From 0ecb606cb6cf65de1d9fc8a919bceb4be476c602 Mon Sep 17 00:00:00 2001 From: Jakub Jelinek Date: Thu, 12 Jul 2007 18:26:36 +0000 Subject: 2.5-18.1 --- sysdeps/ia64/fpu/s_cosf.S | 1182 +++++++++++++++++++++++---------------------- 1 file changed, 600 insertions(+), 582 deletions(-) (limited to 'sysdeps/ia64/fpu/s_cosf.S') diff --git a/sysdeps/ia64/fpu/s_cosf.S b/sysdeps/ia64/fpu/s_cosf.S index 0e47255..bcdf1b0 100644 --- a/sysdeps/ia64/fpu/s_cosf.S +++ b/sysdeps/ia64/fpu/s_cosf.S @@ -1,12 +1,10 @@ - .file "sincosf.s" -// Copyright (C) 2000, 2001, Intel Corporation +// Copyright (c) 2000 - 2005, Intel Corporation // All rights reserved. // -// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story, -// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation. +// Contributed 2000 by the Intel Numerics Group, Intel Corporation // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are @@ -22,7 +20,7 @@ // * The name of Intel Corporation may not be used to endorse or promote // products derived from this software without specific prior written // permission. -// + // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR @@ -37,663 +35,683 @@ // // Intel Corporation is the author of this code, and requests that all // problem reports or change requests be submitted to it directly at -// http://developer.intel.com/opensource. - - +// http://www.intel.com/software/products/opensource/libraries/num.htm. +// // History //============================================================== -// 2/02/00 Initial revision -// 4/02/00 Unwind support added. -// 5/10/00 Improved speed with new algorithm. -// 8/08/00 Improved speed by avoiding SIR flush. -// 8/17/00 Changed predicate register macro-usage to direct predicate -// names due to an assembler bug. -// 8/30/00 Put sin_of_r before sin_tbl_S_cos_of_r to gain a cycle -// 1/02/00 Fixed flag settings, improved speed. +// 02/02/00 Initial version +// 04/02/00 Unwind support added. +// 06/16/00 Updated tables to enforce symmetry +// 08/31/00 Saved 2 cycles in main path, and 9 in other paths. +// 09/20/00 The updated tables regressed to an old version, so reinstated them +// 10/18/00 Changed one table entry to ensure symmetry +// 01/03/01 Improved speed, fixed flag settings for small arguments. +// 02/18/02 Large arguments processing routine excluded +// 05/20/02 Cleaned up namespace and sf0 syntax +// 06/03/02 Insure inexact flag set for large arg result +// 09/05/02 Single precision version is made using double precision one as base +// 02/10/03 Reordered header: .section, .global, .proc, .align +// 03/31/05 Reformatted delimiters between data tables // // API //============================================================== // float sinf( float x); // float cosf( float x); // +// Overview of operation +//============================================================== +// +// Step 1 +// ====== +// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 +// divide x by pi/2^k. +// Multiply by 2^k/pi. +// nfloat = Round result to integer (round-to-nearest) +// +// r = x - nfloat * pi/2^k +// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) + +// for increased accuracy. +// pi/2^k is stored as two numbers that when added make pi/2^k. +// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) +// HIGH part is rounded to zero, LOW - to nearest +// +// x = (nfloat * pi/2^k) + r +// r is small enough that we can use a polynomial approximation +// and is referred to as the reduced argument. +// +// Step 3 +// ====== +// Take the unreduced part and remove the multiples of 2pi. +// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits +// +// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) +// N * 2^(k+1) +// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k +// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k +// nfloat * pi/2^k = N2pi + M * pi/2^k +// +// +// Sin(x) = Sin((nfloat * pi/2^k) + r) +// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) +// +// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) +// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) +// = Sin(Mpi/2^k) +// +// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) +// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) +// = Cos(Mpi/2^k) +// +// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) +// +// +// Step 