Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
TS 18661-1 defines fromfp functions (fromfp, fromfpx, ufromfp,
ufromfpx, and float and long double variants) to convert from
floating-point to an integer type with any signedness and any given
width up to that of intmax_t, in any of the five IEEE rounding modes
(the usual four for binary floating point, plus rounding to nearest
with ties rounding away from zero), with control of whether in-range
non-integer values should result in the "inexact" exception being
raised. This patch implements these functions for glibc.
These implementations are (apart from raising exceptions) pure integer
implementations; it's entirely possible optimized versions could be
devised for some architectures. A common math/fromfp.h header
provides various common helper code that can readily be shared between
the implementations for different types. For each type, the bulk of
the implementation is also shared between the four functions, with
wrappers that define UNSIGNED and INEXACT macros appropriately before
including the main implementation.
As the functions return intmax_t and uintmax_t without math.h being
allowed to expose those typedef names, they are declared using
__intmax_t and __uintmax_t as obtained from <bits/types.h>.
The FP_INT_* rounding direction macros are defined as ascending
integers in the order the names are listed in the TS; I see no
significant value in allowing architectures to vary the values of
them.
The libm-test machinery is duly adapted to handle unsigned int
arguments, and intmax_t and uintmax_t results. Because each test
input is generally tested for four functions, five rounding modes and
several different widths, the libm-test.inc additions are very large.
Thus, the diffs in the body of this message exclude the libm-test.inc
changes, with the full patch being attached gzipped. The bulk of the
new tests were generated (expanded from a test input plus rounding
results and information about where it lies in the relevant interval
between integers, to libm-test tests for all relevant combinations of
function, rounding direction and width) by a script that's included in
the patch as math/gen-fromfp-tests.py (input data
math/gen-fromfp-tests-inputs); as an ad hoc script that's not really
expected to be rerun, it's not very polished, but it's at least
plausibly useful for adding any further tests for these functions in
future. I may split the libm-test tests up by function in future (so
both libm-test.inc and auto-libm-test-out are split into separate
files, and the tests for each function are also built and run
separately), but not for 2.25.
For no obvious reason, adding tgmath tests for the new functions
resulted in -Wuninitialized errors from test-tgmath.c about the
variable i being used uninitialized. Those errors were correct - the
variable is read by the frexp version in test-tgmath.c (where real
frexp would write through that pointer instead of reading it) - but I
don't know why this patch would result in the pre-existing issue being
newly detected. The patch initializes the variable to avoid those
errors.
With these changes, glibc 2.25 should have all the library features
from TS 18661-1 other than the functions that round result to narrower
type (and constant rounding directions, but I'm considering those
mainly a compiler feature not a library one).
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(fromfp): New declaration.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fromfpx): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfp): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfpx): Likewise.
* math/tgmath.h (__TGMATH_TERNARY_FIRST_REAL_RET_ONLY): New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fromfp): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfp): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (fromfpx): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (ufromfpx): Likewise.
* math/math.h: Include <bits/types.h>.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (FP_INT_UPWARD): New enum
constant and macro.
(FP_INT_DOWNWARD): Likewise.
(FP_INT_TOWARDZERO): Likewise.
(FP_INT_TONEARESTFROMZERO): Likewise.
(FP_INT_TONEAREST): Likewise.
* math/Versions (fromfp): New libm symbol at version GLIBC_2.25.
(fromfpf): Likewise.
(fromfpl): Likewise.
(ufromfp): Likewise.
(ufromfpf): Likewise.
(ufromfpl): Likewise.
(fromfpx): Likewise.
(fromfpxf): Likewise.
(fromfpxl): Likewise.
(ufromfpx): Likewise.
(ufromfpxf): Likewise.
(ufromfpxl): Likewise.
* math/Makefile (libm-calls): Add s_fromfpF, s_ufromfpF,
s_fromfpxF and s_ufromfpxF.
* math/gen-fromfp-tests.py: New file.
* math/gen-fromfp-tests-inputs: Likewise.
* math/libm-test.inc: Include <stdint.h>
(check_intmax_t): New function.
(check_uintmax_t): Likewise.
(struct test_fiu_M_data): New type.
(struct test_fiu_U_data): Likewise.
(RUN_TEST_fiu_M): New macro.
(RUN_TEST_LOOP_fiu_M): Likewise.
(RUN_TEST_fiu_U): Likewise.
(RUN_TEST_LOOP_fiu_U): Likewise.
(fromfp_test_data): New array.
(fromfp_test): New function.
(fromfpx_test_data): New array.
(fromfpx_test): New function.
(ufromfp_test_data): New array.
(ufromfp_test): New function.
(ufromfpx_test_data): New array.
(ufromfpx_test): New function.
(main): Call fromfp_test, fromfpx_test, ufromfp_test and
ufromfpx_test.
* math/gen-libm-test.pl (parse_args): Handle u, M and U descriptor
characters.
* math/test-tgmath-ret.c: Include <stdint.h>.
(rm): New variable.
(width): Likewise.
(CHECK_RET_CONST_TYPE): Take extra arguments and pass them to
called function.
(CHECK_RET_CONST_FLOAT): Take extra arguments and pass them to
CHECK_RET_CONST_TYPE.
(CHECK_RET_CONST_DOUBLE): Likewise.
(CHECK_RET_CONST_LDOUBLE): Likewise.
(CHECK_RET_CONST): Take extra arguments and pass them to calls
macros.
(fromfp): New CHECK_RET_CONST call.
(ufromfp): Likewise.
(fromfpx): Likewise.
(ufromfpx): Likewise.
(do_test): Call check_return_fromfp, check_return_ufromfp,
check_return_fromfpx and check_return_ufromfpx.
* math/test-tgmath.c: Include <stdint.h>
(NCALLS): Increase to 138.
(F(compile_test)): Initialize i. Call fromfp functions.
(F(fromfp)): New function.
(F(fromfpx)): Likewise.
(F(ufromfp)): Likewise.
(F(ufromfpx)): Likewise.
* manual/arith.texi (Rounding Functions): Document FP_INT_UPWARD,
FP_INT_DOWNWARD, FP_INT_TOWARDZERO, FP_INT_TONEARESTFROMZERO,
FP_INT_TONEAREST, fromfp, fromfpf, fromfpl, ufromfp, ufromfpf,
ufromfpl, fromfpx, fromfpxf, fromfpxl, ufromfpx, ufromfpxf and
ufromfpxl.
* manual/libm-err-tab.pl (@all_functions): Add fromfp, fromfpx,
ufromfp and ufromfpx.
* math/fromfp.h: New file.
* sysdeps/ieee754/dbl-64/s_fromfp.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fromfp_main.c: Likewise.
* sysdeps/ieee754/dbl-64/s_fromfpx.c: Likewise.
* sysdeps/ieee754/dbl-64/s_ufromfp.c: Likewise.
* sysdeps/ieee754/dbl-64/s_ufromfpx.c: Likewise.
* sysdeps/ieee754/flt-32/s_fromfpf.c: Likewise.
* sysdeps/ieee754/flt-32/s_fromfpf_main.c: Likewise.
* sysdeps/ieee754/flt-32/s_fromfpxf.c: Likewise.
* sysdeps/ieee754/flt-32/s_ufromfpf.c: Likewise.
* sysdeps/ieee754/flt-32/s_ufromfpxf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fromfpl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fromfpl_main.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_fromfpxl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_ufromfpl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_ufromfpxl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fromfpl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fromfpl_main.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_fromfpxl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_ufromfpl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_ufromfpxl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fromfpl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fromfpl_main.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_fromfpxl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_ufromfpl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_ufromfpxl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add fromfp,
ufromfp, fromfpx and ufromfpx.
(CFLAGS-nldbl-fromfp.c): New variable.
(CFLAGS-nldbl-fromfpx.c): Likewise.
(CFLAGS-nldbl-ufromfp.c): Likewise.
(CFLAGS-nldbl-ufromfpx.c): Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-compat.h: Include <stdint.h>.
* sysdeps/ieee754/ldbl-opt/nldbl-fromfp.c: New file.
* sysdeps/ieee754/ldbl-opt/nldbl-fromfpx.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-ufromfp.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-ufromfpx.c: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
TS 18661-1 defines roundeven functions that round a floating-point
number to the nearest integer, in that floating-point type, with ties
rounding to even (whereas the round functions round ties away from
zero). As with other such functions, they raise no exceptions apart
from "invalid" for signaling NaNs. There was a previous user request
for this functionality in glibc in
<https://sourceware.org/ml/libc-help/2015-02/msg00005.html>.
This patch implements these functions for glibc. The implementations
use integer bit-manipulation (or roundeven on the high and low parts,
in the IBM long double case). It's possible that there may be faster
approaches on some architectures (in particular, on AArch64 the frintn
instruction should do exactly what's required); I'll leave it to
architecture maintainers or others interested to implement such
architecture-specific versions if desired. (Where architectures have
instructions to round to nearest integer in the current rounding mode,
implementations saving and restoring the rounding mode - and dealing
with exceptions if those instructions generate "inexact" - are also
possible, though their performance depends on the cost of manipulating
exceptions / rounding mode state.)
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(roundeven): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (roundeven): New
macro.
* math/Versions (roundeven): New libm symbol at version
GLIBC_2.25.
(roundevenf): Likewise.
(roundevenl): Likewise.
* math/Makefile (libm-calls): Add s_roundevenF.
* math/libm-test.inc (roundeven_test_data): New array.
(roundeven_test): New function.
(main): Call roundeven_test.
* math/test-tgmath.c (NCALLS): Increase to 134.
(F(compile_test)): Call roundeven.
(F(roundeven)): New function.
* manual/arith.texi (Rounding Functions): Document roundeven,
roundevenf and roundevenl.
* manual/libm-err-tab.pl (@all_functions): Add roundeven.
* include/math.h (roundeven): Use libm_hidden_proto.
* sysdeps/ieee754/dbl-64/s_roundeven.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_roundeven.c: Likewise.
* sysdeps/ieee754/flt-32/s_roundevenf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_roundevenl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_roundevenl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_roundevenl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
roundeven.
(CFLAGS-nldbl-roundeven.c): New variable.
* sysdeps/ieee754/ldbl-opt/nldbl-roundeven.c: New file.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
Information about whether the ABI of long double is the same as that
of double is split between bits/mathdef.h and bits/wordsize.h.
When the ABIs are the same, bits/mathdef.h defines
__NO_LONG_DOUBLE_MATH. In addition, in the case where the same glibc
binary supports both -mlong-double-64 and -mlong-double-128,
bits/wordsize.h defines __LONG_DOUBLE_MATH_OPTIONAL, along with
__NO_LONG_DOUBLE_MATH if this particular compilation is with
-mlong-double-64.
As part of the refactoring I proposed in
<https://sourceware.org/ml/libc-alpha/2016-11/msg00745.html>, this
patch puts all that information in a single header,
bits/long-double.h. It is included from sys/cdefs.h alongside the
include of bits/wordsize.h, so other headers generally do not need to
include bits/long-double.h directly.
