAX_SUBNORMAL =
+ UP::max_subnormal(Sign::POS).uintval();
+ LIBC_INLINE_VAR static constexpr int MAX_BIASED_EXPONENT =
+ (1 << UP::EXP_LEN) - 1;
// Constructors.
LIBC_INLINE constexpr FPBits() = default;
@@ -686,49 +731,35 @@ template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
LIBC_INLINE constexpr explicit operator T() const { return get_val(); }
- LIBC_INLINE constexpr bool is_inf_or_nan() const { return !UP::is_finite(); }
-
- LIBC_INLINE constexpr FPBits abs() const {
- return FPBits(bits & UP::EXP_SIG_MASK);
- }
-
// Methods below this are used by tests.
-
+ // TODO: inline and remove.
LIBC_INLINE static constexpr T one(Sign sign = Sign::POS) {
- return FPBits(UP::one(sign)).get_val();
+ return T(UP::one(sign));
}
-
LIBC_INLINE static constexpr T zero(Sign sign = Sign::POS) {
- return FPBits(UP::zero(sign)).get_val();
+ return T(UP::zero(sign));
}
-
LIBC_INLINE static constexpr T inf(Sign sign = Sign::POS) {
- return FPBits(UP::inf(sign)).get_val();
+ return T(UP::inf(sign));
}
-
LIBC_INLINE static constexpr T min_normal() {
- return FPBits(UP::min_normal(Sign::POS)).get_val();
+ return T(UP::min_normal(Sign::POS));
}
-
LIBC_INLINE static constexpr T max_normal() {
- return FPBits(UP::max_normal(Sign::POS)).get_val();
+ return T(UP::max_normal(Sign::POS));
}
-
LIBC_INLINE static constexpr T min_denormal() {
- return FPBits(UP::min_subnormal(Sign::POS)).get_val();
+ return T(UP::min_subnormal(Sign::POS));
}
-
LIBC_INLINE static constexpr T max_denormal() {
- return FPBits(UP::max_subnormal(Sign::POS)).get_val();
+ return T(UP::max_subnormal(Sign::POS));
}
-
LIBC_INLINE static constexpr T build_nan(StorageType v) {
- return FPBits(UP::build_nan(Sign::POS, v)).get_val();
+ return T(UP::build_nan(Sign::POS, v));
}
-
LIBC_INLINE static constexpr T build_quiet_nan(StorageType v,
Sign sign = Sign::POS) {
- return FPBits(UP::build_quiet_nan(sign, v)).get_val();
+ return T(UP::build_quiet_nan(sign, v));
}
// TODO: Use an uint32_t for 'biased_exp'.
@@ -757,7 +788,7 @@ template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
"This function is not tested for X86 Extended Precision");
FPBits<T> result;
// offset: +1 for sign, but -1 for implicit first bit
- int lz = cpp::countl_zero(number) - EXP_LEN;
+ int lz = cpp::countl_zero(number) - UP::EXP_LEN;
number <<= lz;
ep -= lz;
diff --git a/libc/test/src/__support/FPUtil/fpbits_test.cpp b/libc/test/src/__support/FPUtil/fpbits_test.cpp
index f0b1550..e6b6d7d9 100644
--- a/libc/test/src/__support/FPUtil/fpbits_test.cpp
+++ b/libc/test/src/__support/FPUtil/fpbits_test.cpp
@@ -17,69 +17,72 @@ TEST(LlvmLibcFPBitsTest, FPType_IEEE754_Binary16) {
using LIBC_NAMESPACE::fputil::FPType;
using LIBC_NAMESPACE::fputil::internal::FPRep;
using Rep = FPRep<FPType::IEEE754_Binary16>;
- using u16 = uint16_t;
-
- EXPECT_EQ(u16(0b0'00000'0000000000), Rep::zero());
- EXPECT_EQ(u16(0b0'01111'0000000000), Rep::one());
- EXPECT_EQ(u16(0b0'00000'0000000001), Rep::min_subnormal());
- EXPECT_EQ(u16(0b0'00000'1111111111), Rep::max_subnormal());
