/* * IBM Accurate Mathematical Library * written by International Business Machines Corp. * Copyright (C) 2001-2016 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, see . */ /****************************************************************************/ /* */ /* MODULE_NAME:usncs.c */ /* */ /* FUNCTIONS: usin */ /* ucos */ /* slow */ /* slow1 */ /* slow2 */ /* sloww */ /* sloww1 */ /* sloww2 */ /* bsloww */ /* bsloww1 */ /* bsloww2 */ /* cslow2 */ /* FILES NEEDED: dla.h endian.h mpa.h mydefs.h usncs.h */ /* branred.c sincos32.c dosincos.c mpa.c */ /* sincos.tbl */ /* */ /* An ultimate sin and routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */ /* Assumption: Machine arithmetic operations are performed in */ /* round to nearest mode of IEEE 754 standard. */ /* */ /****************************************************************************/ #include #include #include "endian.h" #include "mydefs.h" #include "usncs.h" #include "MathLib.h" #include #include #include /* Helper macros to compute sin of the input values. */ #define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx)) #define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1) /* The computed polynomial is a variation of the Taylor series expansion for sin(a): a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2 The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so on. The result is returned to LHS and correction in COR. */ #define TAYLOR_SIN(xx, a, da, cor) \ ({ \ double t = ((POLYNOMIAL (xx) * (a) - 0.5 * (da)) * (xx) + (da)); \ double res = (a) + t; \ (cor) = ((a) - res) + t; \ res; \ }) /* This is again a variation of the Taylor series expansion with the term x^3/3! expanded into the following for better accuracy: bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3 The correction term is dx and bb + aa = -1/3! */ #define TAYLOR_SLOW(x0, dx, cor) \ ({ \ static const double th2_36 = 206158430208.0; /* 1.5*2**37 */ \ double xx = (x0) * (x0); \ double x1 = ((x0) + th2_36) - th2_36; \ double y = aa * x1 * x1 * x1; \ double r = (x0) + y; \ double x2 = ((x0) - x1) + (dx); \ double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2) \ * (x0) + aa * x2 * x2 * x2 + (dx)); \ t = (((x0) - r) + y) + t; \ double res = r + t; \ (cor) = (r - res) + t; \ res; \ }) #define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \ ({ \ int4 k = u.i[LOW_HALF] << 2; \ sn = __sincostab.x[k]; \ ssn = __sincostab.x[k + 1]; \ cs = __sincostab.x[k + 2]; \ ccs = __sincostab.x[k + 3]; \ }) #ifndef SECTION # define SECTION #endif extern const union { int4 i[880]; double x[440]; } __sincostab attribute_hidden; static const double sn3 = -1.66666666666664880952546298448555E-01, sn5 = 8.33333214285722277379541354343671E-03, cs2 = 4.99999999999999999999950396842453E-01, cs4 = -4.16666666666664434524222570944589E-02, cs6 = 1.38888874007937613028114285595617E-03; static const double t22 = 0x1.8p22; void __dubsin (double x, double dx, double w[]); void __docos (double x, double dx, double w[]); double __mpsin (double x, double dx, bool reduce_range); double __mpcos (double x, double dx, bool reduce_range); static double slow (double x); static double slow1 (double x); static double slow2 (double x); static double sloww (double x, double dx, double orig, int n); static double sloww1 (double x, double dx, double orig, int n); static double sloww2 (double x, double dx, double orig, int n); static double bsloww (double x, double dx, double orig, int n); static double bsloww1 (double x, double dx, double orig, int n); static double bsloww2 (double x, double dx, double orig, int n); int __branred (double x, double *a, double *aa); static double cslow2 (double x); /* Given a number partitioned into X and DX, this function computes the cosine of the number by combining the sin and cos of X (as computed by a variation of the Taylor series) with the values looked up from the sin/cos table to get the result in RES and a correction value in COR. */ static inline double __always_inline do_cos (double x, double dx, double *corp) { mynumber u; if (x < 0) dx = -dx; u.x = big + fabs (x); x = fabs (x) - (u.x - big) + dx; double xx, s, sn, ssn, c, cs, ccs, res, cor; xx = x * x; s = x + x * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); cor = (ccs - s * ssn - cs * c) - sn * s; res = cs + cor; cor = (cs - res) + cor; *corp = cor; return res; } /* A