4 +// ====== +// 0 <= M < 2^(k+1) +// There are 2^(k+1) Sin entries in a table. +// There are 2^(k+1) Cos entries in a table. +// +// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. +// +// +// Step 5 +// ====== +// Calculate Cos(r) and Sin(r) by polynomial approximation. +// +// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos +// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin +// +// and the coefficients q1, q2 and p1, p2 are stored in a table +// +// +// Calculate +// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) +// +// as follows +// +// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) +// rsq = r*r +// +// +// P = P1 + r^2*P2 +// Q = Q1 + r^2*Q2 +// +// rcub = r * rsq +// Sin(r) = r + rcub * P +// = r + r^3p1 + r^5p2 = Sin(r) +// +// The coefficients are not exactly these values, but almost. +// +// p1 = -1/6 = -1/3! +// p2 = 1/120 = 1/5! +// p3 = -1/5040 = -1/7! +// p4 = 1/362889 = 1/9! +// +// P = r + r^3 * P +// +// Answer = S[m] Cos(r) + C[m] P +// +// Cos(r) = 1 + rsq Q +// Cos(r) = 1 + r^2 Q +// Cos(r) = 1 + r^2 (q1 + r^2q2) +// Cos(r) = 1 + r^2q1 + r^4q2 +// +// S[m] Cos(r) = S[m](1 + rsq Q) +// S[m] Cos(r) = S[m] + S[m] rsq Q +// S[m] Cos(r) = S[m] + s_rsq Q +// Q = S[m] + s_rsq Q +// +// Then, +// +// Answer = Q + C[m] P + + +// Registers used +//============================================================== +// general input registers: +// r14 -> r19 +// r32 -> r45 + +// predicate registers used: +// p6 -> p14 + +// floating-point registers used +// f9 -> f15 +// f32 -> f61 -#include "libm_support.h" - // Assembly macros //============================================================== +sincosf_NORM_f8 = f9 +sincosf_W = f10 +sincosf_int_Nfloat = f11 +sincosf_Nfloat = f12 -// SIN_Sin_Flag = p6 -// SIN_Cos_Flag = p7 - -// integer registers used - - SIN_AD_PQ_1 = r33 - SIN_AD_PQ_2 = r33 - sin_GR_sincos_flag = r34 - sin_GR_Mint = r35 - - sin_GR_index = r36 - gr_tmp = r37 - - GR_SAVE_B0 = r37 - GR_SAVE_GP = r38 - GR_SAVE_PFS = r39 - - -// floating point registers used - - sin_coeff_P1 = f32 - sin_coeff_P2 = f33 - sin_coeff_Q1 = f34 - sin_coeff_Q2 = f35 - sin_coeff_P4 = f36 - sin_coeff_P5 = f37 - sin_coeff_Q3 = f38 - sin_coeff_Q4 = f39 - sin_Mx = f40 - sin_Mfloat = f41 - sin_tbl_S = f42 - sin_tbl_C = f43 - sin_r = f44 - sin_rcube = f45 - sin_tsq = f46 - sin_r7 = f47 - sin_t = f48 - sin_poly_p2 = f49 - sin_poly_p1 = f50 - fp_tmp = f51 - sin_poly_p3 = f52 - sin_poly_p4 = f53 - sin_of_r = f54 - sin_S_t = f55 - sin_poly_q2 = f56 - sin_poly_q1 = f57 - sin_S_tcube = f58 - sin_poly_q3 = f59 - sin_poly_q4 = f60 - sin_tbl_S_tcube = f61 - sin_tbl_S_cos_of_r = f62 - - sin_coeff_Q5 = f63 - sin_coeff_Q6 = f64 - sin_coeff_P3 = f65 - - sin_poly_q5 = f66 - sin_poly_q12 = f67 - sin_poly_q3456 = f68 - fp_tmp2 = f69 - SIN_NORM_f8 = f70 - - -#ifdef _LIBC -.rodata -#else -.data -#endif +sincosf_r = f13 +sincosf_rsq = f14 +sincosf_rcub = f15 +sincosf_save_tmp = f15 -.align 16 +sincosf_Inv_Pi_by_16 = f32 +sincosf_Pi_by_16_1 = f33 +sincosf_Pi_by_16_2 = f34 -sin_coeff_1_table: -ASM_TYPE_DIRECTIVE(sin_coeff_1_table,@object) -data8 0xBF56C16C16BF6462 // q3 -data8 0x3EFA01A0128B9EBC // q4 -data8 0xBE927E42FDF33FFE // q5 -data8 0x3E21DA5C72A446F3 // q6 -data8 0x3EC71DD1D5E421A4 // p4 -data8 0xBE5AC5C9D0ACF95A // p5 -data8 0xBFC55555555554CA // p1 -data8 0x3F811111110F2395 // p2 -data8 0xBFE0000000000000 // q1 -data8 0x3FA55555555554EF // q2 -data8 0xBF2A01A011232913 // p3 -data8 0x0000000000000000 // pad - - -///////////////////////////////////////// - -data8 0xBFE1A54991426566 //sin(-32) -data8 0x3FEAB1F5305DE8E5 //cos(-32) -data8 0x3FD9DBC0B640FC81 //sin(-31) -data8 0x3FED4591C3E12A20 //cos(-31) -data8 0x3FEF9DF47F1C903D //sin(-30) -data8 0x3FC3BE82F2505A52 //cos(-30) -data8 0x3FE53C7D20A6C9E7 //sin(-29) -data8 0xBFE7F01658314E47 //cos(-29) -data8 0xBFD156853B4514D6 //sin(-28) -data8 0xBFEECDAAD1582500 //cos(-28) -data8 0xBFEE9AA1B0E5BA30 //sin(-27) -data8 