/* Compute complex natural logarithm. Copyright (C) 1997-2012 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ #include <complex.h> #include <math.h> #include <math_private.h> #include <float.h> __complex__ float __clogf (__complex__ float x) { __complex__ float result; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0)) { /* Real and imaginary part are 0.0. */ __imag__ result = signbit (__real__ x) ? M_PI : 0.0; __imag__ result = __copysignf (__imag__ result, __imag__ x); /* Yes, the following line raises an exception. */ __real__ result = -1.0 / fabsf (__real__ x); } else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1)) { /* Neither real nor imaginary part is NaN. */ float absx = fabsf (__real__ x), absy = fabsf (__imag__ x); int scale = 0; if (absx < absy) { float t = absx; absx = absy; absy = t; } if (absx > FLT_MAX / 2.0f) { scale = -1; absx = __scalbnf (absx, scale); absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f); } else if (absx < FLT_MIN && absy < FLT_MIN) { scale = FLT_MANT_DIG; absx = __scalbnf (absx, scale); absy = __scalbnf (absy, scale); } if (absx == 1.0f && scale == 0) { float absy2 = absy * absy; if (absy2 <= FLT_MIN * 2.0f) { #if __FLT_EVAL_METHOD__ == 0 __real__ result = absy2 / 2.0f - absy2 * absy2 / 4.0f; #else volatile float force_underflow = absy2 * absy2 / 4.0f; __real__ result = absy2 / 2.0f - force_underflow; #endif } else __real__ result = __log1pf (absy2) / 2.0f; } else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0) { float d2m1 = (absx - 1.0f) * (absx + 1.0f); if (absy >= FLT_EPSILON) d2m1 += absy * absy; __real__ result = __log1pf (d2m1) / 2.0f; } else if (absx < 1.0f && absx >= 0.75f && absy < FLT_EPSILON / 2.0f && scale == 0) { float d2m1 = (absx - 1.0f) * (absx + 1.0f); __real__ result = __log1pf (d2m1) / 2.0f; } else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0) { float d2m1 = __x2y2m1f (absx, absy); __real__ result = __log1pf (d2m1) / 2.0f; } else { float d = __ieee754_hypotf (absx, absy); __real__ result = __ieee754_logf (d) - scale * (float) M_LN2; } __imag__ result = __ieee754_atan2f (__imag__ x, __real__ x); } else { __imag__ result = __nanf (""); if (rcls == FP_INFINITE || icls == FP_INFINITE) /* Real or imaginary part is infinite. */ __real__ result = HUGE_VALF; else __real__ result = __nanf (""); } return result; } #ifndef __clogf weak_alias (__clogf, clogf) #endif