Previously, various bits/mathdef.h headers and bits/wordsize.h headers
had this long double information (including implicitly in some
bits/mathdef.h headers through not having the defines present in the
default version). After the patch, it's all in six bits/long-double.h
headers. Furthermore, most of those new headers are not
architecture-specific. Architectures with optional long double all
use the ldbl-opt sysdeps directory, either in the order (ldbl-64-128,
ldbl-opt, ldbl-128) or (ldbl-128ibm, ldbl-opt). Thus a generic header
for the case where long double = double, and headers in ldbl-128,
ldbl-96 and ldbl-opt, suffices to cover every architecture except for
cases where long double properties vary between different ABIs sharing
a set of installed headers; fortunately all the ldbl-opt cases share a
single compiler-predefined macro __LONG_DOUBLE_128__ that can be used
to tell whether this compilation is -mlong-double-64 or
-mlong-double-128.
The two cases where a set of headers is shared between ABIs with
different long double properties, MIPS (o32 has long double = double,
other ABIs use ldbl-128) and SPARC (32-bit has optional long double,
64-bit has required long double), need their own bits/long-double.h
headers.
As with bits/wordsize.h, multiple-include protection for this header
is generally implicit through the include guards on sys/cdefs.h, and
multiple inclusion is harmless in any case. There is one subtlety:
the header must not define __LONG_DOUBLE_MATH_OPTIONAL if
__NO_LONG_DOUBLE_MATH was defined before its inclusion, because doing
so breaks how sysdeps/ieee754/ldbl-opt/nldbl-compat.h defines
__NO_LONG_DOUBLE_MATH itself before including system headers. Subject
to keeping that working, it would be reasonable to move these macros
from defined/undefined #ifdef to always-defined 1/0 #if semantics, but
this patch does not attempt to do so, just rearranges where the macros
are defined.
After this patch, the only use of bits/mathdef.h is the alpha one for
modifying complex function ABIs for old GCC. Thus, all versions of
the header other than the default and alpha versions are removed, as
is the include from math.h.
Tested for x86_64 and x86. Also did compilation-only testing with
build-many-glibcs.py.
* bits/long-double.h: New file.
* sysdeps/ieee754/ldbl-128/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-96/bits/long-double.h: Likewise.
* sysdeps/ieee754/ldbl-opt/bits/long-double.h: Likewise.
* sysdeps/mips/bits/long-double.h: Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/long-double.h: Likewise.
* math/Makefile (headers): Add bits/long-double.h.
* misc/sys/cdefs.h: Include <bits/long-double.h>.
* stdlib/strtold.c: Include <bits/long-double.h> instead of
<bits/wordsize.h>.
* bits/mathdef.h [!_COMPLEX_H]: Do not allow inclusion.
[!__NO_LONG_DOUBLE_MATH]: Remove conditional code.
* math/math.h: Do not include <bits/mathdef.h>.
* sysdeps/aarch64/bits/mathdef.h: Remove file.
* sysdeps/alpha/bits/mathdef.h [!_COMPLEX_H]: Do not allow
inclusion.
* sysdeps/ia64/bits/mathdef.h: Remove file.
* sysdeps/m68k/m680x0/bits/mathdef.h: Likewise.
* sysdeps/mips/bits/mathdef.h: Likewise.
* sysdeps/powerpc/bits/mathdef.h: Likewise.
* sysdeps/s390/bits/mathdef.h: Likewise.
* sysdeps/sparc/bits/mathdef.h: Likewise.
* sysdeps/x86/bits/mathdef.h: Likewise.
* sysdeps/s390/s390-32/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]: Remove
conditional code.
* sysdeps/s390/s390-64/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/alpha/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
* sysdeps/unix/sysv/linux/sparc/bits/wordsize.h
[!__NO_LONG_DOUBLE_MATH && !__LONG_DOUBLE_MATH_OPTIONAL]:
Likewise.
|
|
TS 18661-1 generally defines libm functions taking sNaN arguments to
return qNaN and raise "invalid", even for the cases where a
corresponding qNaN argument would not result in a qNaN return. This
includes hypot with one argument being an infinity and the other being
an sNaN. This patch duly fixes hypot implementatations in glibc
(generic and powerpc) to ensure qNaN, computed by arithmetic on the
arguments, is returned in that case.
Various implementations do their checks for infinities and NaNs inline
by manipulating the representations of the arguments. For simplicity,
this patch just uses issignaling to check for sNaN arguments. This
could be inlined like the existing code (with due care about reversed
quiet NaN conventions, for implementations where that is relevant),
but given that all these checks are in cases where it's already known
at least one argument is not finite, which should be the uncommon
case, that doesn't seem worthwhile unless performance issues are
observed in practice.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #20940]
* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Do not
return Inf for arguments Inf and sNaN.
* sysdeps/ieee754/flt-32/e_hypotf.c (__ieee754_hypotf): Likewise.
* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
* sysdeps/powerpc/fpu/e_hypot.c (TEST_INF_NAN): Do not return Inf
for arguments Inf and sNaN. When returning a NaN, compute it by
arithmetic on the arguments.
* sysdeps/powerpc/fpu/e_hypotf.c (TEST_INF_NAN): Likewise.
* math/libm-test.inc (pow_test_data): Add tests of sNaN arguments.
|
|
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the setpayloadsig functions for glibc; these are
like the setpayload functions, but produce a signaling NaN instead of
a quiet NaN.
The substance of the implementation was included with the setpayload
implementation, so the new files here just need to wrap the main files
with different defines to build the new functions.
Because the functions store a signaling NaN via a pointer and the
libm-test macros choose a suitable initial value for the variable in
such a case by comparing with the expected value, the relevant macro
needs to clear exceptions after FE_INVALID may have been raised by
that comparison.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(setpayloadsig): New declaration.
* math/Versions (setpayloadsig): New libm symbol at version
GLIBC_2.25.
(setpayloadsigf): Likewise.
(setpayloadsigl): Likewise.
* math/Makefile (libm-calls): Add s_setpayloadsigF.
* math/libm-test.inc (RUN_TEST_Ff_b1): Call feclearexcept
(FE_ALL_EXCEPT) after initializing EXTRA_VAR.
(setpayloadsig_test_data): New array.
(setpayloadsig_test): New function.
(main): Call setpayloadsig_test.
* manual/arith.texi (FP Bit Twiddling): Document setpayloadsig,
setpayloadsigf and setpayloadsigl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_setpayloadsig.c: New file.
* sysdeps/ieee754/flt-32/s_setpayloadsigf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadsigl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-setpayloadsig.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
setpayloadsig.
(CFLAGS-nldbl-setpayloadsig.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the setpayload functions for glibc; these set a
number (pointed to by a function argument) to a quiet NaN with the
given payload, or to +0 if the given payload is not valid. The
implementations are structured to allow the substance of the
implementation to be shared with the setpayloadsig functions when
those are added.
The semantics in the TS are not entirely clear in the case where the
payload passed to the function is zero (see discussion on the WG14
reflector last month). This patch implements what seems the most
sensible interpretation, that -0 is never valid to give as the
payload, but +0 is valid in the case where the kind of NaN being
generated has its high mantissa bit set so payload 0 is actually
possible in such a NaN.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(setpayload): New declaration.
* math/Versions (setpayload): New libm symbol at version
GLIBC_2.25.
(setpayloadf): Likewise.
(setpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_setpayloadF.
* math/libm-test.inc (struct test_Ffp_b1_data): Rename to struct
test_Ff_b1_data.
(RUN_TEST_Ff_b1): New macro.
(RUN_TEST_LOOP_Ff_b1): Likewise.
(canonicalize_test_data): Update type.
(setpayload_test_data): New array.
(setpayload_test): New function.
(main): Call setpayload_test.
* manual/arith.texi (FP Bit Twiddling): Document setpayload,
setpayloadf and setpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_setpayload.c: New file.
* sysdeps/ieee754/dbl-64/s_setpayload_main.c: Likewise.
* sysdeps/ieee754/dbl-64/wordsize-64/s_setpayload_main.c:
Likewise.
* sysdeps/ieee754/flt-32/s_setpayloadf.c: Likewise.
* sysdeps/ieee754/flt-32/s_setpayloadf_main.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_setpayloadl_main.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-setpayload.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
setpayload.
(CFLAGS-nldbl-setpayload.c): New variable.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
This patch refactors some type-generic libm macros, in both math.h and
math_private.h, to be based on a common __MATH_TG macro rather than
all replicating similar logic to choose a function to call based on
the type of the argument.
This should serve to illustrate what I think float128 support for such
macros should look like: common macros such as __MATH_TG may need
different definitions depending on whether float128 is supported in
glibc, so that the individual macros themselves do not need
conditionals on float128 support.
Tested for x86_64, x86, mips64 and powerpc.
* math/math.h (__MATH_TG): New macro.
[__USE_ISOC99] (fpclassify): Define using __MATH_TG.
[__USE_ISOC99] (signbit): Likewise.
[__USE_ISOC99] (isfinite): Likewise.
[__USE_ISOC99] (isnan): Likewise.
[__USE_ISOC99] (isinf): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (issignaling): Likewise.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (__MATH_EVAL_FMT2): New macro.
[__GLIBC_USE (IEC_60559_BFP_EXT)] (iseqsig): Define using
__MATH_TG and __MATH_EVAL_FMT2.
* sysdeps/generic/math_private.h (fabs_tg): Define using
__MATH_TG.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h
[!__NO_LONG_DOUBLE_MATH] (__iscanonicalf): New macro.
[!__NO_LONG_DOUBLE_MATH] (__iscanonical): Likewise.
[!__NO_LONG_DOUBLE_MATH] (iscanonical): Define using __MATH_TG.
* sysdeps/ieee754/ldbl-96/bits/iscanonical.h (__iscanonicalf): New
macro.
(__iscanonical): Likewise.
(iscanonical): Define using __MATH_TG.
|
|
TS 18661-1 defines canonicalize functions to produce a canonical
version of a floating-point representation. This patch implements
these functions for glibc.
As with the iscanonical macro, these functions are oriented to the
decimal floating-point case, where some values have both canonical and
noncanonical representations. However, the functions have a return
value that says whether they succeeded in storing a canonical result;
thus, they can fail for the case of an invalid representation (while
still not making any particular choice from among multiple equally
canonical valid representations of the same value). Since no
floating-point formats in glibc actually have noncanonical valid
representations, a type-generic implementation of these functions can
be used that expects iscanonical to return 0 only for invalid
representations. Now that iscanonical is used within libm.so,
libm_hidden_proto / libm_hidden_def are added for __iscanonicall.
The definition of these functions is intended to correspond to a
convertFormat operation to the same floating-point format. Thus, they
convert signaling NaNs to quiet NaNs, raising the "invalid" exception.