0xBFD2B266F959DED5 //cos(-27) -data8 0xBFE866E0FAC32583 //sin(-26) -data8 0x3FE4B3902691A9ED //cos(-26) -data8 0x3FC0F0E6F31E809D //sin(-25) -data8 0x3FEFB7EEF59504FF //cos(-25) -data8 0x3FECFA7F7919140F //sin(-24) -data8 0x3FDB25BFB50A609A //cos(-24) -data8 0x3FEB143CD0247D02 //sin(-23) -data8 0xBFE10CF7D591F272 //cos(-23) -data8 0x3F8220A29F6EB9F4 //sin(-22) -data8 0xBFEFFFADD8D4ACDA //cos(-22) -data8 0xBFEAC5E20BB0D7ED //sin(-21) -data8 0xBFE186FF83773759 //cos(-21) -data8 0xBFED36D8F55D3CE0 //sin(-20) -data8 0x3FDA1E043964A83F //cos(-20) -data8 0xBFC32F2D28F584CF //sin(-19) -data8 0x3FEFA377DE108258 //cos(-19) -data8 0x3FE8081668131E26 //sin(-18) -data8 0x3FE52150815D2470 //cos(-18) -data8 0x3FEEC3C4AC42882B //sin(-17) -data8 0xBFD19C46B07F58E7 //cos(-17) -data8 0x3FD26D02085F20F8 //sin(-16) -data8 0xBFEEA5257E962F74 //cos(-16) -data8 0xBFE4CF2871CEC2E8 //sin(-15) -data8 0xBFE84F5D069CA4F3 //cos(-15) -data8 0xBFEFB30E327C5E45 //sin(-14) -data8 0x3FC1809AEC2CA0ED //cos(-14) -data8 0xBFDAE4044881C506 //sin(-13) -data8 0x3FED09CDD5260CB7 //cos(-13) -data8 0x3FE12B9AF7D765A5 //sin(-12) -data8 0x3FEB00DA046B65E3 //cos(-12) -data8 0x3FEFFFEB762E93EB //sin(-11) -data8 0x3F7220AE41EE2FDF //cos(-11) -data8 0x3FE1689EF5F34F52 //sin(-10) -data8 0xBFEAD9AC890C6B1F //cos(-10) -data8 0xBFDA6026360C2F91 //sin( -9) -data8 0xBFED27FAA6A6196B //cos( -9) -data8 0xBFEFA8D2A028CF7B //sin( -8) -data8 0xBFC29FBEBF632F94 //cos( -8) -data8 0xBFE50608C26D0A08 //sin( -7) -data8 0x3FE81FF79ED92017 //cos( -7) -data8 0x3FD1E1F18AB0A2C0 //sin( -6) -data8 0x3FEEB9B7097822F5 //cos( -6) -data8 0x3FEEAF81F5E09933 //sin( -5) -data8 0x3FD22785706B4AD9 //cos( -5) -data8 0x3FE837B9DDDC1EAE //sin( -4) -data8 0xBFE4EAA606DB24C1 //cos( -4) -data8 0xBFC210386DB6D55B //sin( -3) -data8 0xBFEFAE04BE85E5D2 //cos( -3) -data8 0xBFED18F6EAD1B446 //sin( -2) -data8 0xBFDAA22657537205 //cos( -2) -data8 0xBFEAED548F090CEE //sin( -1) -data8 0x3FE14A280FB5068C //cos( -1) -data8 0x0000000000000000 //sin( 0) -data8 0x3FF0000000000000 //cos( 0) -data8 0x3FEAED548F090CEE //sin( 1) -data8 0x3FE14A280FB5068C //cos( 1) -data8 0x3FED18F6EAD1B446 //sin( 2) -data8 0xBFDAA22657537205 //cos( 2) -data8 0x3FC210386DB6D55B //sin( 3) -data8 0xBFEFAE04BE85E5D2 //cos( 3) -data8 0xBFE837B9DDDC1EAE //sin( 4) -data8 0xBFE4EAA606DB24C1 //cos( 4) -data8 0xBFEEAF81F5E09933 //sin( 5) -data8 0x3FD22785706B4AD9 //cos( 5) -data8 0xBFD1E1F18AB0A2C0 //sin( 6) -data8 0x3FEEB9B7097822F5 //cos( 6) -data8 0x3FE50608C26D0A08 //sin( 7) -data8 0x3FE81FF79ED92017 //cos( 7) -data8 0x3FEFA8D2A028CF7B //sin( 8) -data8 0xBFC29FBEBF632F94 //cos( 8) -data8 0x3FDA6026360C2F91 //sin( 9) -data8 0xBFED27FAA6A6196B //cos( 9) -data8 0xBFE1689EF5F34F52 //sin( 10) -data8 0xBFEAD9AC890C6B1F //cos( 10) -data8 0xBFEFFFEB762E93EB //sin( 11) -data8 0x3F7220AE41EE2FDF //cos( 11) -data8 0xBFE12B9AF7D765A5 //sin( 12) -data8 0x3FEB00DA046B65E3 //cos( 12) -data8 0x3FDAE4044881C506 //sin( 13) -data8 0x3FED09CDD5260CB7 //cos( 13) -data8 0x3FEFB30E327C5E45 //sin( 14) -data8 0x3FC1809AEC2CA0ED //cos( 14) -data8 0x3FE4CF2871CEC2E8 //sin( 15) -data8 0xBFE84F5D069CA4F3 //cos( 15) -data8 0xBFD26D02085F20F8 //sin( 16) -data8 0xBFEEA5257E962F74 //cos( 16) -data8 0xBFEEC3C4AC42882B //sin( 17) -data8 0xBFD19C46B07F58E7 //cos( 17) -data8 0xBFE8081668131E26 //sin( 18) -data8 0x3FE52150815D2470 //cos( 18) -data8 0x3FC32F2D28F584CF //sin( 19) -data8 0x3FEFA377DE108258 //cos( 19) -data8 0x3FED36D8F55D3CE0 //sin( 20) -data8 0x3FDA1E043964A83F //cos( 20) -data8 0x3FEAC5E20BB0D7ED //sin( 21) -data8 0xBFE186FF83773759 //cos( 21) -data8 0xBF8220A29F6EB9F4 //sin( 22) -data8 0xBFEFFFADD8D4ACDA //cos( 22) -data8 0xBFEB143CD0247D02 //sin( 23) -data8 0xBFE10CF7D591F272 //cos( 23) -data8 0xBFECFA7F7919140F //sin( 24) -data8 0x3FDB25BFB50A609A //cos( 24) -data8 0xBFC0F0E6F31E809D //sin( 25) -data8 0x3FEFB7EEF59504FF //cos( 25) -data8 0x3FE866E0FAC32583 //sin( 26) -data8 0x3FE4B3902691A9ED //cos( 26) -data8 0x3FEE9AA1B0E5BA30 //sin( 27) -data8 0xBFD2B266F959DED5 //cos( 27) -data8 0x3FD156853B4514D6 //sin( 28) -data8 0xBFEECDAAD1582500 //cos( 28) -data8 0xBFE53C7D20A6C9E7 //sin( 29) -data8 0xBFE7F01658314E47 //cos( 29) -data8 0xBFEF9DF47F1C903D //sin( 30) -data8 0x3FC3BE82F2505A52 //cos( 30) -data8 0xBFD9DBC0B640FC81 //sin( 31) -data8 0x3FED4591C3E12A20 //cos( 31) -data8 0x3FE1A54991426566 //sin( 32) -data8 0x3FEAB1F5305DE8E5 //cos( 32) -ASM_SIZE_DIRECTIVE(sin_coeff_1_table) - -////////////////////////////////////////// - - -.global sinf -.global cosf -#ifdef _LIBC -.global __sinf -.global __cosf -#endif - -.text -.proc cosf -#ifdef _LIBC -.proc __cosf -#endif -.align 32 - - -cosf: -#ifdef _LIBC -__cosf: -#endif -{ .mfi - alloc r32 = ar.pfs,1,7,0,0 - fcvt.fx.s1 sin_Mx = f8 - cmp.ne p6,p7 = r0,r0 // p7 set if cos -} -{ .mfi - addl SIN_AD_PQ_1 = @ltoff(sin_coeff_1_table),gp - fnorm.s0 SIN_NORM_f8 = f8 // Sets denormal or invalid - mov sin_GR_sincos_flag = 0x0 -} -;; +sincosf_Inv_Pi_by_64 = f35 -{ .mfi - ld8 SIN_AD_PQ_1 = [SIN_AD_PQ_1] - fclass.m.unc p9,p0 = f8, 0x07 - cmp.ne p8,p0 = r0,r0 -} -{ .mfb - nop.m 999 - nop.f 999 - br.sptk L(SINCOSF_COMMON) -} -;; +sincosf_Pi_by_16_3 = f36 -.endp cosf -ASM_SIZE_DIRECTIVE(cosf) +sincosf_r_exact = f37 +sincosf_Sm = f38 +sincosf_Cm = f39 -.text -.proc sinf -#ifdef _LIBC -.proc __sinf -#endif -.align 32 +sincosf_P1 = f40 +sincosf_Q1 = f41 +sincosf_P2 = f42 +sincosf_Q2 = f43 +sincosf_P3 = f44 +sincosf_Q3 = f45 +sincosf_P4 = f46 +sincosf_Q4 = f47 -sinf: -#ifdef _LIBC -__sinf: -#endif -{ .mfi - alloc r32 = ar.pfs,1,7,0,0 - fcvt.fx.s1 sin_Mx = f8 - cmp.eq p6,p7 = r0,r0 // p6 set if sin -} -{ .mfi - addl SIN_AD_PQ_1 = @ltoff(sin_coeff_1_table),gp - fnorm.s0 SIN_NORM_f8 = f8 // Sets denormal or invalid - mov sin_GR_sincos_flag = 0x1 -} -;; +sincosf_P_temp1 = f48 +sincosf_P_temp2 = f49 -{ .mfi - ld8 SIN_AD_PQ_1 = [SIN_AD_PQ_1] - fclass.m.unc p8,p0 = f8, 0x07 - cmp.ne p9,p0 = r0,r0 -} -{ .mfb - nop.m 999 - nop.f 999 - br.sptk L(SINCOSF_COMMON) -} -;; +sincosf_Q_temp1 = f50 +sincosf_Q_temp2 = f51 +sincosf_P = f52 +sincosf_Q = f53 -L(SINCOSF_COMMON): +sincosf_srsq = f54 -// Here with p6 if sin, p7 if cos, p8 if sin(0), p9 if cos(0) +sincosf_SIG_INV_PI_BY_16_2TO61 = f55 +sincosf_RSHF_2TO61 = f56 +sincosf_RSHF = f57 +sincosf_2TOM61 = f58 +sincosf_NFLOAT = f59 +sincosf_W_2TO61_RSH = f60 +fp_tmp = f61 -{ .mmf - ldfpd sin_coeff_Q3, sin_coeff_Q4 = [SIN_AD_PQ_1], 16 - nop.m 999 - fclass.m.unc p11,p0 = f8, 0x23 // Test for x=inf -} -;; +///////////////////////////////////////////////////////////// -{ .mfb - ldfpd sin_coeff_Q5, sin_coeff_Q6 = [SIN_AD_PQ_1], 16 - fclass.m.unc p10,p0 = f8, 0xc3 // Test for x=nan -(p8) br.ret.spnt b0 // Exit for sin(0) -} -{ .mfb - nop.m 999 -(p9) fma.s f8 = f1,f1,f0 -(p9) br.ret.spnt b0 // Exit for cos(0) -} -;; +sincosf_AD_1 = r33 +sincosf_AD_2 = r34 +sincosf_exp_limit = r35 +sincosf_r_signexp = r36 +sincosf_AD_beta_table = r37 +sincosf_r_sincos = r38 -{ .mmf - ldfpd sin_coeff_P4, sin_coeff_P5 = [SIN_AD_PQ_1], 16 - addl gr_tmp = -1,r0 - fcvt.xf sin_Mfloat = sin_Mx -} -;; +sincosf_r_exp = r39 +sincosf_r_17_ones = r40 -{ .mfi - getf.sig sin_GR_Mint = sin_Mx -(p11) frcpa.s0 f8,p13 = f0,f0 // qnan indef if x=inf - nop.i 999 -} -{ .mfb - ldfpd sin_coeff_P1, sin_coeff_P2 = [SIN_AD_PQ_1], 16 - nop.f 999 -(p11) br.ret.spnt b0 // Exit for x=inf -} -;; +sincosf_GR_sig_inv_pi_by_16 = r14 +sincosf_GR_rshf_2to61 = r15 +sincosf_GR_rshf = r16 +sincosf_GR_exp_2tom61 = r17 +sincosf_GR_n = r18 +sincosf_GR_m = r19 +sincosf_GR_32m = r19 +sincosf_GR_all_ones = r19 -{ .mfi - ldfpd sin_coeff_Q1, sin_coeff_Q2 = [SIN_AD_PQ_1], 16 - nop.f 999 - cmp.ge p8,p9 = -33,sin_GR_Mint -} -{ .mfb - add sin_GR_index = 32,sin_GR_Mint -(p10) fma.s f8 = f8,f1,f0 // Force qnan if x=nan -(p10) br.ret.spnt b0 // Exit for x=nan -} -;; +gr_tmp = r41 +GR_SAVE_PFS = r41 +GR_SAVE_B0 = r42 +GR_SAVE_GP = r43 -{ .mmi - ldfd sin_coeff_P3 = [SIN_AD_PQ_1], 16 -(p9) cmp.le p8,p0 = 33, sin_GR_Mint - shl sin_GR_index = sin_GR_index,4 -} -;; +RODATA +.align 16 + +// Pi/16 parts +LOCAL_OBJECT_START(double_sincosf_pi) + data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part + data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part +LOCAL_OBJECT_END(double_sincosf_pi) + +// Coefficients for polynomials +LOCAL_OBJECT_START(double_sincosf_pq_k4) + data8 