more precise variant of DO_COS. EPS is the adjustment to the correction COR. */ static inline double __always_inline do_cos_slow (double x, double dx, double eps, double *corp) { mynumber u; if (x <= 0) dx = -dx; u.x = big + fabs (x); x = fabs (x) - (u.x - big); double xx, y, x1, x2, e1, e2, res, cor; double s, sn, ssn, c, cs, ccs; xx = x * x; s = x * xx * (sn3 + xx * sn5); c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); x1 = (x + t22) - t22; x2 = (x - x1) + dx; e1 = (sn + t22) - t22; e2 = (sn - e1) + ssn; cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s; y = cs - e1 * x1; cor = cor + ((cs - y) - e1 * x1); res = y + cor; cor = (y - res) + cor; cor = 1.0005 * cor + ((cor > 0) ? eps : -eps); *corp = cor; return res; } /* Given a number partitioned into X and DX, this function computes the sine of the number by combining the sin and cos of X (as computed by a variation of the Taylor series) with the values looked up from the sin/cos table to get the result in RES and a correction value in COR. */ static inline double __always_inline do_sin (double x, double dx, double *corp) { mynumber u; if (x <= 0) dx = -dx; u.x = big + fabs (x); x = fabs (x) - (u.x - big); double xx, s, sn, ssn, c, cs, ccs, cor, res; xx = x * x; s = x + (dx + x * xx * (sn3 + xx * sn5)); c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6)); SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); cor = (ssn + s * ccs - sn * c) + cs * s; res = sn + cor; cor = (sn - res) + cor; *corp = cor; return res; } /* A more precise variant of DO_SIN. EPS is the adjustment to the correction COR. */ static inline double __always_inline do_sin_slow (double x, double dx, double eps, double *corp) { mynumber u; if (x <= 0) dx = -dx; u.x = big + fabs (x); x = fabs (x) - (u.x - big); double xx, y, x1, x2, c1, c2, res, cor; double s, sn, ssn, c, cs, ccs; xx = x * x; s = x * xx * (sn3 + xx * sn5); c = xx * (cs2 + xx * (cs4 + xx * cs6)); SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs); x1 = (x + t22) - t22; x2 = (x - x1) + dx; c1 = (cs + t22) - t22; c2 = (cs - c1) + ccs; cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c; y = sn + c1 * x1; cor = cor + ((sn - y) + c1 * x1); res = y + cor; cor = (y - res) + cor; cor = 1.0005 * cor + ((cor > 0) ? eps : -eps); *corp = cor; return res; } /* Reduce range of X and compute sin of a + da. K is the amount by which to rotate the quadrants. This allows us to use the same routine to compute cos by simply rotating the quadrants by 1. */ static inline double __always_inline reduce_and_compute (double x, unsigned int k) { double retval = 0, a, da; unsigned int n = __branred (x, &a, &da); k = (n + k) % 4; switch (k) { case 2: a = -a; da = -da; /* Fall through. */ case 0: if (a * a < 0.01588) retval = bsloww (a, da, x, n); else retval = bsloww1 (a, da, x, n); break; case 1: case 3: retval = bsloww2 (a, da, x, n); break; } return retval; } static inline int4 __always_inline reduce_sincos_1 (double x, double *a, double *da) { mynumber v; double t = (x * hpinv + toint); double xn = t - toint; v.x = t; double y = (x - xn * mp1) - xn * mp2; int4 n = v.i[LOW_HALF] & 3; double db = xn * mp3; double b = y - db; db = (y - b) - db; *a = b; *da = db; return n; } /* Compute sin (A + DA). cos can be computed by shifting the quadrant N clockwise. */ static double __always_inline do_sincos_1 (double a, double da, double x, int4 n, int4 k) { double xx, retval, res, cor; double eps = fabs (x) * 1.2e-30; int k1 = (n + k) & 3; switch (k1) { /* quarter of unit circle */ case 2: a = -a; da = -da; /* Fall through. */ case 0: xx = a * a; if (xx < 0.01588) { /* Taylor series. */ res = TAYLOR_SIN (xx, a, da, cor); cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps; retval = (res == res + cor) ? res : sloww (a, da, x, k); } else { res = do_sin (a, da, &cor); cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps; retval = ((res == res + cor) ? ((a > 0) ? res : -res) : sloww1 (a, da, x, k)); } break; case 1: case 3: res = do_cos (a, da, &cor); cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps; retval = ((res == res + cor) ? ((k1 & 2) ? -res : res) : sloww2 (a, da, x, n)); break; } return retval; } static inline int4 __always_inline reduce_sincos_2 (double x, double *a, double *da) { mynumber v; double t = (x * hpinv + toint); double xn = t - toint; v.x = t; double xn1 = (xn + 8.0e22) - 8.0e22; double