aboutsummaryrefslogtreecommitdiff
path: root/crypt/sha256.c
blob: 0ca3355a05a78b93305dcf21d051faa527c09fae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/* Functions to compute SHA256 message digest of files or memory blocks.
   according to the definition of SHA256 in FIPS 180-2.
   Copyright (C) 2007, 2011 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

/* Written by Ulrich Drepper <drepper@redhat.com>, 2007.  */

#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

#include <endian.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

#include "sha256.h"

#if __BYTE_ORDER == __LITTLE_ENDIAN
# ifdef _LIBC
#  include <byteswap.h>
#  define SWAP(n) bswap_32 (n)
#  define SWAP64(n) bswap_64 (n)
# else
#  define SWAP(n) \
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#  define SWAP64(n) \
  (((n) << 56)					\
   | (((n) & 0xff00) << 40)			\
   | (((n) & 0xff0000) << 24)			\
   | (((n) & 0xff000000) << 8)			\
   | (((n) >> 8) & 0xff000000)			\
   | (((n) >> 24) & 0xff0000)			\
   | (((n) >> 40) & 0xff00)			\
   | ((n) >> 56))
# endif
#else
# define SWAP(n) (n)
# define SWAP64(n) (n)
#endif


/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (FIPS 180-2:5.1.1)  */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };


/* Constants for SHA256 from FIPS 180-2:4.2.2.  */
static const uint32_t K[64] =
  {
    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
    0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
    0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
    0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
    0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
    0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
    0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
    0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
    0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  };


/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.  */
static void
sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
{
  const uint32_t *words = buffer;
  size_t nwords = len / sizeof (uint32_t);
  uint32_t a = ctx->H[0];
  uint32_t b = ctx->H[1];
  uint32_t c = ctx->H[2];
  uint32_t d = ctx->H[3];
  uint32_t e = ctx->H[4];
  uint32_t f = ctx->H[5];
  uint32_t g = ctx->H[6];
  uint32_t h = ctx->H[7];

  /* First increment the byte count.  FIPS 180-2 specifies the possible
     length of the file up to 2^64 bits.  Here we only compute the
     number of bytes.  */
  ctx->total64 += len;

  /* Process all bytes in the buffer with 64 bytes in each round of
     the loop.  */
  while (nwords > 0)
    {
      uint32_t W[64];
      uint32_t a_save = a;
      uint32_t b_save = b;
      uint32_t c_save = c;
      uint32_t d_save = d;
      uint32_t e_save = e;
      uint32_t f_save = f;
      uint32_t g_save = g;
      uint32_t h_save = h;

      /* Operators defined in FIPS 180-2:4.1.2.  */
#define Ch(x, y, z) ((x & y) ^ (~x & z))
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22))
#define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25))
#define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3))
#define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10))

      /* It is unfortunate that C does not provide an operator for
	 cyclic rotation.  Hope the C compiler is smart enough.  */
#define CYCLIC(w, s) ((w >> s) | (w << (32 - s)))

      /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2.  */
      for (unsigned int t = 0; t < 16; ++t)
	{
	  W[t] = SWAP (*words);
	  ++words;
	}
      for (unsigned int t = 16; t < 64; ++t)
	W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16];

      /* The actual computation according to FIPS 180-2:6.2.2 step 3.  */
      for (unsigned int t = 0; t < 64; ++t)
	{
	  uint32_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t];
	  uint32_t T2 = S0 (a) + Maj (a, b, c);
	  h = g;
	  g = f;
	  f = e;
	  e = d + T1;
	  d = c;
	  c = b;
	  b = a;
	  a = T1 + T2;
	}

      /* Add the starting values of the context according to FIPS 180-2:6.2.2
	 step 4.  */
      a += a_save;
      b += b_save;
      c += c_save;
      d += d_save;
      e += e_save;
      f += f_save;
      g += g_save;
      h += h_save;