Such a conversion "should" produce "the canonical version of that
signaling NaN made quiet".
libm-test.inc is made to check NaN payloads for the output of these
functions, a new feature (at some point manipulation functions such as
fabs and copysign should have tests added that verify payload
preservation for them). As however some architectures may not follow
the recommended practice of preserving NaN payloads when converting a
signaling NaN to quiet, a new math-tests.h macro
SNAN_TESTS_PRESERVE_PAYLOAD is added, and defined to 0 for non-NAN2008
MIPS; any other architectures seeing test failures for lack of payload
preservation in this case should also define this macro to 0. (If any
cases arise where the sign isn't preserved either, those should have a
similar macro added.)
The ldbl-96 and ldbl-128ibm tests of iscanonical are renamed and
adapted to test canonicalizel as well on the same representations.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(canonicalize): New declaration.
* math/Versions (canonicalize): New libm symbol at version
GLIBC_2.25.
(canonicalizef): Likewise.
(canonicalizel): Likewise.
* math/Makefile (gen-libm-calls): Add s_canonicalizeF.
* math/s_canonicalize_template.c: New file.
* math/libm-test.inc: Update comment on functions tested and
testing of NaN payloads.
(TEST_NAN_PAYLOAD): New macro.
(NO_TEST_INLINE): Update value.
(XFAIL_TEST): Likewise.
(ERRNO_UNCHANGED): Likewise.
(ERRNO_EDOM): Likewise.
(ERRNO_ERANGE): Likewise.
(IGNORE_RESULT): Likewise.
(NON_FINITE): Likewise.
(TEST_SNAN): Likewise.
(NO_TEST_MATHVEC): Likewise.
(TEST_NAN_PAYLOAD_CANONICALIZE): New macro.
(check_float_internal): Check NaN payloads if TEST_NAN_PAYLOAD.
(struct test_Ffp_b1_data): New type.
(RUN_TEST_Ffp_b1): New macro.
(RUN_TEST_LOOP_Ffp_b1): Likewise.
(canonicalize_test_data): New array.
(canonicalize_test): New function.
(main): Call canonicalize_test.
* manual/arith.texi (FP Bit Twiddling): Document canonicalize,
canonicalizef and canonicalizel.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-opt/nldbl-canonicalize.c: New file.
* sysdeps/ieee754/ldbl-opt/s_canonicalizel.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
canonicalize.
(CFLAGS-nldbl-canonicalize.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c: Move
to ...
* sysdeps/ieee754/ldbl-128ibm/test-canonical-ldbl-128ibm.c:
... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Change
test-iscanonical-ldbl-128ibm to test-canonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-128ibm/include/bits/iscanonical.h: New
file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c (__iscanonicall):
Use libm_hidden_def.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Move to ...
* sysdeps/ieee754/ldbl-96/test-canonical-ldbl-96.c: ... here.
(do_test): Also test canonicalizel.
* sysdeps/ieee754/ldbl-96/Makefile (tests): Change
test-iscanonical-ldbl-96 to test-canonical-ldbl-96.
* sysdeps/ieee754/ldbl-96/include/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c (__iscanonicall): Use
libm_hidden_def.
* sysdeps/generic/math-tests.h (SNAN_TESTS_PRESERVE_PAYLOAD): New
macro.
* sysdeps/mips/math-tests.h [__mips_hard_float && !__mips_nan2008]
(SNAN_TESTS_PRESERVE_PAYLOAD): Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
TS 18661-1 defines functions for manipulating the payloads of NaNs.
This patch implements the getpayload functions for glibc; these
extract the NaN payload (from an argument passed as a pointer, for
which corresponding libm-test support is added) and return it in the
same floating-point type. The return value of these functions is
unspecified for non-NaN arguments; the patch does the simplest thing
to implement, which is that the functions do not check whether the
argument is a NaN and just treat the relevant bits of the
representation as a payload regardless. A conversion from integer to
floating-point is used to produce the required return value, except in
the ldbl-128 case; as 128-bit integers are not supported for all
configurations using ldbl-128, the code constructs the required
floating-point representation of the return value directly instead.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(getpayload): New declaration.
* math/Versions (getpayload): New libm symbol at version
GLIBC_2.25.
(getpayloadf): Likewise.
(getpayloadl): Likewise.
* math/Makefile (libm-calls): Add s_getpayloadF.
* math/libm-test.inc: Include <nan-high-order-bit.h>.
(struct test_f_f_data): Add comment.
(RUN_TEST_fp_f): New macro.
(RUN_TEST_LOOP_fp_f): Likewise.
(getpayload_test_data): New array.
(getpayload_test): New function.
(main): Call getpayload_test.
* math/gen-libm-test.pl (parse_args): Handle 'p' in argument
descriptor.
* manual/arith.texi (FP Bit Twiddling): Document getpayload,
getpayloadf and getpayloadl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_getpayload.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_getpayload.c: Likewise.
* sysdeps/ieee754/flt-32/s_getpayloadf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_getpayloadl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_getpayloadl.c: Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
This patch moves the HIGH_ORDER_BIT_IS_SET_FOR_SNAN macro from being
defined or undefined to the preferred convention of always being
defined, to either 0 or 1, so allowing typo-proof tests with #if.
The macro is moved from math_private.h to a new header
nan-high-order-bit.h to make it easy for all architectures to define,
either through the sysdeps/generic version of the header or through
providing their own version of the header, without needing #ifndef in
the generic math_private.h to give a default definition. The move
also allows the macro to be used without needing math_private.h to be
included; the immediate motivation of this patch is to allow tests to
access this information (to know what kinds of NaNs 0 is a valid
payload for) without needing to include math_private.h. Existing
C level rather than preprocessor conditionals at all, but this patch
does not make such a change).
Tested for x86_64 and x86 (testsuite); also verified for x86_64, x86,
mips64 and powerpc that installed stripped shared libraries are
unchanged by the patch.
* sysdeps/generic/nan-high-order-bit.h: New file.
* sysdeps/hppa/nan-high-order-bit.h: Likewise.
* sysdeps/mips/nan-high-order-bit.h: Likewise.
* sysdeps/hppa/math_private.h: Remove file.
* sysdeps/mips/math_private.h (HIGH_ORDER_BIT_IS_SET_FOR_SNAN): Do
not define here.
* sysdeps/ieee754/dbl-64/s_issignaling.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/s_totalorder.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_issignaling.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_issignalingf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_issignalingl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Include
<nan-high-order-bit.h>.
[HIGH_ORDER_BIT_IS_SET_FOR_SNAN]: Test with #if not #ifdef.
|
|
In addition to the totalorder functions, TS 18661-1 defines
totalordermag functions, which do the same comparison but on the
absolute values of the arguments. This patch implements these
functions for glibc, including the type-generic macro in <tgmath.h>.
In general the implementations are similar to but simpler than those
for the totalorder functions.
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(totalordermag): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (totalordermag):
New macro.
* math/Versions (totalordermag): New libm symbol at version
GLIBC_2.25.
(totalordermagf): Likewise.
(totalordermagl): Likewise.
* math/Makefile (libm-calls): Add s_totalordermagF.
* math/libm-test.inc (totalordermag_test_data): New array.
(totalordermag_test): New function.
(main): Call totalordermag_test.
* math/test-tgmath.c (NCALLS): Increase to 125.
(F(compile_test)): Call totalordermag.
(F(totalordermag)): New function.
* manual/arith.texi (FP Comparison Functions): Document
totalordermag, totalordermagf and totalordermagl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_totalordermag.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalordermag.c: Likewise.
* sysdeps/ieee754/flt-32/s_totalordermagf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_totalordermagl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_totalordermagl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_totalordermagl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-totalordermag.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
totalordermag.
(CFLAGS-nldbl-totalordermag.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c
(do_test): Also test totalordermagl.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c (do_test):
Likewise.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
TS 18661-1 defines totalorder functions implementing the totalOrder
comparison operation from IEEE 754-2008. This patch implements these
functions for glibc, including the type-generic macro in <tgmath.h>.
(The totalordermag functions will be added in a separate patch.)
The description of the totalOrder operation is complicated. However,
for IEEE interchange binary formats and the preferred quiet NaN
convention, what that complicated description means is that you
interpret the representation as a sign-magnitude integer (with -0
coming before +0) and do a <= comparison on that interpretation. For
finite values and infinities the ordering of the sign-magnitude
integers is just the same as the ordering of floating-point values, so
this extends that to all representations. (Different representations
of the same floating-point value - which includes same quantum in the
decimal case - must still be considered equal by this operation, but
that issue doesn't arise for IEEE interchange binary formats.) So the
complications are:
* When MIPS quiet NaN conventions are in use, the representation of
NaNs needs adjusting before making such an integer comparison. This
patch does this adjustment only when both arguments are NaNs, as
there's no need for it if only one is a NaN, and as long as both are
NaNs you can just flip the relevant bits without any problems from
this turning a NaN into an infinity.
* For the m68k version of ldbl-96, where the high mantissa bit is
"don't care" for infinities and NaNs, representations where it
differs must compare the same. Note: although the testcase for this
compiles, I have not actually tested on m68k.
* For ldbl-128ibm, the low part must be ignored when the high part is
NaN, and low parts of +0 and -0 must be considered the same whatever
the high part.
The new tests in libm-test.inc are the first tests there specifying
particular payloads for input NaNs. Separate tests are also added for
the ldbl-96 and ldbl-128ibm special cases where there are different
representations of the same value that must compare equal (which can't
be covered in libm-test.inc as that only specifies values, not
representations).
Tested for x86_64, x86, mips64 and powerpc.
* math/bits/mathcalls.h [__GLIBC_USE (IEC_60559_BFP_EXT)]
(totalorder): New declaration.
* math/tgmath.h [__GLIBC_USE (IEC_60559_BFP_EXT)] (totalorder):
New macro.
* math/Versions (totalorder): New libm symbol at version
GLIBC_2.25.
(totalorderf): Likewise.
(totalorderl): Likewise.
* math/Makefile (libm-calls): Add s_totalorderF.
* math/gen-libm-test.pl (parse_args): Escape quotes in test name
string.
* math/libm-test.inc (PAYLOAD_DIG): New macro.
(qnan_value_pl): Likewise.
(snan_value_pl): Likewise.
(qnan_value): Define using qnan_value_pl.
(snan_value): Define using snan_value_pl.
(struct test_ff_i_data): Add comment about which tests use this
structure.
(RUN_TEST_ff_b): New macro.
(RUN_TEST_LOOP_ff_b): Likewise.
(totalorder_test_data): New array.
(totalorder_test): New function.
(main): Call totalorder_test.
* math/test-tgmath.c (NCALLS): Increase to 122.
(F(compile_test)): Call totalorder.
(F(totalorder)): New function.
* manual/arith.texi (FP Comparison Functions): Document
totalorder, totalorderf and totalorderl.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/dbl-64/s_totalorder.c: New file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_totalorder.c: Likewise.