xn2 = xn - xn1; double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2); int4 n = v.i[LOW_HALF] & 3; double db = xn1 * pp3; t = y - db; db = (y - t) - db; db = (db - xn2 * pp3) - xn * pp4; double b = t + db; db = (t - b) + db; *a = b; *da = db; return n; } /* Compute sin (A + DA). cos can be computed by shifting the quadrant N clockwise. */ static double __always_inline do_sincos_2 (double a, double da, double x, int4 n, int4 k) { double res, retval, cor, xx; double eps = 1.0e-24; k = (n + k) & 3; switch (k) { case 2: a = -a; da = -da; /* Fall through. */ case 0: xx = a * a; if (xx < 0.01588) { /* Taylor series. */ res = TAYLOR_SIN (xx, a, da, cor); cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps; retval = (res == res + cor) ? res : bsloww (a, da, x, n); } else { res = do_sin (a, da, &cor); cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps; retval = ((res == res + cor) ? ((a > 0) ? res : -res) : bsloww1 (a, da, x, n)); } break; case 1: case 3: res = do_cos (a, da, &cor); cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps; retval = ((res == res + cor) ? ((n & 2) ? -res : res) : bsloww2 (a, da, x, n)); break; } return retval; } /*******************************************************************/ /* An ultimate sin routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of sin(x) */ /*******************************************************************/ #ifdef IN_SINCOS static double #else double SECTION #endif __sin (double x) { double xx, res, t, cor; mynumber u; int4 k, m; double retval = 0; #ifndef IN_SINCOS SET_RESTORE_ROUND_53BIT (FE_TONEAREST); #endif u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff & m; /* no sign */ if (k < 0x3e500000) /* if x->0 =>sin(x)=x */ { math_check_force_underflow (x); retval = x; } /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/ else if (k < 0x3fd00000) { xx = x * x; /* Taylor series. */ t = POLYNOMIAL (xx) * (xx * x); res = x + t; cor = (x - res) + t; retval = (res == res + 1.07 * cor) ? res : slow (x); } /* else if (k < 0x3fd00000) */ /*---------------------------- 0.25<|x|< 0.855469---------------------- */ else if (k < 0x3feb6000) { res = do_sin (x, 0, &cor); retval = (res == res + 1.096 * cor) ? (m > 0 ? res : -res) : slow1 (x); } /* else if (k < 0x3feb6000) */ /*----------------------- 0.855469 <|x|<2.426265 ----------------------*/ else if (k < 0x400368fd) { t = hp0 - fabs (x); res = do_cos (t, hp1, &cor); retval = (res == res + 1.020 * cor) ? ((m > 0) ? res : -res) : slow2 (x); } /* else if (k < 0x400368fd) */ #ifndef IN_SINCOS /*-------------------------- 2.426265<|x|< 105414350 ----------------------*/ else if (k < 0x419921FB) { double a, da; int4 n = reduce_sincos_1 (x, &a, &da); retval = do_sincos_1 (a, da, x, n, 0); } /* else if (k < 0x419921FB ) */ /*---------------------105414350 <|x|< 281474976710656 --------------------*/ else if (k < 0x42F00000) { double a, da; int4 n = reduce_sincos_2 (x, &a, &da); retval = do_sincos_2 (a, da, x, n, 0); } /* else if (k < 0x42F00000 ) */ /* -----------------281474976710656 <|x| <2^1024----------------------------*/ else if (k < 0x7ff00000) retval = reduce_and_compute (x, 0); /*--------------------- |x| > 2^1024 ----------------------------------*/ else { if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) __set_errno (EDOM); retval = x / x; } #endif return retval; } /*******************************************************************/ /* An ultimate cos routine. Given an IEEE double machine number x */ /* it computes the correctly rounded (to nearest) value of cos(x) */ /*******************************************************************/ #ifdef IN_SINCOS static double #else double SECTION #endif __cos (double x) { double y, xx, res, cor, a, da; mynumber u; int4 k, m; double retval = 0; #ifndef IN_SINCOS SET_RESTORE_ROUND_53BIT (FE_TONEAREST); #endif u.x = x; m = u.i[HIGH_HALF]; k = 0x7fffffff & m; /* |x|<2^-27 => cos(x)=1 */ if (k < 0x3e400000) retval = 1.0; else if (k < 0x3feb6000) { /* 2^-27 < |x| < 0.855469 */ res = do_cos (x, 0, &cor); retval = (res == res + 1.020 * cor) ? res : cslow2 (x); } /* else if (k < 0x3feb6000) */ else if (k < 0x400368fd) { /* 0.855469 <|x|<2.426265 */ ; y = hp0 - fabs (x); a = y + hp1; da = (y - a) + hp1; xx = a * a; if (xx < 0.01588) { res = TAYLOR_SIN (xx, a, da, cor); cor = (cor > 0) ? 