      /* Prepare for the next round.  */
      nwords -= 16;
    }

  /* Put checksum in context given as argument.  */
  ctx->H[0] = a;
  ctx->H[1] = b;
  ctx->H[2] = c;
  ctx->H[3] = d;
  ctx->H[4] = e;
  ctx->H[5] = f;
  ctx->H[6] = g;
  ctx->H[7] = h;
}


/* Initialize structure containing state of computation.
   (FIPS 180-2:5.3.2)  */
void
__sha256_init_ctx (ctx)
     struct sha256_ctx *ctx;
{
  ctx->H[0] = 0x6a09e667;
  ctx->H[1] = 0xbb67ae85;
  ctx->H[2] = 0x3c6ef372;
  ctx->H[3] = 0xa54ff53a;
  ctx->H[4] = 0x510e527f;
  ctx->H[5] = 0x9b05688c;
  ctx->H[6] = 0x1f83d9ab;
  ctx->H[7] = 0x5be0cd19;

  ctx->total64 = 0;
  ctx->buflen = 0;
}


/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
void *
__sha256_finish_ctx (ctx, resbuf)
     struct sha256_ctx *ctx;
     void *resbuf;
{
  /* Take yet unprocessed bytes into account.  */
  uint32_t bytes = ctx->buflen;
  size_t pad;

  /* Now count remaining bytes.  */
  ctx->total64 += bytes;

  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
  memcpy (&ctx->buffer[bytes], fillbuf, pad);

  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
#ifdef _STRING_ARCH_unaligned
  *(uint64_t *)  &ctx->buffer[bytes + pad] = SWAP64 (ctx->total64 << 3);
#else
  *(uint32_t *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
  *(uint32_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
						  (ctx->total[0] >> 29));
#endif

  /* Process last bytes.  */
  sha256_process_block (ctx->buffer, bytes + pad + 8, ctx);

  /* Put result from CTX in first 32 bytes following RESBUF.  */
  for (unsigned int i = 0; i < 8; ++i)
    ((uint32_t *) resbuf)[i] = SWAP (ctx->H[i]);

  return resbuf;
}


void
__sha256_process_bytes (buffer, len, ctx)
     const void *buffer;
     size_t len;
     struct sha256_ctx *ctx;
{
  /* When we already have some bits in our internal buffer concatenate
     both inputs first.  */
  if (ctx->buflen != 0)
    {
      size_t left_over = ctx->buflen;
      size_t add = 128 - left_over > len ? len : 128 - left_over;

      memcpy (&ctx->buffer[left_over], buffer, add);
      ctx->buflen += add;

      if (ctx->buflen > 64)
	{
	  sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);

	  ctx->buflen &= 63;
	  /* The regions in the following copy operation cannot overlap.  */
	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
		  ctx->buflen);
	}

      buffer = (const char *) buffer + add;
      len -= add;
    }

  /* Process available complete blocks.  */
  if (len >= 64)
    {
#if !_STRING_ARCH_unaligned
/* To check alignment gcc has an appropriate operator.  Other
   compilers don't.  */
# if __GNUC__ >= 2
#  define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
# else
#  define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0)
# endif
      if (UNALIGNED_P (buffer))
	while (len > 64)
	  {
	    sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
	    buffer = (const char *) buffer + 64;
	    len -= 64;
	  }
      else
#endif
	{
	  sha256_process_block (buffer, len & ~63, ctx);
	  buffer = (const char *) buffer + (len & ~63);
	  len &= 63;
	}
    }

  /* Move remaining bytes into internal buffer.  */
  if (len > 0)
    {
      size_t left_over = ctx->buflen;

      memcpy (&ctx->buffer[left_over], buffer, len);
      left_over += len;
      if (left_over >= 64)
	{
	  sha256_process_block (ctx->buffer, 64, ctx);
	  left_over -= 64;
	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
	}
      ctx->buflen = left_over;
    }
}