* sysdeps/ieee754/flt-32/s_totalorderf.c: Likewise.
* sysdeps/ieee754/ldbl-128/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-96/s_totalorderl.c: Likewise.
* sysdeps/ieee754/ldbl-opt/nldbl-totalorder.c: Likewise.
* sysdeps/ieee754/ldbl-opt/Makefile (libnldbl-calls): Add
totalorder.
(CFLAGS-nldbl-totalorder.c): New variable.
* sysdeps/ieee754/ldbl-128ibm/test-totalorderl-ldbl-128ibm.c: New
file.
* sysdeps/ieee754/ldbl-128ibm/Makefile [$(subdir) = math] (tests):
Add test-totalorderl-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/test-totalorderl-ldbl-96.c: New file.
* sysdeps/ieee754/ldbl-96/Makefile [$(subdir) = math] (tests): Add
test-totalorderl-ldbl-96.
* sysdeps/nacl/libm.abilist: Update.
* sysdeps/unix/sysv/linux/aarch64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/alpha/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/arm/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/hppa/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/microblaze/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/nios2/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sh/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx32/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilegx/tilegx64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/tile/tilepro/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
TS 18661-1 adds an iscanonical classification macro to <math.h>.
The motivation for this is decimal floating-point, where some values
have both canonical and noncanonical encodings. For IEEE binary
interchange formats, all encodings are canonical. For x86/m68k
ldbl-96, and for ldbl-128ibm, there are encodings that do not
represent any valid value of the type; although formally iscanonical
does not need to handle trap representations (and so could just always
return 1), it seems useful, and in line with the description in the TS
of "representations that are extraneous to the floating-point model"
as being non-canonical (as well as "redundant representations of some
or all of its values"), for it to detect those representations and
return 0 for them.
This patch adds iscanonical to glibc. It goes in a header
<bits/iscanonical.h>, included under appropriate conditions in
<math.h>. The default header version just evaluates the argument
(converted to its semantic type, though current GCC will probably
discard that conversion and any exceptions resulting from it) and
returns 1. ldbl-96 and ldbl-128ibm then have versions of the header
that call a function __iscanonicall for long double (the sizeof-based
tests will of course need updating for float128 support, like other
such type-generic macro implementations). The ldbl-96 version of
__iscanonicall has appropriate conditionals to reflect the differences
in the m68k version of that format (where the high mantissa bit may be
either 0 or 1 when the exponent is 0 or 0x7fff). Corresponding tests
for those formats are added as well. Other architectures do not have
any new functions added because just returning 1 is correct for all
their floating-point formats.
Tested for x86_64, x86, mips64 (to test the default macro version) and
powerpc.
* math/math.h [__GLIBC_USE (IEC_60559_BFP_EXT)]: Include
<bits/iscanonical.h>.
* bits/iscanonical.h: New file.
* math/s_iscanonicall.c: Likewise.
* math/Versions (__iscanonicall): New libm symbol at version
GLIBC_2.25.
* math/libm-test.inc (iscanonical_test_data): New array.
(iscanonical_test): New function.
(main): Call iscanonical_test.
* math/Makefile (headers): Add bits/iscanonical.h.
(type-ldouble-routines): Add s_iscanonicall.
* manual/arith.texi (Floating Point Classes): Document
iscanonical.
* manual/libm-err-tab.pl: Update comment on interfaces without
ulps tabulated.
* sysdeps/ieee754/ldbl-128ibm/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-128ibm/s_iscanonicall.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/test-iscanonical-ldbl-128ibm.c:
Likewise.
* sysdeps/ieee754/ldbl-128ibm/Makefile (tests): Add
test-iscanonical-ldbl-128ibm.
* sysdeps/ieee754/ldbl-96/bits/iscanonical.h: New file.
* sysdeps/ieee754/ldbl-96/s_iscanonicall.c: Likewise.
* sysdeps/ieee754/ldbl-96/test-iscanonical-ldbl-96.c: Likewise.
* sysdeps/ieee754/ldbl-96/Makefile: Likewise.
* sysdeps/unix/sysv/linux/i386/libm.abilist: Update.
* sysdeps/unix/sysv/linux/ia64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/fpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/nofpu/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm-le.abilist:
Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/libm.abilist:
Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libm.abilist: Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libm.abilist: Likewise.
|
|
A number of files share identical code for the
mul_split function.
This moves the duplicated function mul_split into its
own header, and refactors the fma usage into a single
selection macro. Likewise, mul_split when used by a
long double implementation is renamed mul_splitl for
clarity.
|
|
TS 18661 adds nextup and nextdown functions alongside nextafter to provide
support for float128 equivalent to it. This patch adds nextupl, nextup,
nextupf, nextdownl, nextdown and nextdownf to libm before float128 support.
The nextup functions return the next representable value in the direction of
positive infinity and the nextdown functions return the next representable
value in the direction of negative infinity. These are currently enabled
as GNU extensions.
|
|
Various implementations of frexp functions return sNaN for sNaN
input. This patch fixes them to add such arguments to themselves so
that qNaN is returned.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #20250]
* sysdeps/i386/fpu/s_frexpl.S (__frexpl): Add non-finite input to
itself.
* sysdeps/ieee754/dbl-64/s_frexp.c (__frexp): Add non-finite or
zero input to itself.
* sysdeps/ieee754/dbl-64/wordsize-64/s_frexp.c (__frexp):
Likewise.
* sysdeps/ieee754/flt-32/s_frexpf.c (__frexpf): Likewise.
* sysdeps/ieee754/ldbl-128/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-96/s_frexpl.c (__frexpl): Likewise.
* math/libm-test.inc (frexp_test_data): Add sNaN tests.
|
|
C99 and C11 allow but do not require ceil, floor, round and trunc to
raise the "inexact" exception for noninteger arguments. TS 18661-1
requires that this exception not be raised by these functions. This
aligns them with general IEEE semantics, where "inexact" is only
raised if the final step of rounding the infinite-precision result to
the result type is inexact; for these functions, the
infinite-precision integer result is always representable in the
result type, so "inexact" should never be raised.
The generic implementations of ceil, floor and round functions contain
code to force "inexact" to be raised. This patch removes it for round
functions to align them with TS 18661-1 in this regard. The tests
*are* updated by this patch; there are fewer architecture-specific
versions than for ceil and floor, and I fixed the powerpc ones some
time ago. If any others still have the issue, as shown by tests for
round failing with spurious exceptions, they can be fixed separately
by architecture maintainers or others.
Tested for x86_64, x86 and mips64.
[BZ #15479]
* sysdeps/ieee754/dbl-64/s_round.c (huge): Remove variable.
(__round): Do not force "inexact" exception.
* sysdeps/ieee754/dbl-64/wordsize-64/s_round.c (huge): Remove
variable.
(__round): Do not force "inexact" exception.
* sysdeps/ieee754/flt-32/s_roundf.c (huge): Remove variable.
(__roundf): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-128/s_roundl.c (huge): Remove variable.
(__roundl): Do not force "inexact" exception.
* sysdeps/ieee754/ldbl-96/s_roundl.c (huge): Remove variable.
(__roundl): Do not force "inexact" exception.
* math/libm-test.inc (round_test_data): Do not allow spurious
"inexact" exceptions.
|
|
Since floating-point operation may trigger floating-point exceptions,
we call math_opt_barrier inside if to prevent code motion.
[BZ #19465]
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Call math_opt_barrier
inside if.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Likewise.
* sysdeps/ieee754/ldbl-96/s_fma.c (__fma): Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Likewise.
|
|
|
|
The nan* functions handle their string argument by constructing a
NAN(...) string on the stack as a VLA and passing it to strtod
functions.
This approach has problems discussed in bug 16961 and bug 16962: the
stack usage is unbounded, and it gives incorrect results in certain
cases where the argument is not a valid n-char-sequence.
The natural fix for both issues is to refactor the NaN payload parsing
out of strtod into a separate function that the nan* functions can
call directly, so that no temporary string needs constructing on the
stack at all. This patch does that refactoring in preparation for
fixing those bugs (but without actually using the new functions from
nan* - which will also require exporting them from libc at version
GLIBC_PRIVATE). This patch is not intended to change any user-visible
behavior, so no tests are added (fixes for the above bugs will of
course add tests for them).
This patch builds on my recent fixes for strtol and strtod issues in
Turkish locales. Given those fixes, the parsing of NaN payloads is
locale-independent; thus, the new functions do not need to take a
locale_t argument.
Tested for x86_64, x86, mips64 and powerpc.
* stdlib/strtod_nan.c: New file.
* stdlib/strtod_nan_double.h: Likewise.
* stdlib/strtod_nan_float.h: Likewise.
* stdlib/strtod_nan_main.c: Likewise.
* stdlib/strtod_nan_narrow.h: Likewise.
* stdlib/strtod_nan_wide.h: Likewise.
* stdlib/strtof_nan.c: Likewise.
* stdlib/strtold_nan.c: Likewise.
* sysdeps/ieee754/ldbl-128/strtod_nan_ldouble.h: Likewise.
* sysdeps/ieee754/ldbl-128ibm/strtod_nan_ldouble.h: Likewise.
* sysdeps/ieee754/ldbl-96/strtod_nan_ldouble.h: Likewise.
* wcsmbs/wcstod_nan.c: Likewise.
* wcsmbs/wcstof_nan.c: Likewise.
* wcsmbs/wcstold_nan.c: Likewise.
* stdlib/Makefile (routines): Add strtof_nan, strtod_nan and
strtold_nan.
* wcsmbs/Makefile (routines): Add wcstod_nan, wcstold_nan and
wcstof_nan.
* include/stdlib.h (__strtof_nan): Declare and use
libc_hidden_proto.
(__strtod_nan): Likewise.
(__strtold_nan): Likewise.
(__wcstof_nan): Likewise.
(__wcstod_nan): Likewise.
(__wcstold_nan): Likewise.
* include/wchar.h (____wcstoull_l_internal): Declare.
* stdlib/strtod_l.c: Do not include <ieee754.h>.
(____strtoull_l_internal): Remove declaration.
(STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
(STRTOULL): Likewise.
(____STRTOF_INTERNAL): Use STRTOF_NAN to parse NaN payload.
* stdlib/strtof_l.c (____strtoull_l_internal): Remove declaration.
(STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-128/strtold_l.c (STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-128ibm/strtold_l.c (STRTOF_NAN): Define
macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-64-128/strtold_l.c (STRTOF_NAN): Define
macro.
(SET_MANTISSA): Remove macro.
* sysdeps/ieee754/ldbl-96/strtold_l.c (STRTOF_NAN): Define macro.
(SET_MANTISSA): Remove macro.
* wcsmbs/wcstod_l.c (____wcstoull_l_internal): Remove declaration.
* wcsmbs/wcstof_l.c (____wcstoull_l_internal): Likewise.
* wcsmbs/wcstold_l.c (____wcstoull_l_internal): Likewise.
|
|
nextafter and nexttoward fail to set errno on overflow and underflow.
