aboutsummaryrefslogtreecommitdiff
path: root/math/tgmath.h
blob: 307a124afc84973469bbac648cf3a2e9c78a98d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/* Copyright (C) 1997, 1998 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Library General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Library General Public License for more details.

   You should have received a copy of the GNU Library General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If not,
   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

/*
 *	ISO C 9X Standard: 7.9 Type-generic math	<tgmath.h>
 */

#ifndef _TGMATH_H
#define _TGMATH_H	1

/* Include the needed headers.  */
#include <math.h>
#include <complex.h>


/* Since `complex' is currently not really implemented in most C compilers
   and if it is implemented, the implementations differ.  This makes it
   quite difficult to write a generic implementation of this header.  We
   do not try this for now and instead concentrate only on GNU CC.  Once
   we have more information support for other compilers might follow.  */

#if defined __GNUC__ && (__GNUC__ > 2 || __GNUC__ == 2 && __GNUC_MINOR__ >= 7)

/* We have two kinds of generic macros: to support functions which are
   only defined on real valued parameters and those which are defined
   for complex functions as well.  */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
     (__extension__ (sizeof (Val) == sizeof (double)			      \
		     ? Fct (Val)					      \
		     : (sizeof (Val) == sizeof (long double)		      \
			? Fct##l (Val)					      \
			: Fct##f (Val))))

# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
     (__extension__ (sizeof (Val1) > sizeof (double)			      \
		     ? Fct##l (Val1, Val2)				      \
		     : (sizeof (Val1) == sizeof (double)		      \
			? Fct (Val1, Val2)				      \
			: Fct##f (Val1, Val2))))

# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
     (__extension__ (sizeof (Val1) > sizeof (double)			      \
		     || sizeof (Val2) > sizeof (double)			      \
		     ? Fct##l (Val1, Val2)				      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			? Fct (Val1, Val2)				      \
			: Fct##f (Val1, Val2))))

# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
     (__extension__ (sizeof (Val1) > sizeof (double)			      \
		     || sizeof (Val2) > sizeof (double)			      \
		     ? Fct##l (Val1, Val2, Val3)			      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			? Fct (Val1, Val2, Val3)			      \
			: Fct##f (Val1, Val2, Val3))))

# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
     (__extension__ (sizeof (Val1) > sizeof (double)			      \
		     || sizeof (Val2) > sizeof (double)			      \
		     || sizeof (Val3) > sizeof (double)			      \
		     ? Fct##l (Val1, Val2, Val3)			      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| sizeof (Val3) == sizeof (double)		      \
			? Fct (Val1, Val2, Val3)			      \
			: Fct##f (Val1, Val2, Val3))))

# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
     (__extension__ (sizeof (__real__ (val)) > sizeof (double)		      \
		     ? (sizeof (__real__ (Val)) == sizeof (Val)		      \
			? Fct##l (Val)					      \
			: Cfct##l (Val))				      \
		     : (sizeof (__real__ (val)) == sizeof (double)	      \
			? (sizeof (__real__ (Val)) == sizeof (Val)	      \
			   ? Fct (Val)					      \
			   : Cfct (Val))				      \
			: (sizeof (__real__ (Val)) == sizeof (Val)	      \
			   ? Fct##f (Val)				      \
			   : Cfct##f (Val)))))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
     (__extension__ (sizeof (Val) > sizeof (__complex__ double)		      \
		     ? Fct##l (Val)					      \
		     : (sizeof (Val) == sizeof (__complex__ double)	      \
			? Fct (Val)					      \
			: Fct##f (Val))))

# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
     (__extension__ (sizeof (__real__ (Val1)) > sizeof (double)		      \
		     || sizeof (__real__ (Val2)) > sizeof (double)	      \
		     ? (sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			&& sizeof (__real__ (Val2)) == sizeof (Val2)	      \
			? Fct##l (Val1, Val2)				      \
			: Cfct##l (Val1, Val2))				      \
		     : (sizeof (__real__ (Val1)) == sizeof (double)	      \
			|| sizeof (__real__ (Val2)) == sizeof (double)	      \
			? (sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			   && sizeof (__real__ (Val2)) == sizeof (Val2)	      \
			   ? Fct (Val1, Val2)				      \
			   : Cfct (Val1, Val2))				      \
			: (sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			   && sizeof (__real__ (Val2)) == sizeof (Val2)	      \
			   ? Fct##f (Val1, Val2)			      \
			   : Cfct##f (Val1, Val2)))))
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif


/* Unary functions defined for real and complex values.  */


/* Trigonometric functions.  */

/* Arc cosine of X.  */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X.  */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X.  */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X.  */
#define atan2(Val) __TGMATH_UNARY_REAL_ONLY (Val, atan2)

/* Cosine of X.  */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X.  */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X.  */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)


/* Hyperbolic functions.  */

/* Hyperbolic arc cosine of X.  */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X.  */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X.  */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)

/* Hyperbolic cosine of X.  */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X.  */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X.  */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)


/* Exponential and logarithmic functions.  */

/* Exponential function of X.  */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)

/* Break VALUE into a normalized fraction and an integral power of 2.  */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)

/* X times (two to the EXP power).  */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)

/* Natural logarithm of X.  */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)

/* Base-ten logarithm of X.  */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif

/* Return exp(X) - 1.  */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)

/* Return log(1 + X).  */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)

/* Return the base 2 signed integral exponent of X.  */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)

/* Compute base-2 exponential of X.  */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)

/* Compute base-2 logarithm of X.  */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)


/* Power functions.  */

/* Return X to the Y power.  */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)

/* Return the square root of X.  */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)

/* Return `sqrt(X*X + Y*Y)'.  */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)

/* Return the cube root of X.  */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)


/* Nearest integer, absolute value, and remainder functions.  */

/* Smallest integral value not less than X.  */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)

/* Absolute value of X.  */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)

/* Largest integer not greater than X.  */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)

/* Floating-point modulo remainder of X/Y.  */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)

/* Round X to integral valuein floating-point format using current
   rounding direction, but do not raise inexact exception.  */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)

/* Round X to nearest integral value, rounding halfway cases away from
   zero.  */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)

/* Round X to the integral value in floating-point format nearest but
   not larger in magnitude.  */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)

/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
   and magnitude congruent `mod 2^n' to the magnitude of the integral
   quotient x/y, with n >= 3.  */
#define remquo(Val1, Val2, Val3) \
     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)

/* Round X to nearest integral value according to current rounding
   direction.  */
#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)

/* Round X to nearest integral value, rounding halfway cases away from
   zero.  */
#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)


/* Return X with its signed changed to Y's.  */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)

/* Error and gamma functions.  */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define gamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, gamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)


/* Return the integer nearest X in the direction of the
   prevailing rounding mode.  */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)

/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nextafterx(Val1, Val2) \
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nextafterx)

/* Return the remainder of integer divison X / Y with infinite precision.  */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)

/* Return X times (2 to the Nth power).  */
#define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)

/* Return X times (2 to the Nth power).  */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)

/* Return X times (2 to the Nth power).  */
#define scalbln(Val1, Val2) \
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)

/* Return the binary exponent of X, which must be nonzero.  */
#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)


/* Return positive difference between X and Y.  */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)

/* Return maximum numeric value from X and Y.  */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)

/* Return minimum numeric value from X and Y.  */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)


/* Multiply-add function computed as a ternary operation.  */
#define fma(Vat1, Val2, Val3) \
     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)


/* Absolute value, conjugates, and projection.  */

/* Argument value of Z.  */
#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)

/* Complex conjugate of Z.  */
#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)

/* Projection of Z onto the Riemann sphere.  */
#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)


/* Decomposing complex values.  */

/* Imaginary part of Z.  */
#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)

/* Real part of Z.  */
#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)

#endif /* tgmath.h */