1.02 * cor + 1.0e-31 : 1.02 * cor - 1.0e-31; retval = (res == res + cor) ? res : sloww (a, da, x, 1); } else { res = do_sin (a, da, &cor); cor = (cor > 0) ? 1.035 * cor + 1.0e-31 : 1.035 * cor - 1.0e-31; retval = ((res == res + cor) ? ((a > 0) ? res : -res) : sloww1 (a, da, x, 1)); } } /* else if (k < 0x400368fd) */ #ifndef IN_SINCOS else if (k < 0x419921FB) { /* 2.426265<|x|< 105414350 */ double a, da; int4 n = reduce_sincos_1 (x, &a, &da); retval = do_sincos_1 (a, da, x, n, 1); } /* else if (k < 0x419921FB ) */ else if (k < 0x42F00000) { double a, da; int4 n = reduce_sincos_2 (x, &a, &da); retval = do_sincos_2 (a, da, x, n, 1); } /* else if (k < 0x42F00000 ) */ /* 281474976710656 <|x| <2^1024 */ else if (k < 0x7ff00000) retval = reduce_and_compute (x, 1); else { if (k == 0x7ff00000 && u.i[LOW_HALF] == 0) __set_errno (EDOM); retval = x / x; /* |x| > 2^1024 */ } #endif return retval; } /************************************************************************/ /* Routine compute sin(x) for 2^-26 < |x|< 0.25 by Taylor with more */ /* precision and if still doesn't accurate enough by mpsin or dubsin */ /************************************************************************/ static inline double __always_inline slow (double x) { double res, cor, w[2]; res = TAYLOR_SLOW (x, 0, cor); if (res == res + 1.0007 * cor) return res; __dubsin (fabs (x), 0, w); if (w[0] == w[0] + 1.000000001 * w[1]) return (x > 0) ? w[0] : -w[0]; return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false); } /*******************************************************************************/ /* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /*******************************************************************************/ static inline double __always_inline slow1 (double x) { double w[2], cor, res; res = do_sin_slow (x, 0, 0, &cor); if (res == res + cor) return (x > 0) ? res : -res; __dubsin (fabs (x), 0, w); if (w[0] == w[0] + 1.000000005 * w[1]) return (x > 0) ? w[0] : -w[0]; return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false); } /**************************************************************************/ /* Routine compute sin(x) for 0.855469 <|x|<2.426265 by __sincostab.tbl */ /* and if result still doesn't accurate enough by mpsin or dubsin */ /**************************************************************************/ static inline double __always_inline slow2 (double x) { double w[2], y, y1, y2, cor, res; double t = hp0 - fabs (x); res = do_cos_slow (t, hp1, 0, &cor); if (res == res + cor) return (x > 0) ? res : -res; y = fabs (x) - hp0; y1 = y - hp1; y2 = (y - y1) - hp1; __docos (y1, y2, w); if (w[0] == w[0] + 1.000000005 * w[1]) return (x > 0) ? w[0] : -w[0]; return (x > 0) ? __mpsin (x, 0, false) : -__mpsin (-x, 0, false); } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x is small enough*/ /* to use Taylor series around zero and (x+dx) */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static inline double __always_inline sloww (double x, double dx, double orig, int k) { double y, t, res, cor, w[2], a, da, xn; mynumber v; int4 n; res = TAYLOR_SLOW (x, dx, cor); double eps = fabs (orig) * 3.1e-30; cor = 1.0005 * cor + ((cor > 0) ? eps : -eps); if (res == res + cor) return res; a = fabs (x); da = (x > 0) ? dx : -dx; __dubsin (a, da, w); eps = fabs (orig) * 1.1e-30; cor = 1.000000001 * w[1] + ((w[1] > 0) ? eps : -eps); if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; t = (orig * hpinv + toint); xn = t - toint; v.x = t; y = (orig - xn * mp1) - xn * mp2; n = (v.i[LOW_HALF] + k) & 3; da = xn * pp3; t = y - da; da = (y - t) - da; y = xn * pp4; a = t - y; da = ((t - a) - y) + da; if (n & 2) { a = -a; da = -da; } x = fabs (a); dx = (a > 0) ? da : -da; __dubsin (x, dx, w); eps = fabs (orig) * 1.1e-40; cor = 1.000000001 * w[1] + ((w[1] > 0) ? eps : -eps); if (w[0] == w[0] + cor) return (a > 0) ? w[0] : -w[0]; return k ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true); } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in first or */ /* third quarter of unit circle.Routine receive also (right argument) the */ /* original value of x for computing error of result.And if result not */ /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static inline double __always_inline sloww1 (double x, double dx, double orig, int k) { double w[2], cor, res; res = do_sin_slow (x, dx, 3.1e-30 * fabs (orig), &cor); if (res == res + cor) return (x > 0) ? res : -res; dx = (x > 0 ? dx : -dx); __dubsin (fabs (x), dx, w); double eps = 1.1e-30 * fabs (orig); cor = 1.000000005 * w[1] + ((w[1] > 0) ? eps : -eps); if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; return (k == 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true); } /***************************************************************************/ /* Routine compute sin(x+dx) (Double-Length number) where x in second or */ /* fourth quarter of unit circle.Routine receive also the original value */ /* and quarter(n= 1or 3)of x for computing error of result.And if result not*/ /* accurate enough routine calls mpsin1 or dubsin */ /***************************************************************************/ static inline double __always_inline sloww2 (double x, double dx, double orig, int n) { double w[2], cor, res; res = do_cos_slow (x, dx, 3.1e-30 * fabs (orig), &cor); if (res == res + cor) return (n & 2) ? -res : res; dx = x > 0 ? dx : -dx; __docos (fabs (x), dx, w); double eps = 1.1e-30 * fabs (orig); cor = 1.000000005 * w[1] + ((w[1] > 0) ? eps : -eps); if (w[0] == w[0] + cor) return (n & 2) ? -w[0] : w[0]; return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true); } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* is small enough to use Taylor series around zero and (x+dx) */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of */ /* result.And if result not accurate enough routine calls other routines */ /***************************************************************************/ static inline double __always_inline bsloww (double x, double dx, double orig, int n) { double res, cor, w[2], a, da; res = TAYLOR_SLOW (x, dx, cor); cor = 1.0005 * cor + ((cor > 0) ? 1.1e-24 : -1.1e-24); if (res == res + cor) return res; a = fabs (x); da = (x > 0) ? dx : -dx; __dubsin (a, da, w); cor = 1.000000001 * w[1] + ((w[1] > 0) ? 1.1e-24 : -1.1e-24); if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true); } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* in first or third quarter of unit circle.Routine receive also */ /* (right argument) the original value of x for computing error of result.*/ /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ static inline double __always_inline bsloww1 (double x, double dx, double orig, int n) { double w[2], cor, res; res = do_sin_slow (x, dx, 1.1e-24, &cor); if (res == res + cor) return (x > 0) ? res : -res; dx = (x > 0) ? dx : -dx; __dubsin (fabs (x), dx, w); cor = 1.000000005 * w[1] + ((w[1] > 0) ? 1.1e-24 : -1.1e-24); if (w[0] == w[0] + cor) return (x > 0) ? w[0] : -w[0]; return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true); } /***************************************************************************/ /* Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x */ /* in second or fourth quarter of unit circle.Routine receive also the */ /* original value and quarter(n= 1or 3)of x for computing error of result. */ /* And if result not accurate enough routine calls other routines */ /***************************************************************************/ static inline double __always_inline bsloww2 (double x, double dx, double orig, int n) { double w[2], cor, res; res = do_cos_slow (x, dx, 1.1e-24, &cor); if (res == res + cor) return (n & 2) ? -res : res; dx = (x > 0) ? dx : -dx; __docos (fabs (x), dx, w); cor = 1.000000005 * w[1] + ((w[1] > 0) ? 1.1e-24 : -1.1e-24); if (w[0] == w[0] + cor) return (n & 2) ? -w[0] : w[0]; return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true); } /************************************************************************/ /* Routine compute cos(x) for 2^-27 < |x|< 0.25 by Taylor with more */ /* precision and if still doesn't accurate enough by mpcos or docos */ /************************************************************************/ static inline double __always_inline cslow2 (double x) { double w[2], cor, res; res = do_cos_slow (x, 0, 0, &cor); if (res == res + cor) return res; __docos (fabs (x), 0, w); if (w[0] == w[0] + 1.000000005 * w[1]) return w[0]; return __mpcos (x, 0, false); } #ifndef __cos weak_alias (__cos, cos) # ifdef NO_LONG_DOUBLE strong_alias (__cos, __cosl) weak_alias (__cos, cosl) # endif #endif #ifndef __sin weak_alias (__sin, sin) # ifdef NO_LONG_DOUBLE strong_alias (__sin, __sinl) weak_alias (__sin, sinl) # endif #endif