/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Long double expansions are Copyright (C) 2001 Stephen L. Moshier and are incorporated herein by permission of the author. The author reserves the right to distribute this material elsewhere under different copying permissions. These modifications are distributed here under the following terms: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ /* __kernel_tanl( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-33, return x with inexact if x!=0. * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) * on [0,0.67433]. * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * r = x^3 * R(x^2) * then * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) * * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ #include #include #include static const long double one = 1.0L, pio4hi = 0xc.90fdaa22168c235p-4L, pio4lo = -0x3.b399d747f23e32ecp-68L, /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) 0 <= x <= 0.6743316650390625 Peak relative error 8.0e-36 */ TH = 3.333333333333333333333333333333333333333E-1L, T0 = -1.813014711743583437742363284336855889393E7L, T1 = 1.320767960008972224312740075083259247618E6L, T2 = -2.626775478255838182468651821863299023956E4L, T3 = 1.764573356488504935415411383687150199315E2L, T4 = -3.333267763822178690794678978979803526092E-1L, U0 = -1.359761033807687578306772463253710042010E8L, U1 = 6.494370630656893175666729313065113194784E7L, U2 = -4.180787672237927475505536849168729386782E6L, U3 = 8.031643765106170040139966622980914621521E4L, U4 = -5.323131271912475695157127875560667378597E2L; /* 1.000000000000000000000000000000000000000E0 */ long double __kernel_tanl (long double x, long double y, int iy) { long double z, r, v, w, s; long double absx = fabsl (x); int sign; if (absx < 0x1p-33) { if ((int) x == 0) { /* generate inexact */ if (x == 0 && iy == -1) return one / fabsl (x); else if (iy == 1) { if (absx < LDBL_MIN) { long double force_underflow = x * x; math_force_eval (force_underflow); } return x; } else return -one / x; } } if (absx >= 0.6743316650390625L) { if (signbit (x)) { x = -x; y = -y; sign = -1; } else sign = 1; z = pio4hi - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); r = r / v; s = z * x; r = y + z * (s * r + y); r += TH * s; w = x + r; if (absx >= 0.6743316650390625L) { v = (long double) iy; w = (v - 2.0 * (x - (w * w / (w + v) - r))); if (sign < 0) w = -w; return w; } if (iy == 1) return w; else return -1.0 / (x + r); }