0x3F810FABB668E9A2 // P2 + data8 0x3FA552E3D6DE75C9 // Q2 + data8 0xBFC555554447BC7F // P1 + data8 0xBFDFFFFFC447610A // Q1 +LOCAL_OBJECT_END(double_sincosf_pq_k4) + +// Sincos table (S[m], C[m]) +LOCAL_OBJECT_START(double_sin_cos_beta_k4) + data8 0x0000000000000000 // sin ( 0 Pi / 16 ) + data8 0x3FF0000000000000 // cos ( 0 Pi / 16 ) +// + data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 ) + data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 ) +// + data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 ) + data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 ) +// + data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 ) + data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 ) +// + data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 ) + data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 ) +// + data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 ) + data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 ) +// + data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 ) + data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 ) +// + data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 ) + data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 ) +// + data8 0x3FF0000000000000 // sin ( 8 Pi / 16 ) + data8 0x0000000000000000 // cos ( 8 Pi / 16 ) +// + data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 ) + data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 ) +// + data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 ) + data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 ) +// + data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 ) + data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 ) +// + data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 ) + data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 ) +// + data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 ) + data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 ) +// + data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 ) + data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 ) +// + data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 ) + data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 ) +// + data8 0x0000000000000000 // sin ( 16 Pi / 16 ) + data8 0xBFF0000000000000 // cos ( 16 Pi / 16 ) +// + data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 ) + data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 ) +// + data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 ) + data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 ) +// + data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 ) + data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 ) +// + data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 ) + data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 ) +// + data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 ) + data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 ) +// + data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 ) + data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 ) +// + data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 ) + data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 ) +// + data8 0xBFF0000000000000 // sin ( 24 Pi / 16 ) + data8 0x0000000000000000 // cos ( 24 Pi / 16 ) +// + data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 ) + data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 ) +// + data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 ) + data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 ) +// + data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 ) + data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 ) +// + data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 ) + data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 ) +// + data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 ) + data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 ) +// + data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 ) + data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 ) +// + data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 ) + data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 ) +// + data8 0x0000000000000000 // sin ( 32 Pi / 16 ) + data8 0x3FF0000000000000 // cos ( 32 Pi / 16 ) +LOCAL_OBJECT_END(double_sin_cos_beta_k4) +.section .text -{ .mfi - setf.sig fp_tmp = gr_tmp // Create constant such that fmpy sets inexact - fnma.s1 sin_r = f1,sin_Mfloat,SIN_NORM_f8 -(p8) cmp.eq.unc p11,p12=sin_GR_sincos_flag,r0 // p11 if must call dbl cos - // p12 if must call dbl sin -} -{ .mbb - add SIN_AD_PQ_2 = sin_GR_index,SIN_AD_PQ_1 -(p11) br.cond.spnt COS_DOUBLE -(p12) br.cond.spnt SIN_DOUBLE -} -;; +//////////////////////////////////////////////////////// +// There are two entry points: sin and cos +// If from sin, p8 is true +// If from cos, p9 is true -.pred.rel "mutex",p6,p7 //SIN_Sin_Flag, SIN_Cos_Flag -{ .mmi -(p6) ldfpd sin_tbl_S,sin_tbl_C = [SIN_AD_PQ_2] -(p7) ldfpd sin_tbl_C,sin_tbl_S = [SIN_AD_PQ_2] - nop.i 999 -} -;; +GLOBAL_IEEE754_ENTRY(sinf) -{ .mfi - nop.m 999 -(p6) fclass.m.unc p8,p0 = f8, 0x0b // If sin, note denormal input to set uflow - nop.i 999 +{ .mlx + alloc r32 = ar.pfs,1,13,0,0 + movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi } -{ .mfi - nop.m 999 - fma.s1 sin_t = sin_r,sin_r,f0 - nop.i 999 -} -;; +{ .mlx + addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp + movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) +};; -{ .mfi - nop.m 999 - fma.s1 sin_rcube = sin_t,sin_r,f0 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_tsq = sin_t,sin_t,f0 - nop.i 999 +{ .mfi + ld8 sincosf_AD_1 = [sincosf_AD_1] + fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument + cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin } -;; +{ .mib + mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61 + mov sincosf_r_sincos = 0x0 // 0 for sin + br.cond.sptk _SINCOSF_COMMON // go to common part +};; -{ .mfi - nop.m 999 - fma.s1 sin_poly_q3 = sin_t,sin_coeff_Q4,sin_coeff_Q3 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_poly_q5 = sin_t,sin_coeff_Q6,sin_coeff_Q5 - nop.i 999 -} -;; +GLOBAL_IEEE754_END(sinf) -{ .mfi - nop.m 999 - fma.s1 sin_poly_p1 = sin_t,sin_coeff_P5,sin_coeff_P4 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_poly_p2 = sin_t,sin_coeff_P2,sin_coeff_P1 - nop.i 999 -} -;; +GLOBAL_IEEE754_ENTRY(cosf) -{ .mfi - nop.m 999 - fma.s1 sin_poly_q1 = sin_t,sin_coeff_Q2,sin_coeff_Q1 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_S_t = sin_t,sin_tbl_S,f0 - nop.i 999 +{ .mlx + alloc r32 = ar.pfs,1,13,0,0 + movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi } -;; +{ .mlx + addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp + movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) +};; -{ .mfi - nop.m 999 -(p8) fmpy.s.s0 fp_tmp2 = f8,f8 // Dummy mult to set underflow if sin(denormal) - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_r7 = sin_rcube,sin_tsq,f0 - nop.i 999 +{ .mfi + ld8 sincosf_AD_1 = [sincosf_AD_1] + fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument + cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos } -;; +{ .mib + mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61 + mov sincosf_r_sincos = 0x8 // 8 for cos + nop.b 999 +};; + +//////////////////////////////////////////////////////// +// All entry points end up here. +// If from sin, sincosf_r_sincos is 0 and p8 is true +// If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true +// We add sincosf_r_sincos to N + +///////////// Common sin and cos part ////////////////// +_SINCOSF_COMMON: + +// Form two constants we need +// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand +// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand +// fcmp used to set denormal, and invalid on snans +{ .mfi + setf.sig sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16 + fclass.m p6,p0 = f8, 0xe7 // if x=0,inf,nan + mov sincosf_exp_limit = 0x10017 +} +{ .mlx + setf.d sincosf_RSHF_2TO61 = sincosf_GR_rshf_2to61 + movl sincosf_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 +};; // Right shift + +// Form another constant +// 2^-61 for scaling Nfloat +// 0x10017 is register_bias + 24. +// So if f8 >= 2^24, go to large argument routines +{ .mmi + getf.exp sincosf_r_signexp = f8 + setf.exp sincosf_2TOM61 = sincosf_GR_exp_2tom61 + addl gr_tmp = -1,r0 // For "inexect" constant create +};; + +// Load the two pieces of pi/16 +// Form another constant +// 1.1000...000 * 2^63, the right shift constant +{ .mmb + ldfe sincosf_Pi_by_16_1 = [sincosf_AD_1],16 + setf.d sincosf_RSHF = sincosf_GR_rshf +(p6) br.cond.spnt _SINCOSF_SPECIAL_ARGS +};; -{ .mfi - nop.m 999 - fma.s1 sin_poly_q3456 = sin_tsq,sin_poly_q5,sin_poly_q3 - nop.i 999 -} -;; +// Getting argument's exp for "large arguments" filtering +{ .mmi + ldfe sincosf_Pi_by_16_2 = [sincosf_AD_1],16 + setf.sig fp_tmp = gr_tmp // constant for inexact set + nop.i 999 +};; -{ .mfi - nop.m 999 - fma.s1 sin_poly_p3 = sin_t,sin_poly_p1,sin_coeff_P3 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_poly_p4 = sin_rcube,sin_poly_p2,sin_r - nop.i 999 -} -;; +// Polynomial coefficients (Q2, Q1, P2, P1) loading +{ .mmi + ldfpd sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16 + nop.m 999 + nop.i 999 +};; -{ .mfi - nop.m 999 - fma.s1 sin_tbl_S_tcube = sin_S_t,sin_tsq,f0 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sin_poly_q12 = sin_S_t,sin_poly_q1,sin_tbl_S - nop.i 999 -} -;; +// Select exponent (17 lsb) +{ .mmi + ldfpd sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16 + nop.m 999 + dep.z sincosf_r_exp = sincosf_r_signexp, 0, 17 +};; -{ .mfi - nop.m 999 - fma.d.s1 sin_of_r = sin_r7,sin_poly_p3,sin_poly_p4 - nop.i 999 -} -;; +// p10 is true if we must call routines to handle larger arguments +// p10 is true if f8 exp is >= 0x10017 (2^24) +{ .mfb + cmp.ge p10,p0 = sincosf_r_exp,sincosf_exp_limit + nop.f 999 +(p10) br.cond.spnt _SINCOSF_LARGE_ARGS // Go to "large args" routine +};; + +// sincosf_W = x * sincosf_Inv_Pi_by_16 +// Multiply x by scaled 16/pi and add large const to shift integer part of W to +// rightmost bits of significand +{ .mfi + nop.m 999 + fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61 + nop.i 999 +};; -{ .mfi - nop.m 999 - fma.d.s1 sin_tbl_S_cos_of_r = sin_tbl_S_tcube,sin_poly_q3456,sin_poly_q12 - nop.i 999 -} -{ .mfi - nop.m 999 - fmpy.s0 fp_tmp = fp_tmp, fp_tmp // Dummy mult to set inexact - nop.i 999 -} -;; +// sincosf_NFLOAT = Round_Int_Nearest(sincosf_W) +// This is done by scaling back by 2^-61 and subtracting the shift constant +{ .mfi + nop.m 999 + fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF + nop.i 999 +};; +// get N = (int)sincosf_int_Nfloat +{ .mfi + getf.sig sincosf_GR_n = sincosf_W_2TO61_RSH // integer N value + nop.f 999 + nop.i 999 +};; -.pred.rel "mutex",p6,p7 //SIN_Sin_Flag, SIN_Cos_Flag -{ .mfi - nop.m 999 -//(SIN_Sin_Flag) fma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r -(p6) fma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r - nop.i 999 -} -{ .mfb - nop.m 999 -//(SIN_Cos_Flag) fnma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r -(p7) fnma.s f8 = sin_tbl_C,sin_of_r,sin_tbl_S_cos_of_r - br.ret.sptk b0 -} +// Add 2^(k-1) (which is in sincosf_r_sincos=8) to N +// sincosf_r = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x +{ .mfi + add sincosf_GR_n = sincosf_GR_n, sincosf_r_sincos + fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8 + nop.i 999 +};; -.endp sinf -ASM_SIZE_DIRECTIVE(sinf) +// Get M (least k+1 bits of N) +{ .mmi + and sincosf_GR_m = 0x1f,sincosf_GR_n // Put mask 0x1F - + nop.m 999 // - select k+1 bits + nop.i 999 +};; +// Add 16*M to address of sin_cos_beta table +{ .mfi + shladd sincosf_AD_2 = sincosf_GR_32m, 4, sincosf_AD_1 +(p8) fclass.m.unc p10,p0 = f8,0x0b // If sin denormal input - + nop.i 999 +};; -.proc SIN_DOUBLE -SIN_DOUBLE: -.prologue +// Load Sin and Cos table value using obtained index m (sincosf_AD_2) { .mfi - nop.m 0 - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs -} -;; + ldfd sincosf_Sm = [sincosf_AD_2],8 // Sin value S[m] +(p9) fclass.m.unc p11,p0 = f8,0x0b // If cos denormal input - + nop.i 999 // - set denormal +};; +// sincosf_r = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2 { .mfi - mov GR_SAVE_GP=gp - nop.f 0 -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 + ldfd sincosf_Cm = [sincosf_AD_2] // Cos table value C[m] + fnma.s1 sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r + nop.i 999 } +// get rsq = r*r +{ .mfi + nop.m 999 + fma.s1 sincosf_rsq = sincosf_r, sincosf_r, f0 // r^2 = r*r + nop.i 999 +};; -.body -{ .mmb - nop.m 999 - nop.m 999 - br.call.sptk.many b0=sin +{ .mfi + nop.m 999 + fmpy.s0 fp_tmp = fp_tmp, fp_tmp // forces inexact flag + nop.i 999 +};; + +// Polynomials calculation +// Q = Q2*r^2 + Q1 +// P = P2*r^2 + P1 +{ .mfi + nop.m 999 + fma.s1 sincosf_Q = sincosf_rsq, sincosf_Q2, sincosf_Q1 + nop.i 999 } -;; +{ .mfi + nop.m 999 + fma.s1 sincosf_P = sincosf_rsq, sincosf_P2, sincosf_P1 + nop.i 999 +};; +// get rcube and S[m]*r^2 { .mfi - mov gp = GR_SAVE_GP - nop.f 999 - mov b0 = GR_SAVE_B0 + nop.m 999 + fmpy.s1 sincosf_srsq = sincosf_Sm,sincosf_rsq // r^2*S[m] + nop.i 999 } -;; - { .mfi - nop.m 999 - fma.s f8 = f8,f1,f0 -(p0) mov ar.pfs = GR_SAVE_PFS + nop.m 999 + fmpy.s1 sincosf_rcub = sincosf_r_exact, sincosf_rsq + nop.i 999 +};; + +// Get final P and Q +// Q = Q*S[m]*r^2 + S[m] +// P = P*r^3 + r +{ .mfi + nop.m 999 + fma.s1 sincosf_Q = sincosf_srsq,sincosf_Q, sincosf_Sm + nop.i 999 } -{ .mib - nop.m 999 - nop.i 999 -(p0) br.ret.sptk b0 +{ .mfi + nop.m 999 + fma.s1 sincosf_P = sincosf_rcub,sincosf_P,sincosf_r_exact + nop.i 999 +};; + +// If sinf(denormal) - force underflow to be set +.pred.rel "mutex",p10,p11 +{ .mfi + nop.m 999 +(p10) fmpy.s.s0 fp_tmp = f8,f8 // forces underflow flag + nop.i 999 // for denormal sine args } -;; +// If cosf(denormal) - force denormal to be set +{ .mfi + nop.m 999 +(p11) fma.s.s0 fp_tmp = f8, f1, f8 // forces denormal flag + nop.i 999 // for denormal cosine args +};; -.endp SIN_DOUBLE -ASM_SIZE_DIRECTIVE(SIN_DOUBLE) +// Final calculation +// result = C[m]*P + Q +{ .mfb + nop.m 999 + fma.s.s0 f8 = sincosf_Cm, sincosf_P, sincosf_Q + br.ret.sptk b0 // Exit for common path +};; + +////////// x = 0/Inf/NaN path ////////////////// +_SINCOSF_SPECIAL_ARGS: +.pred.rel "mutex",p8,p9 +// sinf(+/-0) = +/-0 +// sinf(Inf) = NaN +// sinf(NaN) = NaN +{ .mfi + nop.m 999 +(p8) fma.s.s0 f8 = f8, f0, f0 // sinf(+/-0,NaN,Inf) + nop.i 999 +} +// cosf(+/-0) = 1.0 +// cosf(Inf) = NaN +// cosf(NaN) = NaN +{ .mfb + nop.m 999 +(p9) fma.s.s0 f8 = f8, f0, f1 // cosf(+/-0,NaN,Inf) + br.ret.sptk b0 // Exit for x = 0/Inf/NaN path +};; + +GLOBAL_IEEE754_END(cosf) -.proc COS_DOUBLE -COS_DOUBLE: +//////////// x >= 2^24 - large arguments routine call //////////// +LOCAL_LIBM_ENTRY(__libm_callout_sincosf) +_SINCOSF_LARGE_ARGS: .prologue { .mfi - nop.m 0 - nop.f 0 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS=ar.pfs + mov sincosf_GR_all_ones = -1 // 0xffffffff + nop.f 999 +.save ar.pfs,GR_SAVE_PFS + mov GR_SAVE_PFS = ar.pfs } ;; { .mfi - mov GR_SAVE_GP=gp - nop.f 0 -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0=b0 + mov GR_SAVE_GP = gp + nop.f 999 +.save b0, GR_SAVE_B0 + mov GR_SAVE_B0 = b0 } - .body -{ .mmb - nop.m 999 - nop.m 999 - br.call.sptk.many b0=cos -} -;; -{ .mfi - mov gp = GR_SAVE_GP - nop.f 999 - mov b0 = GR_SAVE_B0 -} -;; +{ .mbb + setf.sig sincosf_save_tmp = sincosf_GR_all_ones // inexact set + nop.b 999 +(p8) br.call.sptk.many b0 = __libm_sin_large# // sinf(large_X) +};; + +{ .mbb + cmp.ne p9,p0 = sincosf_r_sincos, r0 // set p9 if cos + nop.b 999 +(p9) br.call.sptk.many b0 = __libm_cos_large# // cosf(large_X) +};; { .mfi - nop.m 999 - fma.s f8 = f8,f1,f0 -(p0) mov ar.pfs = GR_SAVE_PFS -} -{ .mib - nop.m 999 - nop.i 999 -(p0) br.ret.sptk b0 + mov gp = GR_SAVE_GP + fma.s.s0 f8 = f8, f1, f0 // Round result to single + mov b0 = GR_SAVE_B0 } -;; - -.endp COS_DOUBLE -ASM_SIZE_DIRECTIVE(COS_DOUBLE) +{ .mfi // force inexact set + nop.m 999 + fmpy.s0 sincosf_save_tmp = sincosf_save_tmp, sincosf_save_tmp + nop.i 999 +};; +{ .mib + nop.m 999 + mov ar.pfs = GR_SAVE_PFS + br.ret.sptk b0 // Exit for large arguments routine call +};; +LOCAL_LIBM_END(__libm_callout_sincosf) +.type __libm_sin_large#, @function +.global __libm_sin_large# +.type __libm_cos_large#, @function +.global __libm_cos_large# -.type sin,@function -.global sin -.type cos,@function -.global cos -- cgit v1.1