/* Copyright (C) 1995-2013 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" #include #include #include #include /* Convert a `long double' in IBM extended format to a multi-precision integer representing the significand scaled up by its number of bits (106 for long double) and an integral power of two (MPN frexpl). */ mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size, int *expt, int *is_neg, long double value) { union ibm_extended_long_double u; unsigned long long hi, lo; int ediff; u.ld = value; *is_neg = u.d[0].ieee.negative; *expt = (int) u.d[0].ieee.exponent - IEEE754_DOUBLE_BIAS; lo = ((long long) u.d[1].ieee.mantissa0 << 32) | u.d[1].ieee.mantissa1; hi = ((long long) u.d[0].ieee.mantissa0 << 32) | u.d[0].ieee.mantissa1; /* If the lower double is not a denomal or zero then set the hidden 53rd bit. */ if (u.d[1].ieee.exponent > 0) { lo |= 1LL << 52; /* The lower double is normalized separately from the upper. We may need to adjust the lower manitissa to reflect this. */ ediff = u.d[0].ieee.exponent - u.d[1].ieee.exponent; if (ediff > 53) lo = lo >> (ediff-53); } /* The high double may be rounded and the low double reflects the difference between the long double and the rounded high double value. This is indicated by a differnce between the signs of the high and low doubles. */ if ((u.d[0].ieee.negative != u.d[1].ieee.negative) && ((u.d[1].ieee.exponent != 0) && (lo != 0L))) { lo = (1ULL << 53) - lo; if (hi == 0LL) { /* we have a borrow from the hidden bit, so shift left 1. */ hi = 0x0ffffffffffffeLL | (lo >> 51); lo = 0x1fffffffffffffLL & (lo << 1); (*expt)--; } else hi--; } #if BITS_PER_MP_LIMB == 32 /* Combine the mantissas to be contiguous. */ res_ptr[0] = lo; res_ptr[1] = (hi << (53 - 32)) | (lo >> 32); res_ptr[2] = hi >> 11; res_ptr[3] = hi >> (32 + 11); #define N 4 #elif BITS_PER_MP_LIMB == 64 /* Combine the two mantissas to be contiguous. */ res_ptr[0] = (hi << 53) | lo; res_ptr[1] = hi >> 11; #define N 2 #else #error "mp_limb size " BITS_PER_MP_LIMB "not accounted for" #endif /* The format does not fill the last limb. There are some zeros. */ #define NUM_LEADING_ZEROS (BITS_PER_MP_LIMB \ - (LDBL_MANT_DIG - ((N - 1) * BITS_PER_MP_LIMB))) if (u.d[0].ieee.exponent == 0) { /* A biased exponent of zero is a special case. Either it is a zero or it is a denormal number. */ if (res_ptr[0] == 0 && res_ptr[1] == 0 && res_ptr[N - 2] == 0 && res_ptr[N - 1] == 0) /* Assumes N<=4. */ /* It's zero. */ *expt = 0; else { /* It is a denormal number, meaning it has no implicit leading one bit, and its exponent is in fact the format minimum. We use DBL_MIN_EXP instead of LDBL_MIN_EXP below because the latter describes the properties of both parts together, but the exponent is computed from the high part only. */ int cnt; #if N == 2 if (res_ptr[N - 1] != 0) { count_leading_zeros (cnt, res_ptr[N - 1]); cnt -= NUM_LEADING_ZEROS; res_ptr[N - 1] = res_ptr[N - 1] << cnt | (res_ptr[0] >> (BITS_PER_MP_LIMB - cnt)); res_ptr[0] <<= cnt; *expt = DBL_MIN_EXP - 1 - cnt; } else { count_leading_zeros (cnt, res_ptr[0]); if (cnt >= NUM_LEADING_ZEROS) { res_ptr[N - 1] = res_ptr[0] << (cnt - NUM_LEADING_ZEROS); res_ptr[0] = 0; } else { res_ptr[N - 1] = res_ptr[0] >> (NUM_LEADING_ZEROS - cnt); res_ptr[0] <<= BITS_PER_MP_LIMB - (NUM_LEADING_ZEROS - cnt); } *expt = DBL_MIN_EXP - 1 - (BITS_PER_MP_LIMB - NUM_LEADING_ZEROS) - cnt; } #else int j, k, l; for (j = N - 1; j > 0; j--) if (res_ptr[j] != 0) break; count_leading_zeros (cnt, res_ptr[j]); cnt -= NUM_LEADING_ZEROS; l = N - 1 - j; if (cnt < 0) { cnt += BITS_PER_MP_LIMB; l--; } if (!cnt) for (k = N - 1; k >= l; k--) res_ptr[k] = res_ptr[k-l]; else { for (k = N - 1; k > l; k--) res_ptr[k] = res_ptr[k-l] << cnt | res_ptr[k-l-1] >> (BITS_PER_MP_LIMB - cnt); res_ptr[k--] = res_ptr[0] << cnt; } for (; k >= 0; k--) res_ptr[k] = 0; *expt = DBL_MIN_EXP - 1 - l * BITS_PER_MP_LIMB - cnt; #endif } } else /* Add the implicit leading one bit for a normalized number. */ res_ptr[N - 1] |= (mp_limb_t) 1 << (LDBL_MANT_DIG - 1 - ((N - 1) * BITS_PER_MP_LIMB)); return N; }