- EXPECT_EQ(u16(0b0'00001'0000000000), Rep::min_normal());
- EXPECT_EQ(u16(0b0'11110'1111111111), Rep::max_normal());
- EXPECT_EQ(u16(0b0'11111'0000000000), Rep::inf());
- EXPECT_EQ(u16(0b0'11111'0100000000), Rep::build_nan());
- EXPECT_EQ(u16(0b0'11111'1000000000), Rep::build_quiet_nan());
+ using u16 = typename Rep::StorageType;
+
+ EXPECT_EQ(u16(0b0'00000'0000000000), u16(Rep::zero()));
+ EXPECT_EQ(u16(0b0'01111'0000000000), u16(Rep::one()));
+ EXPECT_EQ(u16(0b0'00000'0000000001), u16(Rep::min_subnormal()));
+ EXPECT_EQ(u16(0b0'00000'1111111111), u16(Rep::max_subnormal()));
+ EXPECT_EQ(u16(0b0'00001'0000000000), u16(Rep::min_normal()));
+ EXPECT_EQ(u16(0b0'11110'1111111111), u16(Rep::max_normal()));
+ EXPECT_EQ(u16(0b0'11111'0000000000), u16(Rep::inf()));
+ EXPECT_EQ(u16(0b0'11111'0100000000), u16(Rep::build_nan()));
+ EXPECT_EQ(u16(0b0'11111'1000000000), u16(Rep::build_quiet_nan()));
}
TEST(LlvmLibcFPBitsTest, FPType_IEEE754_Binary32) {
using LIBC_NAMESPACE::fputil::FPType;
using LIBC_NAMESPACE::fputil::internal::FPRep;
using Rep = FPRep<FPType::IEEE754_Binary32>;
- using u32 = uint32_t;
-
- EXPECT_EQ(u32(0b0'00000000'00000000000000000000000), Rep::zero());
- EXPECT_EQ(u32(0b0'01111111'00000000000000000000000), Rep::one());
- EXPECT_EQ(u32(0b0'00000000'00000000000000000000001), Rep::min_subnormal());
- EXPECT_EQ(u32(0b0'00000000'11111111111111111111111), Rep::max_subnormal());
- EXPECT_EQ(u32(0b0'00000001'00000000000000000000000), Rep::min_normal());
- EXPECT_EQ(u32(0b0'11111110'11111111111111111111111), Rep::max_normal());
- EXPECT_EQ(u32(0b0'11111111'00000000000000000000000), Rep::inf());
- EXPECT_EQ(u32(0b0'11111111'01000000000000000000000), Rep::build_nan());
- EXPECT_EQ(u32(0b0'11111111'10000000000000000000000), Rep::build_quiet_nan());
+ using u32 = typename Rep::StorageType;
+
+ EXPECT_EQ(u32(0b0'00000000'00000000000000000000000), u32(Rep::zero()));
+ EXPECT_EQ(u32(0b0'01111111'00000000000000000000000), u32(Rep::one()));
+ EXPECT_EQ(u32(0b0'00000000'00000000000000000000001),
+ u32(Rep::min_subnormal()));
+ EXPECT_EQ(u32(0b0'00000000'11111111111111111111111),
+ u32(Rep::max_subnormal()));
+ EXPECT_EQ(u32(0b0'00000001'00000000000000000000000), u32(Rep::min_normal()));
+ EXPECT_EQ(u32(0b0'11111110'11111111111111111111111), u32(Rep::max_normal()));
+ EXPECT_EQ(u32(0b0'11111111'00000000000000000000000), u32(Rep::inf()));
+ EXPECT_EQ(u32(0b0'11111111'01000000000000000000000), u32(Rep::build_nan()));
+ EXPECT_EQ(u32(0b0'11111111'10000000000000000000000),
+ u32(Rep::build_quiet_nan()));
}
TEST(LlvmLibcFPBitsTest, FPType_IEEE754_Binary64) {
using LIBC_NAMESPACE::fputil::FPType;
using LIBC_NAMESPACE::fputil::internal::FPRep;
using Rep = FPRep<FPType::IEEE754_Binary64>;
- using u64 = uint64_t;
+ using u64 = typename Rep::StorageType;
EXPECT_EQ(
u64(0b0'00000000000'0000000000000000000000000000000000000000000000000000),
- Rep::zero());
+ u64(Rep::zero()));
EXPECT_EQ(
u64(0b0'01111111111'0000000000000000000000000000000000000000000000000000),
- Rep::one());
