diff options
Diffstat (limited to 'manual/math.texi')
-rw-r--r-- | manual/math.texi | 524 |
1 files changed, 100 insertions, 424 deletions
diff --git a/manual/math.texi b/manual/math.texi index 53c2bc1..912e740 100644 --- a/manual/math.texi +++ b/manual/math.texi @@ -159,43 +159,28 @@ yourself: You can also compute the value of pi with the expression @code{acos (-1.0)}. -@comment math.h -@comment ISO @deftypefun double sin (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float sinf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} sinl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the sine of @var{x}, where @var{x} is given in radians. The return value is in the range @code{-1} to @code{1}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double cos (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float cosf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} cosl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the cosine of @var{x}, where @var{x} is given in radians. The return value is in the range @code{-1} to @code{1}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double tan (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float tanf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} tanl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the tangent of @var{x}, where @var{x} is given in radians. @@ -210,15 +195,10 @@ and cosine of the same angle are needed at the same time. It is more efficient to compute them simultaneously, so the library provides a function to do that. -@comment math.h -@comment GNU @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx}) -@comment math.h -@comment GNU @deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx}) -@comment math.h -@comment GNU @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx}) +@standards{GNU, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the sine of @var{x} in @code{*@var{sinx}} and the cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in @@ -239,15 +219,10 @@ by the standard. (As of this writing GCC supports complex numbers, but there are bugs in the implementation.) -@comment complex.h -@comment ISO @deftypefun {complex double} csin (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} csinf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} csinl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @c There are calls to nan* that could trigger @mtslocale if they didn't get @c empty strings. @@ -262,15 +237,10 @@ $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$ @end tex @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} ccos (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} ccosf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} ccosl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex cosine of @var{z}. The mathematical definition of the complex cosine is @@ -283,15 +253,10 @@ $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$ @end tex @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} ctan (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} ctanf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} ctanl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex tangent of @var{z}. The mathematical definition of the complex tangent is @@ -318,15 +283,10 @@ These are the usual arcsine, arccosine and arctangent functions, which are the inverses of the sine, cosine and tangent functions respectively. -@comment math.h -@comment ISO @deftypefun double asin (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float asinf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} asinl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the arcsine of @var{x}---that is, the value whose sine is @var{x}. The value is in units of radians. Mathematically, @@ -338,15 +298,10 @@ over the domain @code{-1} to @code{1}. If @var{x} is outside the domain, @code{asin} signals a domain error. @end deftypefun -@comment math.h -@comment ISO @deftypefun double acos (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float acosf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} acosl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the arccosine of @var{x}---that is, the value whose cosine is @var{x}. The value is in units of radians. @@ -358,15 +313,10 @@ over the domain @code{-1} to @code{1}. If @var{x} is outside the domain, @code{acos} signals a domain error. @end deftypefun -@comment math.h -@comment ISO @deftypefun double atan (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float atanf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} atanl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the arctangent of @var{x}---that is, the value whose tangent is @var{x}. The value is in units of radians. @@ -374,15 +324,10 @@ Mathematically, there are infinitely many such values; the one actually returned is the one between @code{-pi/2} and @code{pi/2} (inclusive). @end deftypefun -@comment math.h -@comment ISO @deftypefun double atan2 (double @var{y}, double @var{x}) -@comment math.h -@comment ISO @deftypefunx float atan2f (float @var{y}, float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} This function computes the arctangent of @var{y}/@var{x}, but the signs of both arguments are used to determine the quadrant of the result, and @@ -403,15 +348,10 @@ If both @var{x} and @var{y} are zero, @code{atan2} returns zero. @cindex inverse complex trigonometric functions @w{ISO C99} defines complex versions of the inverse trig functions. -@comment complex.h -@comment ISO @deftypefun {complex double} casin (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} casinf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} casinl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the complex arcsine of @var{z}---that is, the value whose sine is @var{z}. The value returned is in radians. @@ -420,15 +360,10 @@ Unlike the real-valued functions, @code{casin} is defined for all values of @var{z}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} cacos (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} cacosf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} cacosl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the complex arccosine of @var{z}---that is, the value whose cosine is @var{z}. The value returned is in radians. @@ -438,15 +373,10 @@ values of @var{z}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} catan (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} catanf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} catanl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the complex arctangent of @var{z}---that is, the value whose tangent is @var{z}. The value is in units of radians. @@ -459,15 +389,10 @@ the value whose tangent is @var{z}. The value is in units of radians. @cindex power functions @cindex logarithm functions -@comment math.h -@comment ISO @deftypefun double exp (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float expf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} expl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute @code{e} (the base of natural logarithms) raised to the power @var{x}. @@ -476,38 +401,25 @@ If the magnitude of the result is too large to be representable, @code{exp} signals overflow. @end deftypefun -@comment math.h -@comment ISO @deftypefun double exp2 (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float exp2f (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} exp2l (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute @code{2} raised to the power @var{x}. Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double exp10 (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float exp10f (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} exp10l (long double @var{x}) -@comment math.h -@comment GNU @deftypefunx double pow10 (double @var{x}) -@comment math.h -@comment GNU @deftypefunx float pow10f (float @var{x}) -@comment math.h -@comment GNU @deftypefunx {long double} pow10l (long double @var{x}) +@standards{ISO, math.h} +@standardsx{pow10, GNU, math.h} +@standardsx{pow10f, GNU, math.h} +@standardsx{pow10l, GNU, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute @code{10} raised to the power @var{x}. Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}. @@ -518,15 +430,10 @@ preferred, since it is analogous to @code{exp} and @code{exp2}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double log (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float logf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} logl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions compute the natural logarithm of @var{x}. @code{exp (log (@var{x}))} equals @var{x}, exactly in mathematics and approximately in @@ -537,44 +444,29 @@ is zero, it returns negative infinity; if @var{x} is too close to zero, it may signal overflow. @end deftypefun -@comment math.h -@comment ISO @deftypefun double log10 (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float log10f (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} log10l (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the base-10 logarithm of @var{x}. @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double log2 (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float log2f (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} log2l (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the base-2 logarithm of @var{x}. @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double logb (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float logbf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} logbl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions extract the exponent of @var{x} and return it as a floating-point value. If @code{FLT_RADIX} is two, @code{logb} is equal @@ -586,24 +478,13 @@ negative), @code{logb} returns @math{@infinity{}}. If @var{x} is zero, @code{logb} returns @math{@infinity{}}. It does not signal. @end deftypefun -@comment math.h -@comment ISO @deftypefun int ilogb (double @var{x}) -@comment math.h -@comment ISO @deftypefunx int ilogbf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx int ilogbl (long double @var{x}) -@comment math.h -@comment ISO @deftypefunx {long int} llogb (double @var{x}) -@comment math.h -@comment ISO @deftypefunx {long int} llogbf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long int} llogbl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions are equivalent to the corresponding @code{logb} functions except that they return signed integer values. The @@ -616,36 +497,32 @@ Since integers cannot represent infinity and NaN, @code{ilogb} instead returns an integer that can't be the exponent of a normal floating-point number. @file{math.h} defines constants so you can check for this. -@comment math.h -@comment ISO @deftypevr Macro int FP_ILOGB0 +@standards{ISO, math.h} @code{ilogb} returns this value if its argument is @code{0}. The numeric value is either @code{INT_MIN} or @code{-INT_MAX}. This macro is defined in @w{ISO C99}. @end deftypevr -@comment math.h -@comment ISO @deftypevr Macro {long int} FP_LLOGB0 +@standards{ISO, math.h} @code{llogb} returns this value if its argument is @code{0}. The numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}. This macro is defined in TS 18661-1:2014. @end deftypevr -@comment math.h -@comment ISO @deftypevr Macro int FP_ILOGBNAN +@standards{ISO, math.h} @code{ilogb} returns this value if its argument is @code{NaN}. The numeric value is either @code{INT_MIN} or @code{INT_MAX}. This macro is defined in @w{ISO C99}. @end deftypevr -@comment math.h -@comment ISO @deftypevr Macro {long int} FP_LLOGBNAN +@standards{ISO, math.h} @code{llogb} returns this value if its argument is @code{NaN}. The numeric value is either @code{LONG_MIN} or @code{LONG_MAX}. @@ -675,15 +552,10 @@ if (i == FP_ILOGB0 || i == FP_ILOGBNAN) @} @end smallexample -@comment math.h -@comment ISO @deftypefun double pow (double @var{base}, double @var{power}) -@comment math.h -@comment ISO @deftypefunx float powf (float @var{base}, float @var{power}) -@comment math.h -@comment ISO @deftypefunx {long double} powl (long double @var{base}, long double @var{power}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These are general exponentiation functions, returning @var{base} raised to @var{power}. @@ -695,15 +567,10 @@ underflow or overflow the destination type. @end deftypefun @cindex square root function -@comment math.h -@comment ISO @deftypefun double sqrt (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float sqrtf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} sqrtl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the nonnegative square root of @var{x}. @@ -712,29 +579,19 @@ Mathematically, it should return a complex number. @end deftypefun @cindex cube root function -@comment math.h -@comment BSD @deftypefun double cbrt (double @var{x}) -@comment math.h -@comment BSD @deftypefunx float cbrtf (float @var{x}) -@comment math.h -@comment BSD @deftypefunx {long double} cbrtl (long double @var{x}) +@standards{BSD, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the cube root of @var{x}. They cannot fail; every representable real value has a representable real cube root. @end deftypefun -@comment math.h -@comment ISO @deftypefun double hypot (double @var{x}, double @var{y}) -@comment math.h -@comment ISO @deftypefunx float hypotf (float @var{x}, float @var{y}) -@comment math.h -@comment ISO @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return @code{sqrt (@var{x}*@var{x} + @var{y}*@var{y})}. This is the length of the hypotenuse of a right @@ -744,15 +601,10 @@ instead of the direct formula is wise, since the error is much smaller. See also the function @code{cabs} in @ref{Absolute Value}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double expm1 (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float expm1f (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} expm1l (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return a value equivalent to @code{exp (@var{x}) - 1}. They are computed in a way that is accurate even if @var{x} is @@ -760,15 +612,10 @@ near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing to subtraction of two numbers that are nearly equal. @end deftypefun -@comment math.h -@comment ISO @deftypefun double log1p (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float log1pf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} log1pl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return a value equivalent to @w{@code{log (1 + @var{x})}}. They are computed in a way that is accurate even if @var{x} is @@ -781,15 +628,10 @@ near zero. @w{ISO C99} defines complex variants of some of the exponentiation and logarithm functions. -@comment complex.h -@comment ISO @deftypefun {complex double} cexp (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} cexpf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} cexpl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return @code{e} (the base of natural logarithms) raised to the power of @var{z}. @@ -803,15 +645,10 @@ $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$ @end tex @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} clog (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} clogf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} clogl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the natural logarithm of @var{z}. Mathematically, this corresponds to the value @@ -830,15 +667,10 @@ or is very close to 0. It is well-defined for all other values of @end deftypefun -@comment complex.h -@comment GNU @deftypefun {complex double} clog10 (complex double @var{z}) -@comment complex.h -@comment GNU @deftypefunx {complex float} clog10f (complex float @var{z}) -@comment complex.h -@comment GNU @deftypefunx {complex long double} clog10l (complex long double @var{z}) +@standards{GNU, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the base 10 logarithm of the complex value @var{z}. Mathematically, this corresponds to the value @@ -853,29 +685,19 @@ $$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$ These functions are GNU extensions. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} csqrt (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} csqrtf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} csqrtl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex square root of the argument @var{z}. Unlike the real-valued functions, they are defined for all values of @var{z}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power}) -@comment complex.h -@comment ISO @deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return @var{base} raised to the power of @var{power}. This is equivalent to @w{@code{cexp (y * clog (x))}} @@ -888,45 +710,30 @@ These functions return @var{base} raised to the power of The functions in this section are related to the exponential functions; see @ref{Exponents and Logarithms}. -@comment math.h -@comment ISO @deftypefun double sinh (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float sinhf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} sinhl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the hyperbolic sine of @var{x}, defined mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}. They may signal overflow if @var{x} is too large. @end deftypefun -@comment math.h -@comment ISO @deftypefun double cosh (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float coshf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} coshl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the hyperbolic cosine of @var{x}, defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}. They may signal overflow if @var{x} is too large. @end deftypefun -@comment math.h -@comment ISO @deftypefun double tanh (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float tanhf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} tanhl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the hyperbolic tangent of @var{x}, defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}. @@ -938,43 +745,28 @@ They may signal overflow if @var{x} is too large. There are counterparts for the hyperbolic functions which take complex arguments. -@comment complex.h -@comment ISO @deftypefun {complex double} csinh (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} csinhf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} csinhl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex hyperbolic sine of @var{z}, defined mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} ccosh (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} ccoshf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} ccoshl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex hyperbolic cosine of @var{z}, defined mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} ctanh (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} ctanhf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} ctanhl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the complex hyperbolic tangent of @var{z}, defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}. @@ -983,44 +775,29 @@ defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}. @cindex inverse hyperbolic functions -@comment math.h -@comment ISO @deftypefun double asinh (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float asinhf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} asinhl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse hyperbolic sine of @var{x}---the value whose hyperbolic sine is @var{x}. @end deftypefun -@comment math.h -@comment ISO @deftypefun double acosh (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float acoshf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} acoshl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse hyperbolic cosine of @var{x}---the value whose hyperbolic cosine is @var{x}. If @var{x} is less than @code{1}, @code{acosh} signals a domain error. @end deftypefun -@comment math.h -@comment ISO @deftypefun double atanh (double @var{x}) -@comment math.h -@comment ISO @deftypefunx float atanhf (float @var{x}) -@comment math.h -@comment ISO @deftypefunx {long double} atanhl (long double @var{x}) +@standards{ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse hyperbolic tangent of @var{x}---the value whose hyperbolic tangent is @var{x}. If the absolute value of @@ -1030,44 +807,29 @@ if it is equal to 1, @code{atanh} returns infinity. @cindex inverse complex hyperbolic functions -@comment complex.h -@comment ISO @deftypefun {complex double} casinh (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} casinhf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} casinhl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse complex hyperbolic sine of @var{z}---the value whose complex hyperbolic sine is @var{z}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} cacosh (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} cacoshf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} cacoshl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse complex hyperbolic cosine of @var{z}---the value whose complex hyperbolic cosine is @var{z}. Unlike the real-valued functions, there are no restrictions on the value of @var{z}. @end deftypefun -@comment complex.h -@comment ISO @deftypefun {complex double} catanh (complex double @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex float} catanhf (complex float @var{z}) -@comment complex.h -@comment ISO @deftypefunx {complex long double} catanhl (complex long double @var{z}) +@standards{ISO, complex.