diff options
Diffstat (limited to 'math/k_casinhf.c')
-rw-r--r-- | math/k_casinhf.c | 212 |
1 files changed, 0 insertions, 212 deletions
diff --git a/math/k_casinhf.c b/math/k_casinhf.c deleted file mode 100644 index 7697f31..0000000 --- a/math/k_casinhf.c +++ /dev/null @@ -1,212 +0,0 @@ -/* Return arc hyperbole sine for float value, with the imaginary part - of the result possibly adjusted for use in computing other - functions. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <complex.h> -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* Return the complex inverse hyperbolic sine of finite nonzero Z, - with the imaginary part of the result subtracted from pi/2 if ADJ - is nonzero. */ - -__complex__ float -__kernel_casinhf (__complex__ float x, int adj) -{ - __complex__ float res; - float rx, ix; - __complex__ float y; - - /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabsf (__real__ x); - ix = fabsf (__imag__ x); - - if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) - { - /* For large x in the first quadrant, x + csqrt (1 + x * x) - is sufficiently close to 2 * x to make no significant - difference to the result; avoid possible overflow from - the squaring and addition. */ - __real__ y = rx; - __imag__ y = ix; - - if (adj) - { - float t = __real__ y; - __real__ y = __copysignf (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogf (y); - __real__ res += (float) M_LN2; - } - else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) - { - float s = __ieee754_hypotf (1.0f, rx); - - __real__ res = __ieee754_logf (rx + s); - if (adj) - __imag__ res = __ieee754_atan2f (s, __imag__ x); - else - __imag__ res = __ieee754_atan2f (ix, s); - } - else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) - { - float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); - - __real__ res = __ieee754_logf (ix + s); - if (adj) - __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2f (s, rx); - } - else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) - { - if (rx < FLT_EPSILON * FLT_EPSILON) - { - float ix2m1 = (ix + 1.0f) * (ix - 1.0f); - float s = __ieee754_sqrtf (ix2m1); - - __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); - else - __imag__ res = __ieee754_atan2f (s, rx); - } - else - { - float ix2m1 = (ix + 1.0f) * (ix - 1.0f); - float rx2 = rx * rx; - float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); - float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); - float dp = d + ix2m1; - float dm = f / dp; - float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); - float r2 = rx * ix / r1; - - __real__ res - = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); - } - } - else if (ix == 1.0f && rx < 0.5f) - { - if (rx < FLT_EPSILON / 8.0f) - { - __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), - __copysignf (1.0f, __imag__ x)); - else - __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); - } - else - { - float d = rx * __ieee754_sqrtf (4.0f + rx * rx); - float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); - float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); - - __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx + s1, - __copysignf (1.0f + s2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); - } - } - else if (ix < 1.0f && rx < 0.5f) - { - if (ix >= FLT_EPSILON) - { - if (rx < FLT_EPSILON * FLT_EPSILON) - { - float onemix2 = (1.0f + ix) * (1.0f - ix); - float s = __ieee754_sqrtf (onemix2); - - __real__ res = __log1pf (2.0f * rx / s) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (s, __imag__ x); - else - __imag__ res = __ieee754_atan2f (ix, s); - } - else - { - float onemix2 = (1.0f + ix) * (1.0f - ix); - float rx2 = rx * rx; - float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); - float d = __ieee754_sqrtf (onemix2 * onemix2 + f); - float dp = d + onemix2; - float dm = f / dp; - float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); - float r2 = rx * ix / r1; - - __real__ res - = __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (rx + r1, - __copysignf (ix + r2, - __imag__ x)); - else - __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); - } - } - else - { - float s = __ieee754_hypotf (1.0f, rx); - - __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; - if (adj) - __imag__ res = __ieee754_atan2f (s, __imag__ x); - else - __imag__ res = __ieee754_atan2f (ix, s); - } - math_check_force_underflow_nonneg (__real__ res); - } - else - { - __real__ y = (rx - ix) * (rx + ix) + 1.0f; - __imag__ y = 2.0f * rx * ix; - - y = __csqrtf (y); - - __real__ y += rx; - __imag__ y += ix; - - if (adj) - { - float t = __real__ y; - __real__ y = __copysignf (__imag__ y, __imag__ x); - __imag__ y = t; - } - - res = __clogf (y); - } - - /* Give results the correct sign for the original argument. */ - __real__ res = __copysignf (__real__ res, __real__ x); - __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); - - return res; -} |