+ u64(Rep::one()));
EXPECT_EQ(
u64(0b0'00000000000'0000000000000000000000000000000000000000000000000001),
- Rep::min_subnormal());
+ u64(Rep::min_subnormal()));
EXPECT_EQ(
u64(0b0'00000000000'1111111111111111111111111111111111111111111111111111),
- Rep::max_subnormal());
+ u64(Rep::max_subnormal()));
EXPECT_EQ(
u64(0b0'00000000001'0000000000000000000000000000000000000000000000000000),
- Rep::min_normal());
+ u64(Rep::min_normal()));
EXPECT_EQ(
u64(0b0'11111111110'1111111111111111111111111111111111111111111111111111),
- Rep::max_normal());
+ u64(Rep::max_normal()));
EXPECT_EQ(
u64(0b0'11111111111'0000000000000000000000000000000000000000000000000000),
- Rep::inf());
+ u64(Rep::inf()));
EXPECT_EQ(
u64(0b0'11111111111'0100000000000000000000000000000000000000000000000000),
- Rep::build_nan());
+ u64(Rep::build_nan()));
EXPECT_EQ(
u64(0b0'11111111111'1000000000000000000000000000000000000000000000000000),
- Rep::build_quiet_nan());
+ u64(Rep::build_quiet_nan()));
}
static constexpr UInt128 u128(uint64_t hi, uint64_t lo) {
@@ -90,6 +93,49 @@ static constexpr UInt128 u128(uint64_t hi, uint64_t lo) {
#endif
}
+TEST(LlvmLibcFPBitsTest, FPType_IEEE754_Binary128) {
+ using LIBC_NAMESPACE::fputil::FPType;
+ using LIBC_NAMESPACE::fputil::internal::FPRep;
+ using Rep = FPRep<FPType::IEEE754_Binary128>;
+
+ EXPECT_EQ(
+ u128(0b0'000000000000000'000000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000000),
+ UInt128(Rep::zero()));
+ EXPECT_EQ(
+ u128(0b0'011111111111111'000000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000000),
+ UInt128(Rep::one()));
+ EXPECT_EQ(
+ u128(0b0'000000000000000'000000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000001),
+ UInt128(Rep::min_subnormal()));
+ EXPECT_EQ(
+ u128(0b0'000000000000000'111111111111111111111111111111111111111111111111,
+ 0b1111111111111111111111111111111111111111111111111111111111111111),
+ UInt128(Rep::max_subnormal()));
+ EXPECT_EQ(
+ u128(0b0'000000000000001'000000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000000),
+ UInt128(Rep::min_normal()));
+ EXPECT_EQ(
+ u128(0b0'111111111111110'111111111111111111111111111111111111111111111111,
+ 0b1111111111111111111111111111111111111111111111111111111111111111),
+ UInt128(Rep::max_normal()));
+ EXPECT_EQ(
+ u128(0b0'111111111111111'000000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000000),
+ UInt128(Rep::inf()));
+ EXPECT_EQ(
+ u128(0b0'111111111111111'010000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000000),
+ UInt128(Rep::build_nan()));
+ EXPECT_EQ(
+ u128(0b0'111111111111111'100000000000000000000000000000000000000000000000,
+ 0b0000000000000000000000000000000000000000000000000000000000000000),
+ UInt128(Rep::build_quiet_nan()));
+}
+
TEST(LlvmLibcFPBitsTest, FPType_X86_Binary80) {
using LIBC_NAMESPACE::fputil::FPType;
using LIBC_NAMESPACE::fputil::internal::FPRep;
@@ -98,39 +144,39 @@ TEST(LlvmLibcFPBitsTest, FPType_X86_Binary80) {
EXPECT_EQ(
u128(0b0'000000000000000,
0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::zero());