This patch makes them do so in cases that should include all the cases
where such errno setting is required by glibc's goals for when to set
errno (but not all cases of underflow where the result is nonzero and
so glibc's goals do not require errno setting).
Tested for x86_64, x86, mips64 and powerpc.
[BZ #6799]
* math/s_nextafter.c: Include <errno.h>.
(__nextafter): Set errno on overflow and underflow.
* math/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/i386/fpu/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/flt-32/s_nextafterf.c: Include <errno.h>.
(__nextafterf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c: Include <errno.h>.
(__nexttoward): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c: Include <errno.h>.
(__nexttowardf): Set errno on overflow and underflow.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c: Include <errno.h>.
(__nldbl_nexttowardf): Set errno on overflow and underflow.
* sysdeps/m68k/m680x0/fpu/s_nextafterl.c: Include <errno.h>.
(__nextafterl): Set errno on overflow and underflow.
* math/libm-test.inc (nextafter_test_data): Do not allow errno
setting to be missing on overflow. Add more tests.
(nexttoward_test_data): Likewise.
|
|
C11 defines standard <float.h> macros *_TRUE_MIN for the least
positive subnormal value of a type. Now that we build with
-std=gnu11, we can use these macros in glibc. This patch replaces
previous uses of the GCC predefines __*_DENORM_MIN__ (used in
<float.h> to define *_TRUE_MIN), as well as *_DENORM_MIN references in
comments.
Tested for x86_64 and x86 (testsuite, and that installed shared
libraries are unchanged by the patch). Also tested for powerpc that
installed stripped shared libraries are unchanged by the patch.
* math/libm-test.inc (min_subnorm_value): Use LDBL_TRUE_MIN,
DBL_TRUE_MIN and FLT_TRUE_MIN instead of __LDBL_DENORM_MIN__,
__DBL_DENORM_MIN__ and __FLT_DENORM_MIN__.
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Refer to DBL_TRUE_MIN
instead of DBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c: Include <float.h>.
(__nextafterl): Use LDBL_TRUE_MIN instead of __LDBL_DENORM_MIN__.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Refer to
LDBL_TRUE_MIN instead of LDBL_DENORM_MIN in comment.
|
|
One common case of __GNUC_PREREQ (4, 7) conditionals is use of
diagnostic control pragmas for -Wmaybe-uninitialized, an option
introduced in GCC 4.7 where older GCC needed -Wuninitialized to be
controlled instead if the warning appeared with older GCC. This patch
removes such conditionals.
(There remain several older uses of -Wno-uninitialized in makefiles
that still need to be converted to diagnostic control pragmas if the
issue is still present with current sources and supported GCC
versions, and it's likely that in most cases those pragmas also will
end up controlling -Wmaybe-uninitialized.)
Tested for x86_64 and x86 (testsuite, and that installed stripped
shared libraries are unchanged by the patch, except for libresolv
since res_send.c contains assertions whose line numbers are changed by
the patch).
* resolv/res_send.c (send_vc) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
* soft-fp/fmadf4.c [__GNUC_PREREQ (4, 7)]: Likewise.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmasf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* soft-fp/fmatf4.c [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
[!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* stdlib/setenv.c
[((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7)]: Make
code unconditional.
[!(((__GNUC__ << 16) + __GNUC_MINOR__) >= ((4 << 16) + 7))]:
Remove conditional code.
* sysdeps/ieee754/dbl-64/e_lgamma_r.c
(__ieee754_lgamma_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgamma_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c
(__ieee754_lgammaf_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammaf_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-128/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c
(__ieee754_lgammal_r) [__GNUC_PREREQ (4, 7)]: Make code
unconditional.
(__ieee754_lgammal_r) [!__GNUC_PREREQ (4, 7)]: Remove conditional
code.
* sysdeps/ieee754/ldbl-96/k_tanl.c
(__kernel_tanl) [__GNUC_PREREQ (4, 7)]: Make code unconditional.
(__kernel_tanl) [!__GNUC_PREREQ (4, 7)]: Remove conditional code.
|
|
j1 and jn can underflow for small arguments, but fail to set errno
when underflowing to 0. This patch fixes them to set errno in that
case.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18611]
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Set errno and
avoid excess range and precision on underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Likewise.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Set errno on
underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Do not allow missing errno setting for
tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
|
|
The dbl-64, ldbl-96 and ldbl-128 implementations of lrint and llrint
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist. It also obviously cannot arise in
FE_TOWARDZERO mode.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT, while raising FE_INEXACT explicitly in the cases where it
is needed; unlike lround and llround, FE_INEXACT is required, not
optional, for these functions for a within-range inexact result).
The fixes are conditional on FE_INVALID or FE_INEXACT being defined.
If any future architecture supports one but not both of those
exceptions, the code will fail to compile and need fixing to handle
that case (this seemed better than conditioning on both macros being
defined, resulting in code that would compile but quietly miss
exceptions on such a system).
Tested for x86_64, x86 and mips64. Tested the ldbl-96 changes (only
relevant for ia64, it appears) on x86_64 by removing the x86_64
versions of lrintl / llrintl.
[BZ #19094]
* sysdeps/ieee754/dbl-64/s_lrint.c: Include <fenv.h> and
<limits.h>.
(__lrint) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llrintl.c: Include <fenv.h> and
<limits.h>.
(__llrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lrintl.c: Include <fenv.h> and
<limits.h>.
(__lrintl) [FE_INVALID || FE_INEXACT]: Force FE_INVALID exception
when result overflows but exception would not result from cast.
* math/libm-test.inc (lrint_test_data): Add more tests.
(llrint_test_data): Likewise.
|
|
The dbl-64, ldbl-96 and ldbl-128 implementations of lround and llround
fail to produce "invalid" exceptions in cases where the rounded result
overflows the target type, but truncating the floating-point argument
to the next integer towards zero does not overflow it (so in
particular casts do not produce such exceptions). (This issue cannot
arise for float, or for double with 64-bit target type, or for ldbl-96
with 64-bit target type and negative arguments, because of
insufficient precision in the floating-point type for arguments with
the relevant property to exist.)
This patch fixes these problems by inserting checks for the special
cases that can occur in each implementation, and explicitly raising
FE_INVALID (and avoiding the cast if it might raise spurious
FE_INEXACT).
Tested for x86_64, x86 and mips64.
[BZ #19088]
* sysdeps/ieee754/dbl-64/s_lround.c: Include <fenv.h> and
<limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/dbl-64/wordsize-64/s_lround.c: Include <fenv.h>
and <limits.h>.
(__lround) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-128/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_llroundl.c: Include <fenv.h> and
<limits.h>.
(__llroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* sysdeps/ieee754/ldbl-96/s_lroundl.c: Include <fenv.h> and
<limits.h>.
(__lroundl) [FE_INVALID]: Force FE_INVALID exception when result
overflows but exception would not result from cast.
* math/libm-test.inc (lround_test_data): Add more tests.
(llround_test_data): Likewise.
|
|
The ldbl-96 version of lroundl is incorrect for systems with 64-bit
long when the argument's absolute value is just below a power of 2,
2^32 or more, and rounds up to the next integer; in such cases, it
returns 0. The problem is incrementing the high part of the mantissa
loses the high bit of the value (which is not an issue for any other
floating-point format, and is handled specially in lround when the bit
corresponding to 0.5 was in the high part rather than the low part).
This patch fixes this in a similar way to that used in llroundl:
storing the high part in an unsigned long variable before incrementing
it, so problems cannot occur in the case when this code is reachable.
I improved test coverage for both lround and llround by making them
use the same test inputs (appropriately conditioned on the size of
long in the lround case) - complete with the same comments, to make
comparison as easy as possible. (This test coverage improvement was
how I found the lroundl bug.)
Tested for x86_64 and x86.
[BZ #19071]
* sysdeps/ieee754/ldbl-96/s_lroundl.c (__lroundl): Use unsigned
long int variable to store possibly incremented high part of
mantissa.
* math/libm-test.inc (lround_test_data): Add tests used for
llround. Use [LONG_MAX > 0x7fffffff] consistently as condition
for tests requiring 64-bit long. Do not condition tests on
[TEST_FLOAT] unnecessarily.
(llround_test_data): Add tests used for lround. Add another
expectation for the "inexact" exception. Do not condition tests
on [TEST_FLOAT] unnecessarily.
|
|
ISO C requires overflowing results from nexttoward to be the
appropriate infinity independent of the rounding mode, but some
implementations use a rounding-mode-dependent result (this is the same
issue as was fixed for nextafter in bug 16677). This patch fixes the
problem by making the nexttoward implementations discard the result
from the floating-point computation that forced an overflow exception
and then return the infinity previously computed with integer
arithmetic.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #19059]
* math/s_nexttowardf.c (__nexttowardf): Do not return value from
overflowing computation.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
* math/libm-test.inc (nexttoward_test_data): Add more tests.
|
|
For arguments with X^2 + Y^2 close to 1, clog and clog10 avoid large
errors from log(hypot) by computing X^2 + Y^2 - 1 in a way that avoids
cancellation error and then using log1p.
However, the thresholds for using that approach still result in log
being used on argument as large as sqrt(13/16) > 0.9, leading to
significant errors, in some cases above the 9ulp maximum allowed in
glibc libm. This patch arranges for the approach using log1p to be
used in any cases where |X|, |Y| < 1 and X^2 + Y^2 >= 0.5 (with the
existing allowance for cases where one of X and Y is very small),
adjusting the __x2y2m1 functions to work with the wider range of
inputs. This way, log only gets used on arguments below sqrt(1/2) (or
substantially above 1), where the error involved is much less.
Tested for x86_64, x86, mips64 and powerpc. For the ulps regeneration
I removed the existing clog and clog10 ulps before regenerating to
allow any reduced ulps to appear. Tests added include those found by
random test generation to produce large ulps either before or after
the patch, and some found by trying inputs close to the (0.75, 0.5)
threshold where the potential errors from using log are largest.
[BZ #19016]
* sysdeps/generic/math_private.h (__x2y2m1f): Update comment to
allow more cases with X^2 + Y^2 >= 0.5.
* sysdeps/ieee754/dbl-64/x2y2m1.c (__x2y2m1): Likewise. Add -1 as
normal element in sum instead of special-casing based on values of
arguments.
* sysdeps/ieee754/dbl-64/x2y2m1f.c (__x2y2m1f): Update comment.
* sysdeps/ieee754/ldbl-128/x2y2m1l.c (__x2y2m1l): Likewise. Add
-1 as normal element in sum instead of special-casing based on
values of arguments.
* sysdeps/ieee754/ldbl-128ibm/x2y2m1l.c (__x2y2m1l): Likewise.
* sysdeps/ieee754/ldbl-96/x2y2m1.c [FLT_EVAL_METHOD != 0]
(__x2y2m1): Update comment.