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} These functions return the inverse complex hyperbolic tangent of @var{z}---the value whose complex hyperbolic tangent is @var{z}. Unlike @@ -1084,15 +846,10 @@ the real-valued functions, there are no restrictions on the value of These are some more exotic mathematical functions which are sometimes useful. Currently they only have real-valued versions. -@comment math.h -@comment SVID @deftypefun double erf (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float erff (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} erfl (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{erf} returns the error function of @var{x}. The error function is defined as @@ -1106,29 +863,19 @@ erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt @end ifnottex @end deftypefun -@comment math.h -@comment SVID @deftypefun double erfc (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float erfcf (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} erfcl (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a fashion that avoids round-off error when @var{x} is large. @end deftypefun -@comment math.h -@comment SVID @deftypefun double lgamma (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float lgammaf (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} lgammal (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}} @code{lgamma} returns the natural logarithm of the absolute value of the gamma function of @var{x}. The gamma function is defined as @@ -1159,30 +906,20 @@ The gamma function has singularities at the non-positive integers. singularity. @end deftypefun -@comment math.h -@comment XPG @deftypefun double lgamma_r (double @var{x}, int *@var{signp}) -@comment math.h -@comment XPG @deftypefunx float lgammaf_r (float @var{x}, int *@var{signp}) -@comment math.h -@comment XPG @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp}) +@standards{XPG, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of the intermediate result in the variable pointed to by @var{signp} instead of in the @var{signgam} global. This means it is reentrant. @end deftypefun -@comment math.h -@comment SVID @deftypefun double gamma (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float gammaf (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} gammal (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}} These functions exist for compatibility reasons. They are equivalent to @code{lgamma} etc. It is better to use @code{lgamma} since for one the @@ -1190,15 +927,15 @@ name reflects better the actual computation, and moreover @code{lgamma} is standardized in @w{ISO C99} while @code{gamma} is not. @end deftypefun -@comment math.h -@comment XPG, ISO @deftypefun double tgamma (double @var{x}) -@comment math.h -@comment XPG, ISO @deftypefunx float tgammaf (float @var{x}) -@comment math.h -@comment XPG, ISO @deftypefunx {long double} tgammal (long double @var{x}) +@standardsx{tgamma, XPG, math.h} +@standardsx{tgamma, ISO, math.h} +@standardsx{tgammaf, XPG, math.h} +@standardsx{tgammaf, ISO, math.h} +@standardsx{tgammal, XPG, math.h} +@standardsx{tgammal, ISO, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{tgamma} applies the gamma function to @var{x}. The gamma function is defined as @@ -1214,57 +951,37 @@ gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt This function was introduced in @w{ISO C99}. @end deftypefun -@comment math.h -@comment SVID @deftypefun double j0 (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float j0f (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} j0l (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{j0} returns the Bessel function of the first kind of order 0 of @var{x}. It may signal underflow if @var{x} is too large. @end deftypefun -@comment math.h -@comment SVID @deftypefun double j1 (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float j1f (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} j1l (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{j1} returns the Bessel function of the first kind of order 1 of @var{x}. It may signal underflow if @var{x} is too large. @end deftypefun -@comment math.h -@comment SVID @deftypefun double jn (int @var{n}, double @var{x}) -@comment math.h -@comment SVID @deftypefunx float jnf (int @var{n}, float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} jnl (int @var{n}, long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{jn} returns the Bessel function of the first kind of order @var{n} of @var{x}. It may signal underflow if @var{x} is too large. @end deftypefun -@comment math.h -@comment SVID @deftypefun double y0 (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float y0f (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} y0l (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{y0} returns the Bessel function of the second kind of order 0 of @var{x}. It may signal underflow if @var{x} is too large. If @var{x} @@ -1272,15 +989,10 @@ is negative, @code{y0} signals a domain error; if it is zero, @code{y0} signals overflow and returns @math{-@infinity}. @end deftypefun -@comment math.h -@comment SVID @deftypefun double y1 (double @var{x}) -@comment math.h -@comment SVID @deftypefunx float y1f (float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} y1l (long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{y1} returns the Bessel function of the second kind of order 1 of @var{x}. It may signal underflow if @var{x} is too large. If @var{x} @@ -1288,15 +1000,10 @@ is negative, @code{y1} signals a domain error; if it is zero, @code{y1} signals overflow and returns @math{-@infinity}. @end deftypefun -@comment math.h -@comment SVID @deftypefun double yn (int @var{n}, double @var{x}) -@comment math.h -@comment SVID @deftypefunx float ynf (int @var{n}, float @var{x}) -@comment math.h -@comment SVID @deftypefunx {long double} ynl (int @var{n}, long double @var{x}) +@standards{SVID, math.