+ UInt128(Rep::zero()));
EXPECT_EQ(
u128(0b0'011111111111111,
0b1000000000000000000000000000000000000000000000000000000000000000),
- Rep::one());
+ UInt128(Rep::one()));
EXPECT_EQ(
u128(0b0'000000000000000,
0b0000000000000000000000000000000000000000000000000000000000000001),
- Rep::min_subnormal());
+ UInt128(Rep::min_subnormal()));
EXPECT_EQ(
u128(0b0'000000000000000,
0b0111111111111111111111111111111111111111111111111111111111111111),
- Rep::max_subnormal());
+ UInt128(Rep::max_subnormal()));
EXPECT_EQ(
u128(0b0'000000000000001,
0b1000000000000000000000000000000000000000000000000000000000000000),
- Rep::min_normal());
+ UInt128(Rep::min_normal()));
EXPECT_EQ(
u128(0b0'111111111111110,
0b1111111111111111111111111111111111111111111111111111111111111111),
- Rep::max_normal());
+ UInt128(Rep::max_normal()));
EXPECT_EQ(
u128(0b0'111111111111111,
0b1000000000000000000000000000000000000000000000000000000000000000),
- Rep::inf());
+ UInt128(Rep::inf()));
EXPECT_EQ(
u128(0b0'111111111111111,
0b1010000000000000000000000000000000000000000000000000000000000000),
- Rep::build_nan());
+ UInt128(Rep::build_nan()));
EXPECT_EQ(
u128(0b0'111111111111111,
0b1100000000000000000000000000000000000000000000000000000000000000),
- Rep::build_quiet_nan());
+ UInt128(Rep::build_quiet_nan()));
}
TEST(LlvmLibcFPBitsTest, FPType_X86_Binary80_IsNan) {
@@ -183,49 +229,6 @@ TEST(LlvmLibcFPBitsTest, FPType_X86_Binary80_IsNan) {
0b1000000000000000000000000000000000000000000000000000000000000000));
}
-TEST(LlvmLibcFPBitsTest, FPType_IEEE754_Binary128) {
- using LIBC_NAMESPACE::fputil::FPType;
- using LIBC_NAMESPACE::fputil::internal::FPRep;
- using Rep = FPRep<FPType::IEEE754_Binary128>;
-
- EXPECT_EQ(
- u128(0b0'000000000000000'000000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::zero());
- EXPECT_EQ(
- u128(0b0'011111111111111'000000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::one());
- EXPECT_EQ(
- u128(0b0'000000000000000'000000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000001),
- Rep::min_subnormal());
- EXPECT_EQ(
- u128(0b0'000000000000000'111111111111111111111111111111111111111111111111,
- 0b1111111111111111111111111111111111111111111111111111111111111111),
- Rep::max_subnormal());
- EXPECT_EQ(
- u128(0b0'000000000000001'000000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::min_normal());
- EXPECT_EQ(
- u128(0b0'111111111111110'111111111111111111111111111111111111111111111111,
- 0b1111111111111111111111111111111111111111111111111111111111111111),
- Rep::max_normal());
- EXPECT_EQ(
- u128(0b0'111111111111111'000000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::inf());
- EXPECT_EQ(
- u128(0b0'111111111111111'010000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::build_nan());
- EXPECT_EQ(
- u128(0b0'111111111111111'100000000000000000000000000000000000000000000000,
- 0b0000000000000000000000000000000000000000000000000000000000000000),
- Rep::build_quiet_nan());
-}
-
TEST(LlvmLibcFPBitsTest, FloatType) {
using FloatBits = FPBits<float>;