1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/* Helper macros for functions returning a narrower type.
Copyright (C) 2018-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef _MATH_NARROW_H
#define _MATH_NARROW_H 1
#include <bits/floatn.h>
#include <bits/long-double.h>
#include <errno.h>
#include <fenv.h>
#include <ieee754.h>
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>
#include <math-narrow-alias.h>
#include <stdbool.h>
/* Carry out a computation using round-to-odd. The computation is
EXPR; the union type in which to store the result is UNION and the
subfield of the "ieee" field of that union with the low part of the
mantissa is MANTISSA; SUFFIX is the suffix for both underlying libm
functions for the argument type (for computations where a libm
function rather than a C operator is used when argument and result
types are the same) and the libc_fe* macros to ensure that the
correct rounding mode is used, for platforms with multiple rounding
modes where those macros set only the relevant mode.
CLEAR_UNDERFLOW indicates whether underflow exceptions must be
cleared (in the case where a round-toward-zero underflow might not
indicate an underflow after narrowing, when that narrowing only
reduces precision not exponent range and the architecture uses
before-rounding tininess detection). This macro does not work
correctly if the sign of an exact zero result depends on the
rounding mode, so that case must be checked for separately. */
#define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA, CLEAR_UNDERFLOW) \
({ \
fenv_t env; \
UNION u; \
\
libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO); \
u.d = (EXPR); \
math_force_eval (u.d); \
if (CLEAR_UNDERFLOW) \
feclearexcept (FE_UNDERFLOW); \
u.ieee.MANTISSA \
|= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0; \
\
u.d; \
})
/* Check for error conditions from a narrowing add function returning
RET with arguments X and Y and set errno as needed. Overflow and
underflow can occur for finite arguments and a domain error for
infinite ones. */
#define CHECK_NARROW_ADD(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != -(Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing add using round-to-odd. The arguments are X
and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
as for ROUND_TO_ODD. */
#define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
/* Ensure a zero result is computed in the original rounding \
mode. */ \
if ((X) == -(Y)) \
ret = (TYPE) ((X) + (Y)); \
else \
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y), \
UNION, SUFFIX, MANTISSA, false); \
\
CHECK_NARROW_ADD (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing add function that is not actually narrowing
or where no attempt is made to be correctly rounding (the latter
only applies to IBM long double). The arguments are X and Y and
the return type is TYPE. */
#define NARROW_ADD_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) + (Y)); \
CHECK_NARROW_ADD (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing subtract function
returning RET with arguments X and Y and set errno as needed.
Overflow and underflow can occur for finite arguments and a domain
error for infinite ones. */
#define CHECK_NARROW_SUB(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != (Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing subtract using round-to-odd. The arguments are
X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
as for ROUND_TO_ODD. */
#define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
/* Ensure a zero result is computed in the original rounding \
mode. */ \
if ((X) == (Y)) \
ret = (TYPE) ((X) - (Y)); \
else \
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y), \
UNION, SUFFIX, MANTISSA, false); \
\
CHECK_NARROW_SUB (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing subtract function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_SUB_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) - (Y)); \
CHECK_NARROW_SUB (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing multiply function
returning RET with arguments X and Y and set errno as needed.
Overflow and underflow can occur for finite arguments and a domain
error for Inf * 0. */
#define CHECK_NARROW_MUL(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X) && isfinite (Y)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0 && (Y) != 0) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing multiply using round-to-odd. The arguments are
X and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and
CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y), \
UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW); \
\
CHECK_NARROW_MUL (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing multiply function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_MUL_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) * (Y)); \
CHECK_NARROW_MUL (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing divide function
returning RET with arguments X and Y and set errno as needed.
Overflow, underflow and divide-by-zero can occur for finite
arguments and a domain error for Inf / Inf and 0 / 0. */
#define CHECK_NARROW_DIV(RET, X, Y) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X) && !isnan (Y)) \
__set_errno (EDOM); \
} \
else if (isfinite (X)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0 && !isinf (Y)) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing divide using round-to-odd. The arguments are X
and Y, the return type is TYPE and UNION, MANTISSA, SUFFIX and
CLEAR_UNDERFLOW are as for ROUND_TO_ODD. */
#define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y), \
UNION, SUFFIX, MANTISSA, \
CLEAR_UNDERFLOW); \
\
CHECK_NARROW_DIV (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Implement a narrowing divide function that is not actually
narrowing or where no attempt is made to be correctly rounding (the
latter only applies to IBM long double). The arguments are X and Y
and the return type is TYPE. */
#define NARROW_DIV_TRIVIAL(X, Y, TYPE) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ((X) / (Y)); \
CHECK_NARROW_DIV (ret, (X), (Y)); \
return ret; \
} \
while (0)
/* Check for error conditions from a narrowing square root function
returning RET with argument X and set errno as needed. Overflow
and underflow can occur for finite positive arguments and a domain
error for negative arguments. */
#define CHECK_NARROW_SQRT(RET, X) \
do \
{ \
if (!isfinite (RET)) \
{ \
if (isnan (RET)) \
{ \
if (!isnan (X)) \
__set_errno (EDOM); \
} \
else if (isfinite (X)) \
__set_errno (ERANGE); \
} \
else if ((RET) == 0 && (X) != 0) \
__set_errno (ERANGE); \
} \
while (0)
/* Implement narrowing square root using round-to-odd. The argument
is X, the return type is TYPE and UNION, MANTISSA and SUFFIX are as
for ROUND_TO_ODD. */
#define NARROW_SQRT_ROUND_TO_ODD(X, TYPE, UNION, SUFFIX, MANTISSA) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) ROUND_TO_ODD (sqrt ## SUFFIX (math_opt_barrier (X)), \
UNION, SUFFIX, MANTISSA, false); \
\
CHECK_NARROW_SQRT (ret, (X)); \
return ret; \
} \
while (0)
/* Implement a narrowing square root function where no attempt is made
to be correctly rounding (this only applies to IBM long double; the
case where the function is not actually narrowing is handled by
aliasing other sqrt functions in libm, not using this macro). The
argument is X and the return type is TYPE. */
#define NARROW_SQRT_TRIVIAL(X, TYPE, SUFFIX) \
do \
{ \
TYPE ret; \
\
ret = (TYPE) (sqrt ## SUFFIX (X)); \
CHECK_NARROW_SQRT (ret, (X)); \
return ret; \
} \
while (0)
#endif /* math-narrow.h. */
|