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} @code{yn} returns the Bessel function of the second kind of order @var{n} of @var{x}. It may signal underflow if @var{x} is too large. If @var{x} @@ -1492,27 +1199,24 @@ To use these facilities, you should include the header file @file{stdlib.h} in your program. @pindex stdlib.h -@comment stdlib.h -@comment ISO @deftypevr Macro int RAND_MAX +@standards{ISO, stdlib.h} The value of this macro is an integer constant representing the largest value the @code{rand} function can return. In @theglibc{}, it is @code{2147483647}, which is the largest signed integer representable in 32 bits. In other libraries, it may be as low as @code{32767}. @end deftypevr -@comment stdlib.h -@comment ISO @deftypefun int rand (void) +@standards{ISO, stdlib.h} @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} @c Just calls random. The @code{rand} function returns the next pseudo-random number in the series. The value ranges from @code{0} to @code{RAND_MAX}. @end deftypefun -@comment stdlib.h -@comment ISO @deftypefun void srand (unsigned int @var{seed}) +@standards{ISO, stdlib.h} @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} @c Alias to srandom. This function establishes @var{seed} as the seed for a new series of @@ -1528,9 +1232,8 @@ POSIX.1 extended the C standard functions to support reproducible random numbers in multi-threaded programs. However, the extension is badly designed and unsuitable for serious work. -@comment stdlib.h -@comment POSIX.1 @deftypefun int rand_r (unsigned int *@var{seed}) +@standards{POSIX.1, stdlib.h} @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}} This function returns a random number in the range 0 to @code{RAND_MAX} just as @code{rand} does. However, all its state is stored in the @@ -1555,9 +1258,8 @@ with @theglibc{}; we support them for BSD compatibility only. The prototypes for these functions are in @file{stdlib.h}. @pindex stdlib.h -@comment stdlib.h -@comment BSD @deftypefun {long int} random (void) +@standards{BSD, stdlib.h} @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} @c Takes a lock and calls random_r with an automatic variable and the @c global state, while holding a lock. @@ -1571,9 +1273,8 @@ differently. Users must always be aware of the 32-bit limitation, though. @end deftypefun -@comment stdlib.h -@comment BSD @deftypefun void srandom (unsigned int @var{seed}) +@standards{BSD, stdlib.h} @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} @c Takes a lock and calls srandom_r with an automatic variable and a @c static buffer. There's no MT-safety issue because the static buffer @@ -1588,9 +1289,8 @@ To produce a different set of pseudo-random numbers each time your program runs, do @code{srandom (time (0))}. @end deftypefun -@comment stdlib.h -@comment BSD @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size}) +@standards{BSD, stdlib.h} @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} The @code{initstate} function is used to initialize the random number generator state. The argument @var{state} is an array of @var{size} @@ -1603,9 +1303,8 @@ You can use this value later as an argument to @code{setstate} to restore that state. @end deftypefun -@comment stdlib.h -@comment BSD @deftypefun {char *} setstate (char *@var{state}) +@standards{BSD, stdlib.h} @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}} The @code{setstate} function restores the random number state information @var{state}. The argument must have been the result of @@ -1632,9 +1331,8 @@ following interfaces. The @file{stdlib.h} header contains a definition of the following type: -@comment stdlib.h -@comment GNU @deftp {Data Type} {struct random_data} +@standards{GNU, stdlib.h} Objects of type @code{struct random_data} contain the information necessary to represent the state of the PRNG. Although a complete @@ -1644,36 +1342,32 @@ definition of the type is present the type should be treated as opaque. The functions modifying the state follow exactly the already described functions. -@comment stdlib.h -@comment GNU @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{random_r} function behaves exactly like the @code{random} function except that it uses and modifies the state in the object pointed to by the first parameter instead of the global state. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{srandom_r} function behaves exactly like the @code{srandom} function except that it uses and modifies the state in the object pointed to by the second parameter instead of the global state. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{initstate_r} function behaves exactly like the @code{initstate} function except that it uses and modifies the state in the object pointed to by the fourth parameter instead of the global state. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{setstate_r} function behaves exactly like the @code{setstate} function except that it uses and modifies the state in the object @@ -1718,9 +1412,8 @@ The prototypes for these functions are in @file{stdlib.h}. @pindex stdlib.h -@comment stdlib.h -@comment SVID @deftypefun double drand48 (void) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} @c Uses of the static state buffer are not guarded by a lock (thus @c @mtasurace:drand48), so they may be found or left at a @@ -1737,9 +1430,8 @@ generator. These are (of course) chosen to be the least significant bits and they are initialized to @code{0}. @end deftypefun -@comment stdlib.h -@comment SVID @deftypefun double erand48 (unsigned short int @var{xsubi}[3]) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} @c The