* sysdeps/ieee754/ldbl-96/x2y2m1l.c (__x2y2m1l): Likewise. Add -1
as normal element in sum instead of special-casing based on values
of arguments.
* math/s_clog.c (__clog): Handle more cases using log1p without
hypot.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/auto-libm-test-in: Add more tests of clog and clog10.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
Similar to various other bugs in this area, hypot functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down (or, in the i386 case, converted from a wider evaluation format)
are zero. This patch forces the exception in a similar way to
previous fixes.
Note that this issue cannot arise for implementations of hypotf using
double (or wider) for intermediate evaluation (if hypotf should
underflow, that means the double square root is being computed of some
number of the form N*2^-298, for 0 < N < 2^46, which is exactly
represented as a double, and whatever the rounding mode such a square
root cannot have a mantissa with all zeroes after the initial 23
bits). Thus no changes are made to hypotf implementations in this
patch, only to hypot and hypotl.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18803]
* sysdeps/i386/fpu/e_hypot.S: Use DEFINE_DBL_MIN.
(MO): New macro.
(__ieee754_hypot) [PIC]: Load PIC register.
(__ieee754_hypot): Use DBL_NARROW_EVAL_UFLOW_NONNEG instead of
DBL_NARROW_EVAL.
* sysdeps/ieee754/dbl-64/e_hypot.c (__ieee754_hypot): Use
math_check_force_underflow_nonneg in case where result might be
tiny.
* sysdeps/ieee754/ldbl-128/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_hypotl.c (__ieee754_hypotl):
Likewise.
* sysdeps/ieee754/ldbl-96/e_hypotl.c (__ieee754_hypotl): Likewise.
* sysdeps/powerpc/fpu/e_hypot.c (__ieee754_hypot): Likewise.
* math/auto-libm-test-in: Add more tests of hypot.
* math/auto-libm-test-out: Regenerated.
|
|
Various floating-point functions have code to force underflow
exceptions if a tiny result was computed in a way that might not have
resulted in such exceptions even though the result is inexact. This
typically uses math_force_eval to ensure that the underflowing
expression is evaluated, but sometimes uses volatile.
This patch refactors such code to use three new macros
math_check_force_underflow, math_check_force_underflow_nonneg and
math_check_force_underflow_complex (which in turn use
math_force_eval). In the limited number of cases not suited to a
simple conversion to these macros, existing uses of volatile are
changed to use math_force_eval instead. The converted code does not
always execute exactly the same sequence of operations as the original
code, but the overall effects should be the same.
Tested for x86_64, x86, mips64 and powerpc.
* sysdeps/generic/math_private.h (fabs_tg): New macro.
(min_of_type): Likewise.
(math_check_force_underflow): Likewise.
(math_check_force_underflow_nonneg): Likewise.
(math_check_force_underflow_complex): Likewise.
* math/e_exp2l.c (__ieee754_exp2l): Use
math_check_force_underflow_nonneg.
* math/k_casinh.c (__kernel_casinh): Likewise.
* math/k_casinhf.c (__kernel_casinhf): Likewise.
* math/k_casinhl.c (__kernel_casinhl): Likewise.
* math/s_catan.c (__catan): Use
math_check_force_underflow_complex.
* math/s_catanf.c (__catanf): Likewise.
* math/s_catanh.c (__catanh): Likewise.
* math/s_catanhf.c (__catanhf): Likewise.
* math/s_catanhl.c (__catanhl): Likewise.
* math/s_catanl.c (__catanl): Likewise.
* math/s_ccosh.c (__ccosh): Likewise.
* math/s_ccoshf.c (__ccoshf): Likewise.
* math/s_ccoshl.c (__ccoshl): Likewise.
* math/s_cexp.c (__cexp): Likewise.
* math/s_cexpf.c (__cexpf): Likewise.
* math/s_cexpl.c (__cexpl): Likewise.
* math/s_clog.c (__clog): Use math_check_force_underflow_nonneg.
* math/s_clog10.c (__clog10): Likewise.
* math/s_clog10f.c (__clog10f): Likewise.
* math/s_clog10l.c (__clog10l): Likewise.
* math/s_clogf.c (__clogf): Likewise.
* math/s_clogl.c (__clogl): Likewise.
* math/s_csin.c (__csin): Use math_check_force_underflow_complex.
* math/s_csinf.c (__csinf): Likewise.
* math/s_csinh.c (__csinh): Likewise.
* math/s_csinhf.c (__csinhf): Likewise.
* math/s_csinhl.c (__csinhl): Likewise.
* math/s_csinl.c (__csinl): Likewise.
* math/s_csqrt.c (__csqrt): Use math_check_force_underflow.
* math/s_csqrtf.c (__csqrtf): Likewise.
* math/s_csqrtl.c (__csqrtl): Likewise.
* math/s_ctan.c (__ctan): Use math_check_force_underflow_complex.
* math/s_ctanf.c (__ctanf): Likewise.
* math/s_ctanh.c (__ctanh): Likewise.
* math/s_ctanhf.c (__ctanhf): Likewise.
* math/s_ctanhl.c (__ctanhl): Likewise.
* math/s_ctanl.c (__ctanl): Likewise.
* stdlib/strtod_l.c (round_and_return): Use math_force_eval
instead of volatile.
* sysdeps/ieee754/dbl-64/e_asin.c (__ieee754_asin): Use
math_check_force_underflow.
* sysdeps/ieee754/dbl-64/e_atanh.c (__ieee754_atanh): Likewise.
* sysdeps/ieee754/dbl-64/e_exp.c (__ieee754_exp): Do not use
volatile when forcing underflow.
* sysdeps/ieee754/dbl-64/e_exp2.c (__ieee754_exp2): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r):
Likewise.
* sysdeps/ieee754/dbl-64/e_j1.c (__ieee754_j1): Use
math_check_force_underflow.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/dbl-64/e_sinh.c (__ieee754_sinh): Likewise.
* sysdeps/ieee754/dbl-64/s_asinh.c (__asinh): Likewise.
* sysdeps/ieee754/dbl-64/s_atan.c (atan): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/dbl-64/s_erf.c (__erf): Use
math_check_force_underflow.
* sysdeps/ieee754/dbl-64/s_expm1.c (__expm1): Likewise.
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Use math_force_eval
instead of volatile.
* sysdeps/ieee754/dbl-64/s_log1p.c (__log1p): Use
math_check_force_underflow.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin): Likewise.
* sysdeps/ieee754/dbl-64/s_tan.c (tan): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/dbl-64/s_tanh.c (__tanh): Use
math_check_force_underflow.
* sysdeps/ieee754/flt-32/e_asinf.c (__ieee754_asinf): Likewise.
* sysdeps/ieee754/flt-32/e_atanhf.c (__ieee754_atanhf): Likewise.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c (__ieee754_j1f): Use
math_check_force_underflow.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/flt-32/e_sinhf.c (__ieee754_sinhf): Likewise.
* sysdeps/ieee754/flt-32/k_sinf.c (__kernel_sinf): Likewise.
* sysdeps/ieee754/flt-32/k_tanf.c (__kernel_tanf): Likewise.
* sysdeps/ieee754/flt-32/s_asinhf.c (__asinhf): Likewise.
* sysdeps/ieee754/flt-32/s_atanf.c (__atanf): Likewise.
* sysdeps/ieee754/flt-32/s_erff.c (__erff): Likewise.
* sysdeps/ieee754/flt-32/s_expm1f.c (__expm1f): Likewise.
* sysdeps/ieee754/flt-32/s_log1pf.c (__log1pf): Likewise.
* sysdeps/ieee754/flt-32/s_tanhf.c (__tanhf): Likewise.
* sysdeps/ieee754/ldbl-128/e_asinl.c (__ieee754_asinl): Likewise.
* sysdeps/ieee754/ldbl-128/e_atanhl.c (__ieee754_atanhl):
Likewise.
* sysdeps/ieee754/ldbl-128/e_expl.c (__ieee754_expl): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_j1l.c (__ieee754_j1l): Use
math_check_force_underflow.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128/e_sinhl.c (__ieee754_sinhl): Likewise.
* sysdeps/ieee754/ldbl-128/k_sincosl.c (__kernel_sincosl):
Likewise.
* sysdeps/ieee754/ldbl-128/k_sinl.c (__kernel_sinl): Likewise.
* sysdeps/ieee754/ldbl-128/k_tanl.c (__kernel_tanl): Likewise.
* sysdeps/ieee754/ldbl-128/s_asinhl.c (__asinhl): Likewise.
* sysdeps/ieee754/ldbl-128/s_atanl.c (__atanl): Likewise.
* sysdeps/ieee754/ldbl-128/s_erfl.c (__erfl): Likewise.
* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Use math_force_eval
instead of volatile.
* sysdeps/ieee754/ldbl-128/s_log1pl.c (__log1pl): Use
math_check_force_underflow.
* sysdeps/ieee754/ldbl-128/s_tanhl.c (__tanhl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_asinl.c (__ieee754_asinl): Use
math_check_force_underflow.
* sysdeps/ieee754/ldbl-128ibm/e_atanhl.c (__ieee754_atanhl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Use math_check_force_underflow_nonneg.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Use
math_check_force_underflow.
* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c (__ieee754_sinhl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/k_sincosl.c (__kernel_sincosl):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/k_sinl.c (__kernel_sinl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c (__asinhl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_atanl.c (__atanl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_erfl.c (__erfl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
* sysdeps/ieee754/ldbl-96/e_asinl.c (__ieee754_asinl): Likewise.
* sysdeps/ieee754/ldbl-96/e_atanhl.c (__ieee754_atanhl): Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/ldbl-96/e_j1l.c (__ieee754_j1l): Use
math_check_force_underflow.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_sinhl.c (__ieee754_sinhl): Likewise.
* sysdeps/ieee754/ldbl-96/k_sinl.c (__kernel_sinl): Likewise.
* sysdeps/ieee754/ldbl-96/k_tanl.c (__kernel_tanl): Use
math_check_force_underflow_nonneg.
* sysdeps/ieee754/ldbl-96/s_asinhl.c (__asinhl): Use
math_check_force_underflow.
* sysdeps/ieee754/ldbl-96/s_erfl.c (__erfl): Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Use math_force_eval
instead of volatile.
* sysdeps/ieee754/ldbl-96/s_tanhl.c (__tanhl): Use
math_check_force_underflow.
|
|
Where glibc code needs to avoid excess range and precision in
floating-point arithmetic, code variously uses either asms or volatile
to force the results of that arithmetic to memory; mostly this is
conditional on FLT_EVAL_METHOD, but in the case of lrint / llrint
functions some use of volatile is unconditional (and is present
unnecessarily in versions for long double). This patch make such code
use the recently-added math_narrow_eval macro consistently, removing
the unnecessary uses of volatile in long double lrint / llrint
implementations completely.
Tested for x86_64, x86, mips64 and powerpc.
* math/s_nexttowardf.c (__nexttowardf): Use math_narrow_eval.
