/* @(#)s_tanh.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: s_tanh.c,v 1.7 1995/05/10 20:48:22 jtc Exp $"; #endif /* Tanh(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x <= 2**-57 : tanh(x) := x*(one+x) * -t * 2**-57 < x <= 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x <= 40.0 : tanh(x) := 1- ----- ; t=expm1(2x) * t + 2 * 40.0 < x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */ #include #include #include #include static const long double one=1.0L, two=2.0L, tiny = 1.0e-300L; long double __tanhl(long double x) { long double t,z; int64_t jx,ix; double xhi; /* High word of |x|. */ xhi = ldbl_high (x); EXTRACT_WORDS64 (jx, xhi); ix = jx&0x7fffffffffffffffLL; /* x is INF or NaN */ if(ix>=0x7ff0000000000000LL) { if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ else return one/x-one; /* tanh(NaN) = NaN */ } /* |x| < 40 */ if (ix < 0x4044000000000000LL) { /* |x|<40 */ if (ix == 0) return x; /* x == +-0 */ if (ix<0x3c60000000000000LL) /* |x|<2**-57 */ { if (fabsl (x) < LDBL_MIN) { long double force_underflow = x * x; math_force_eval (force_underflow); } return x*(one+x); /* tanh(small) = small */ } if (ix>=0x3ff0000000000000LL) { /* |x|>=1 */ t = __expm1l(two*fabsl(x)); z = one - two/(t+two); } else { t = __expm1l(-two*fabsl(x)); z= -t/(t+two); } /* |x| > 40, return +-1 */ } else { z = one - tiny; /* raised inexact flag */ } return (jx>=0)? z: -z; } long_double_symbol (libm, __tanhl, tanhl);