static buffer is just initialized with default parameters, which @c are later read to advance the state held in xsubi. @@ -1752,9 +1444,8 @@ guarantee random numbers. The array should have been initialized before initial use to obtain reproducible results. @end deftypefun -@comment stdlib.h -@comment SVID @deftypefun {long int} lrand48 (void) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{lrand48} function returns an integer value in the range of @code{0} to @code{2^31} (exclusive). Even if the size of the @code{long @@ -1763,9 +1454,8 @@ The random bits are determined by the global state of the random number generator in the C library. @end deftypefun -@comment stdlib.h -@comment SVID @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3]) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} This function is similar to the @code{lrand48} function in that it returns a number in the range of @code{0} to @code{2^31} (exclusive) but @@ -1778,18 +1468,16 @@ number generator). The array should have been initialized before the first call to obtain reproducible results. @end deftypefun -@comment stdlib.h -@comment SVID @deftypefun {long int} mrand48 (void) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{mrand48} function is similar to @code{lrand48}. The only difference is that the numbers returned are in the range @code{-2^31} to @code{2^31} (exclusive). @end deftypefun -@comment stdlib.h -@comment SVID @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3]) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{jrand48} function is similar to @code{nrand48}. The only difference is that the numbers returned are in the range @code{-2^31} to @@ -1801,9 +1489,8 @@ The internal state of the random number generator can be initialized in several ways. The methods differ in the completeness of the information provided. -@comment stdlib.h -@comment SVID @deftypefun void srand48 (long int @var{seedval}) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{srand48} function sets the most significant 32 bits of the internal state of the random number generator to the least @@ -1821,9 +1508,8 @@ are reset to the default values given above. This is of importance once the user has called the @code{lcong48} function (see below). @end deftypefun -@comment stdlib.h -@comment SVID @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3]) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{seed48} function initializes all 48 bits of the state of the internal random number generator from the contents of the parameter @@ -1849,9 +1535,8 @@ There is one more function to initialize the random number generator which enables you to specify even more information by allowing you to change the parameters in the congruential formula. -@comment stdlib.h -@comment SVID @deftypefun void lcong48 (unsigned short int @var{param}[7]) +@standards{SVID, stdlib.h} @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}} The @code{lcong48} function allows the user to change the complete state of the random number generator. Unlike @code{srand48} and @@ -1882,9 +1567,8 @@ obtain an individual random number generator. The user-supplied buffer must be of type @code{struct drand48_data}. This type should be regarded as opaque and not manipulated directly. -@comment stdlib.h -@comment GNU @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is equivalent to the @code{drand48} function with the difference that it does not modify the global random number generator @@ -1900,9 +1584,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{erand48_r} function works like @code{erand48}, but in addition it takes an argument @var{buffer} which describes the random number @@ -1917,9 +1600,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is similar to @code{lrand48}, but in addition it takes a pointer to a buffer describing the state of the random number generator @@ -1932,9 +1614,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{nrand48_r} function works like @code{nrand48} in that it produces a random number in the range @code{0} to @code{2^31}. But instead @@ -1949,9 +1630,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is similar to @code{mrand48} but like the other reentrant functions it uses the random number generator described by the value in @@ -1964,9 +1644,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The @code{jrand48_r} function is similar to @code{jrand48}. Like the other reentrant functions of this function family it uses the @@ -1999,9 +1678,8 @@ buffer from looking at the parameter to the function, it is highly recommended to use these functions since the result might not always be what you expect. -@comment stdlib.h -@comment GNU @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} The description of the random number generator represented by the information in @var{buffer} is initialized similarly to what the function @@ -2015,9 +1693,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function is similar to @code{srand48_r} but like @code{seed48} it initializes all 48 bits of the state from the parameter @var{seed16v}. @@ -2032,9 +1709,8 @@ This function is a GNU extension and should not be used in portable programs. @end deftypefun -@comment stdlib.h -@comment GNU @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer}) +@standards{GNU, stdlib.h} @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}} This function initializes all aspects of the random number generator described in @var{buffer} with the data in @var{param}. Here it is |