* stdlib/strtod_l.c: Include <math_private.h>.
(overflow_value): Use math_narrow_eval.
(underflow_value): Likewise.
* sysdeps/i386/fpu/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/i386/fpu/s_nexttowardf.c (__nexttowardf): Likewise.
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Likewise.
(__ieee754_gamma_r): Likewise.
* sysdeps/ieee754/dbl-64/gamma_productf.c (__gamma_productf):
Likewise.
* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
Likewise.
* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
* sysdeps/ieee754/dbl-64/s_erf.c (__erfc): Likewise.
* sysdeps/ieee754/dbl-64/s_llrint.c (__llrint): Likewise.
* sysdeps/ieee754/dbl-64/s_lrint.c (__lrint): Likewise.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Likewise.
(__ieee754_gammaf_r): Likewise.
* sysdeps/ieee754/flt-32/k_rem_pio2f.c (__kernel_rem_pio2f):
Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
* sysdeps/ieee754/flt-32/s_erff.c (__erfcf): Likewise.
* sysdeps/ieee754/flt-32/s_llrintf.c (__llrintf): Likewise.
* sysdeps/ieee754/flt-32/s_lrintf.c (__lrintf): Likewise.
* sysdeps/ieee754/ldbl-128/s_llrintl.c (__llrintl): Do not use
volatile.
* sysdeps/ieee754/ldbl-128/s_lrintl.c (__lrintl): Likewise.
* sysdeps/ieee754/ldbl-128/s_nexttoward.c (__nexttoward): Use
math_narrow_eval.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-96/gamma_product.c (__gamma_product):
Likewise.
* sysdeps/ieee754/ldbl-96/s_llrintl.c (__llrintl): Do not use
volatile.
* sysdeps/ieee754/ldbl-96/s_lrintl.c (__lrintl): Likewise.
* sysdeps/ieee754/ldbl-96/s_nexttoward.c (__nexttoward): Use
math_narrow_eval.
* sysdeps/ieee754/ldbl-96/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-opt/s_nexttowardfd.c (__nldbl_nexttowardf):
Likewise.
|
|
__isinf_ns(l/f)
with isinf, and remove the unused inlines __isinf_ns(l/f), __isnan(f) and __finite(f).
2015-09-18 Wilco Dijkstra <wdijkstr@arm.com>
* include/math.h: Remove __isinf_ns, __isinf_nsf, __isinf_nsl.
* math/Makefile: Remove isinf_ns.c.
* math/divtc3.c (__divtc3): Replace __isinf_nsl with isinf.
* math/multc3.c (__multc3): Likewise.
* math/s_casin.c (__casin): Likewise.
* math/s_casinf.c (__casinf): Likewise.
* math/s_casinl.c (__casinl): Likewise.
* math/s_cproj.c (__cproj): Likewise.
* math/s_cprojf.c (__cprojf): Likewise.
* math/s_cprojl.c (__cprofl): Likewise.
* math/s_ctan.c (__ctan): Likewise.
* math/s_ctanf.c (__ctanf): Likewise.
* math/s_ctanh.c (__ctanh): Likewise.
* math/s_ctanhf.c (__ctanhf): Likewise.
* math/s_ctanhl.c (__ctanhl): Likewise.
* math/s_ctanl.c (__ctanl): Likewise.
* math/w_fmod.c (__fmod): Likewise.
* math/w_fmodf.c (__fmodf): Likewise.
* math/w_fmodl.c (_fmodl): Likewise.
* math/w_remainder.c (__remainder): Likewise.
* math/w_remainderf.c (__remainderf): Likewise.
* math/w_remainderl.c (__remainderl): Likewise.
* math/w_scalb.c (__scalb): Likewise.
* math/w_scalbf.c (__scalbf): Likewise.
* math/w_scalbl.c (__scalbl): Likewise.
* sysdeps/ieee754/dbl-64/s_isinf_ns.c: Deleted file.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Replace __isinf_ns
with isinf.
* sysdeps/ieee754/dbl-64/wordsize-64/math_private.h: Deleted file.
* sysdeps/ieee754/dbl-64/wordsize-64/s_isinf_ns.c: Deleted file.
* sysdeps/ieee754/flt-32/e_exp2f.c (__ieee754_exp2f): Replace
__isinf_nsf with isinf.
* sysdeps/ieee754/flt-32/math_private.h: Deleted file.
* sysdeps/ieee754/flt-32/s_isinf_nsf.c: Deleted file.
* sysdeps/ieee754/ldbl-128/s_isinf_nsl.c: Deleted file.
* sysdeps/ieee754/ldbl-128/s_sincosl.c (__sincosl): Replace __isinf_nsl
with isinf.
* sysdeps/ieee754/ldbl-128ibm/s_cprojl.c(__cprojll): Replace
__isinf_nsl with isinf.
* sysdeps/ieee754/ldbl-128ibm/s_ctanl.c(__ctanl): Replace __isinf_nsl
with isinf.
* sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c: Deleted file.
* sysdeps/ieee754/ldbl-128ibm/s_sincosl.c (__sincosl): Replace
__isinf_nsl with isinf.
* sysdeps/ieee754/ldbl-96/s_isinf_nsl.c: Deleted file.
* sysdeps/ieee754/ldbl-96/s_sincosl.c (__sincosl): Replace __isinf_nsl
with isinf.
|
|
2015-09-18 Wilco Dijkstra <wdijkstr@arm.com>
* sysdeps/ieee754/dbl-64/s_signbit.c (__signbit):
Use __builtin_signbit.
* sysdeps/ieee754/flt-32/s_signbitf.c (__signbitf):
Use __builtin_signbitf.
* sysdeps/ieee754/ldbl-128/s_signbitl.c (__signbitl):
Use __builtin_signbitl.
* sysdeps/ieee754/ldbl-128ibm/s_signbitl.c (___signbitl): Likewise.
* sysdeps/ieee754/ldbl-96/s_signbitl.c (__signbitl): Likewise.
|
|
Similar to various other bugs in this area, tgamma functions can fail
to raise the underflow exception when the result is tiny and inexact
but one or more low bits of the intermediate result that is scaled
down are zero. This patch forces the exception in a similar way to
previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18951]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (__ieee754_gamma_r): Force
underflow exception for small results.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (__ieee754_gammaf_r):
Likewise.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* math/auto-libm-test-in: Add more tests of tgamma.
* math/auto-libm-test-out: Regenerated.
|
|
The existing implementations of lgamma functions (except for the ia64
versions) use the reflection formula for negative arguments. This
suffers large inaccuracy from cancellation near zeros of lgamma (near
where the gamma function is +/- 1).
This patch fixes this inaccuracy. For arguments above -2, there are
no zeros and no large cancellation, while for sufficiently large
negative arguments the zeros are so close to integers that even for
integers +/- 1ulp the log(gamma(1-x)) term dominates and cancellation
is not significant. Thus, it is only necessary to take special care
about cancellation for arguments around a limited number of zeros.
Accordingly, this patch uses precomputed tables of relevant zeros,
expressed as the sum of two floating-point values. The log of the
ratio of two sines can be computed accurately using log1p in cases
where log would lose accuracy. The log of the ratio of two gamma(1-x)
values can be computed using Stirling's approximation (the difference
between two values of that approximation to lgamma being computable
without computing the two values and then subtracting), with
appropriate adjustments (which don't reduce accuracy too much) in
cases where 1-x is too small to use Stirling's approximation directly.
In the interval from -3 to -2, using the ratios of sines and of
gamma(1-x) can still produce too much cancellation between those two
parts of the computation (and that interval is also the worst interval
for computing the ratio between gamma(1-x) values, which computation
becomes more accurate, while being less critical for the final result,
for larger 1-x). Because this can result in errors slightly above
those accepted in glibc, this interval is instead dealt with by
polynomial approximations. Separate polynomial approximations to
(|gamma(x)|-1)(x-n)/(x-x0) are used for each interval of length 1/8
from -3 to -2, where n (-3 or -2) is the nearest integer to the
1/8-interval and x0 is the zero of lgamma in the relevant half-integer
interval (-3 to -2.5 or -2.5 to -2).
Together, the two approaches are intended to give sufficient accuracy
for all negative arguments in the problem range. Outside that range,
the previous implementation continues to be used.
Tested for x86_64, x86, mips64 and powerpc. The mips64 and powerpc
testing shows up pre-existing problems for ldbl-128 and ldbl-128ibm
with large negative arguments giving spurious "invalid" exceptions
(exposed by newly added tests for cases this patch doesn't affect the
logic for); I'll address those problems separately.
[BZ #2542]
[BZ #2543]
[BZ #2558]
* sysdeps/ieee754/dbl-64/e_lgamma_r.c (__ieee754_lgamma_r): Call
__lgamma_neg for arguments from -28.0 to -2.0.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Call
__lgamma_negf for arguments from -15.0 to -2.0.
* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -48.0 or -50.0 to -2.0.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (__ieee754_lgammal_r):
Call __lgamma_negl for arguments from -33.0 to -2.0.
* sysdeps/ieee754/dbl-64/lgamma_neg.c: New file.
* sysdeps/ieee754/dbl-64/lgamma_product.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_negf.c: Likewise.
* sysdeps/ieee754/flt-32/lgamma_productf.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-128ibm/lgamma_productl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_negl.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_product.c: Likewise.
* sysdeps/ieee754/ldbl-96/lgamma_productl.c: Likewise.
* sysdeps/generic/math_private.h (__lgamma_negf): New prototype.
(__lgamma_neg): Likewise.
(__lgamma_negl): Likewise.
(__lgamma_product): Likewise.
(__lgamma_productl): Likewise.
* math/Makefile (libm-calls): Add lgamma_neg and lgamma_product.
* math/auto-libm-test-in: Add more tests of lgamma.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
As with other spots in the code, GCC 4.8 unnecessarily complains about
an uninitialized variable in tanl calcs, so this patch disables. With
it, the library and sees the usual set of test passes.
* sysdeps/ieee754/ldbl-96/k_tanl.c: Include <libc-internal.h>.
(__kernel_tanl): Ignore uninitialized warnings around use of SIGN.
|
|
Various fma implementations have logic that, when computing fma (x, y,
z) where z is large (so care needs taking to avoid internal overflow)
but x * y is small, scale x * y up instead of down to avoid internal
underflows resulting from scaling down. (In these cases, x * y is
small enough that only its sign actually matters rather than the exact
value.)
The threshold for scaling up instead of down was correct for "if the
unscaled values were multiplied, the low part of the multiplication
could underflow", and the scaling was sufficient to ensure that the
low part of the multiplication did not underflow (given that cases of
very small x * y - less than half the least subnormal - were
previously dealt with). However, the choice in the functions wasn't
between scaling up or no scaling, but between scaling up and scaling
down (scaling down actually being needed when x * y isn't so small
compared to z and so the exact value does matter). Thus a larger
threshold is needed to ensure that scaling down doesn't produce values
the multiplication of whose low parts underflows. This patch
increases the thresholds accordingly.
Tested for x86_64, x86 and mips64 (with the MIPS version of s_fmal.c
removed so that the ldbl-128 version gets tested instead of the
soft-fp one).
[BZ #18824]
* sysdeps/ieee754/dbl-64/s_fma.c (__fma): Increase threshold for
scaling x * y up instead of down.
* sysdeps/ieee754/ldbl-128/s_fmal.c (__fmal): Likewise.
* sysdeps/ieee754/ldbl-96/s_fmal.c (__fmal): Likewise.
* math/auto-libm-test-in: Add more tests of fma.
* math/auto-libm-test-out: Regenerated.
|
|
Similar to various other bugs in this area, some tanh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16520]
* sysdeps/ieee754/dbl-64/s_tanh.c: Include <float.h>.
(__tanh): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_tanhf.c: Include <float.h>.
(__tanhf): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_tanhl.c: Include <float.h>.
(__tanhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c: Include <float.h>.
(__tanhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-96/s_tanhl.c: Include <float.h>.
(__tanhl): Force underflow exception for arguments with small
absolute value.
* math/auto-libm-test-in: Add more tests of tanh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
|
|
Similar to various other bugs in this area, some tan implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16517]
* sysdeps/ieee754/dbl-64/s_tan.c: Include <float.h>.
(tan): Force underflow exception for arguments with small absolute
value.
* sysdeps/ieee754/flt-32/k_tanf.c: Include <float.h>.
(__kernel_tanf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_tanl.c: Include <float.h>.
(__kernel_tanl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c: Include <float.h>.
(__kernel_tanl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/k_tanl.c: Include <float.h>.
(__kernel_tanl): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of tan.
* math/auto-libm-test-out: Regenerated.
|
|
Similar to various other bugs in this area, some sinh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16519]
* sysdeps/ieee754/dbl-64/e_sinh.c: Include <float.h>.
(__ieee754_sinh): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/flt-32/e_sinhf.c: Include <float.h>.
(__ieee754_sinhf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/e_sinhl.c: Include <float.h>.
(__ieee754_sinhl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/e_sinhl.c: Include <float.h>.
(__ieee754_sinhl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/e_sinhl.c: Include <float.h>.
(__ieee754_sinhl): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of sinh.
* math/auto-libm-test-out: Regenerated.
* sysdeps/i386/fpu/libm-test-ulps: Update.
|
|
In non-default rounding modes, tgamma can be slightly less accurate
than permitted by glibc's accuracy goals.
Part of the problem is error accumulation, addressed in this patch by
setting round-to-nearest for internal computations. However, there
was also a bug in the code dealing with computing pow (x + n, x + n)
where x + n is not exactly representable, providing another source of
error even in round-to-nearest mode; it was necessary to address both
bugs to get errors for all testcases within glibc's accuracy goals.
Given this second fix, accuracy in round-to-nearest mode is also
improved (hence regeneration of ulps for tgamma should be from scratch
- truncate libm-test-ulps or at least remove existing tgamma entries -
so that the expected ulps can be reduced).
Some additional complications also arose. Certain tgamma tests should
strictly, according to IEEE semantics, overflow or not depending on
the rounding mode; this is beyond the scope of glibc's accuracy goals
for any function without exactly-determined results, but
gen-auto-libm-tests doesn't handle being lax there as it does for
underflow. (libm-test.inc also doesn't handle being lax about whether
the result in cases very close to the overflow threshold is infinity
or a finite value close to overflow, but that doesn't cause problems
in this case though I've seen it cause problems with random test
generation for some functions.) Thus, spurious-overflow markings,
with a comment, are added to auto-libm-test-in (no bug in Bugzilla
because the issue is with the testsuite, not a user-visible bug in
glibc). And on x86, after the patch I saw ERANGE issues as previously
reported by Carlos (see my commentary in
<https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>), which
needed addressing by ensuring excess range and precision were
eliminated at various points if FLT_EVAL_METHOD != 0.
I also noticed and fixed a cosmetic issue where 1.0f was used in long
double functions and should have been 1.0L.
This completes the move of all functions to testing in all rounding
modes with ALL_RM_TEST, so gen-libm-have-vector-test.sh is updated to
remove the workaround for some functions not using ALL_RM_TEST.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #18613]
* sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Take log of
X_ADJ not X when adjusting exponent.
(__ieee754_gamma_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammaf_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed.
* sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive): Take
log of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive): Take log
of X_ADJ not X when adjusting exponent.
(__ieee754_gammal_r): Do intermediate computations in
round-to-nearest then adjust overflowing and underflowing results
as needed. Use 1.0L not 1.0f as numerator of division.
* math/libm-test.inc (tgamma_test_data): Remove one test. Moved
to auto-libm-test-in.
(tgamma_test): Use ALL_RM_TEST.
* math/auto-libm-test-in: Add one test of tgamma. Mark some other
tests of tgamma with spurious-overflow.
* math/auto-libm-test-out: Regenerated.
* math/gen-libm-have-vector-test.sh: Do not check for START.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
Similar to various other bugs in this area, j1 and jn implementations
can fail to raise the underflow exception when the internal
computation is exact although the actual function is inexact. This
patch forces the exception in a similar way to other such fixes. (The
ldbl-128 / ldbl-128ibm j1l implementation is different and doesn't
need a change for this until spurious underflows in it are fixed.)
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16559]
* sysdeps/ieee754/dbl-64/e_j1.c: Include <float.h>.
(__ieee754_j1): Force underflow exception for small results.
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Include <float.h>.
(__ieee754_j1f): Force underflow exception for small results.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_j1l.c: Include <float.h>.
(__ieee754_j1l): Force underflow exception for small results.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise.
* math/auto-libm-test-in: Add more tests of j1 and jn.
* math/auto-libm-test-out: Regenerated.
|
|
Some existing jn tests, if run in non-default rounding modes, produce
errors above those accepted in glibc, which causes problems for moving
tests of jn to use ALL_RM_TEST. This patch makes jn set rounding
to-nearest internally, as was done for yn some time ago, then computes
the appropriate underflowing value for results that underflowed to
zero in to-nearest, and moves the tests to ALL_RM_TEST. It does
nothing about the general inaccuracy of Bessel function
implementations in glibc, though it should make jn more accurate on
average in non-default rounding modes through reduced error
accumulation. The recomputation of results that underflowed to zero
should as a side-effect fix some cases of bug 16559, where jn just
used an exact zero, but that is *not* the goal of this patch and other
cases of that bug remain unfixed.
(Most of the changes in the patch are reindentation to add new scopes
for SET_RESTORE_ROUND*.)
Tested for x86_64, x86, powerpc and mips64.
[BZ #16559]
[BZ #18602]
* sysdeps/ieee754/dbl-64/e_jn.c (__ieee754_jn): Set
round-to-nearest internally then recompute results that
underflowed to zero in the original rounding mode.
* sysdeps/ieee754/flt-32/e_jnf.c (__ieee754_jnf): Likewise.
* sysdeps/ieee754/ldbl-128/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
* sysdeps/ieee754/ldbl-96/e_jnl.c (__ieee754_jnl): Likewise
* math/libm-test.inc (jn_test): Use ALL_RM_TEST.
* sysdeps/i386/fpu/libm-test-ulps: Update.
* sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
|
|
Similar to various other bugs in this area, some sin and sincos
implementations do not raise the underflow exception for subnormal
arguments, when the result is tiny and inexact. This patch forces the
exception in a similar way to previous fixes.
Tested for x86_64, x86, mips64 and powerpc.
[BZ #16526]
[BZ #16538]
* sysdeps/ieee754/dbl-64/s_sin.c: Include <float.h>.
(__sin): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/k_sinf.c: Include <float.h>.
(__kernel_sinf): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_sincosl.c: Include <float.h>.
(__kernel_sincosl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_sincosl.c: Include <float.h>.
(__kernel_sincosl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-128ibm/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/ieee754/ldbl-96/k_sinl.c: Include <float.h>.
(__kernel_sinl): Force underflow exception for arguments with
small absolute value.
* sysdeps/powerpc/fpu/k_sinf.c: Include <float.h>.
(__kernel_sinf): Force underflow exception for arguments with
small absolute value.
* math/auto-libm-test-in: Add more tests of sin and sincos.
* math/auto-libm-test-out: Regenerated.
|
|
Similar to various other bugs in this area, some asinh implementations
do not raise the underflow exception for subnormal arguments, when the
result is tiny and inexact. This patch forces the exception in a
similar way to previous fixes.
Tested for x86_64, x86 and mips64.
[BZ #16350]
* sysdeps/i386/fpu/s_asinh.S (__asinh): Force underflow exception
for arguments with small absolute value.
* sysdeps/i386/fpu/s_asinhf.S (__asinhf): Likewise.
* sysdeps/i386/fpu/s_asinhl.S (__asinhl): Likewise.
* sysdeps/ieee754/dbl-64/s_asinh.c: Include <float.h>.
(__asinh): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/flt-32/s_asinhf.c: Include <float.h>.
(__asinhf): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-128ibm/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* sysdeps/ieee754/ldbl-96/s_asinhl.c: Include <float.h>.
(__asinhl): Force underflow exception for arguments with small
absolute value.
* math/auto-libm-test-in: Do not mark underflow exceptions as
possibly missing for bug 16350.
* math/auto-libm-test-out: Regenerated.
|
|
|
|
to use standard C99 macros. This has no effect on generated code.
|
|
If you remove the "override CFLAGS += -Wno-uninitialized" in
math/Makefile, you get errors from lgamma implementations of the form:
../sysdeps/ieee754/dbl-64/e_lgamma_r.c: In function '__ieee754_lgamma_r':
../sysdeps/ieee754/dbl-64/e_lgamma_r.c:297:13: error: 'nadj' may be used uninitialized in this function [-Werror=maybe-uninitialized]
if(hx<0) r = nadj - r;
This is one of the standard kinds of false positive uninitialized
warnings: nadj is set under a certain condition, and then later used
under the same condition. This patch uses DIAG_* macros to suppress
the warning on the use of nadj. The ldbl-128 / ldbl-128ibm
implementation has a substantially different structure that avoids
this issue.
Tested for x86_64. (In fact this patch eliminates the need for that
-Wno-uninitialized on x86_64, but I want to test on more architectures
before removing it.)
* sysdeps/ieee754/dbl-64/e_lgamma_r.c: Include <libc-internal.h>.
(__ieee754_lgamma_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/flt-32/e_lgammaf_r.c: Include <libc-internal.h>.
(__ieee754_lgammaf_r): Ignore uninitialized warnings around use of
NADJ.
* sysdeps/ieee754/ldbl-96/e_lgammal_r.c: Include <libc-internal.h>.
(__ieee754_lgammal_r): Ignore uninitialized warnings around use of
NADJ.
|